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Abstract 

Closed Circuit Television ( C C W )  surveys are used 
widely in North America to assess the structural integrity 
of underground pipes. The video images are examined 
visually and classified into grades according to degrees of 
damage. The human eye is extremely effective at 
recognition and classification, but it is not suitable for 
assessing pipe defects in thousand of miles of pipeline 
images due to fatigue, subjectivity, and cost. This paper 
presents ongoing research into the automatic assessment 
of the structural condition of underground pipes for the 
purpose of preventive maintenance by municipalities. 

1. Introduction 

The National Science Foundation (NSF) has 
estimated the total U S .  investment in civil infrastructure 
systems at $US 20 trillion. The investments in 
underground pipeline distribution systems represent a 
major component of this figure. Many of these systems are 
eroding due to aging, excessive demand, misuse, and 
neglect, as shown in Figure 1. Many of the methods used 
to assess and interpret the condition of underground pipe 
systems have been inadequate because they were based on 
inspection only after failure. At present, the assessed 
condition of underground pipes is based on the subjective 
visual inspection of CCTV surveys [l], resulting in 
handicapped financial justifications of rehabilitation work. 
An automatic pipe inspection system is required, based on 
CCTV surveys, which can extract and assess conditions to 
ensure accuracy, efficiency, and economy of pipe 
examination. This paper presents an analysis of the 
detection of defects in underground sewer pipes. 

CCTV surveys are conducted using remotely 
controlled vehicles carrying a television camera through 
an underground pipe. The data acquired from this process 
consist of videotape, photographs of specific defects, and 
a record produced by the technician. Diagnosis of defects 
depends on experience, capability, and concentration of 
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the operator, making the detection of defect error prone. 
Although underground imaging technology has made 
substantial strides in recent years, the basic means of 
analysis are unchanged: a technician is required to identify 
defects on a monitor. The research of this paper seeks to 
address this latter limitation. 

Most of the literature concerning the detection of 
defects in civil structures deals with the analysis of 
pavement and concretelsteel distresses [2], analyses which 
are not directly applicable to underground pipe inspection. 
The approach proposed in this paper is based on local 
detection of linear structures. The scanned images are 
obtained by Pipe Scanner and Evaluation Technology 
(PSET) camera, developed by Core Corp., California and 
TOA Grout, Japan [3]. Typical scanned images with 
various defects are shown in Figures 2 (a) & (b). 

2. Image Feature Extraction 

In the computer vision literature one can find various 
techniques addressing different types of data, including 
natural and artificial textures, synthetic aperture radar 
images, and magnetic resonance images. In analysing 
underground pipe scanned image data, one needs to 
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consider complications due to the inherent noise in the 
scanning process, irregularly shaped cracks, as well as the 
wide range of pipe background patterns. One of the major 
problems is detecting defects (especially cracks) that are 
camouflaged in the background of corroded areas, debris, 
patches of repair work, and areas of poorly illuminated 
conditions. 

In the past 20 years, many approaches have been 
developed to deal with the detection of linear features on 
optic [4] or radar images [5 ] .  Most of them combine two 
criteria: a local criterion evaluating the radiometry on 
some small neighborhood surrounding a target pixel to 
discriminate lines from background and a global criterion 
introducing some large-scale knowledge about the 
structures to be detected. 

Concerning the local criterion, most of the techniques 
used for pavement distress detection in scanned images 
are based either on conventional edge or line detectors 
[6,7]. These methods evaluate differences of averages, 
implying noisy results and variable false-alarm rates [8]. 
In addition, local criteria are in many cases insufficient for 
edge or line detection, and global constraints must be 
introduced [9]. For instance, dynamic programming is 
used to minimize some global cost functions, as in the 
original algorithm of Fishler [lo] and its improvement [4]. 
Hough-transform-based approaches have also been tested 
for the detection of parametric curves, such as straight 
lines or circles [ I l l .  Tracking methods are another 
possibility. They find the minimum cost path in a graph by 
using some heuristics, for instance, an entropy criterion 
[12]. Energy minimization curves, such as snakes, have 
been applied [13]. The Bayesian framework, which is well 
adapted for taking some contextual knowledge into 
account, has been widely used [141. 

The approach proposed in this paper falls within the 
scope of the Bayesian framework. Since our aim is to 
detect the defects present in an image, contextual 
knowledge on the scale of pixels is insufficient and results 

cracks, most severely above the joint, 

in numerous, small, disconnected segments. However, on 
the scale of segments, a priori knowledge allows for the 
detection of cracks. Thus, detection of crack is performed 
in two steps. In the first step, crack-segment candidates are 
detected. In the second step, cracks are obtained by 
cleaning and linking operations. 

3. Detection of Cracks 

The algorithm begins with performing a local 
detection of cracks. This is based on the fusion of the 
results from two crack detectors D1 and D2, both taking 
the statistical properties of image into account. Crack 
detector D1 is based on a ratio edge detector for which an 
in-depth statistical study of its behavior is given in Lopes 
et. al. [15]. Detector D2, which has emerged from this 
research, uses the normalized centered correlation between 
two populations of pixels. Both responses from D1 and D2 
are merged to obtain a unique response as well as an 
associated direction in each pixel. The detection results are 
post-processed to provide candidate segments. Figure 3 
shows the different steps of the proposed crack detection 
algorithms. 

3.1. Ratio Crack Detector D1 

The ratio crack detector was introduced in [8] and 
statistically studied in [15]. This crack detector D1 is 
derived from the coupling of two edge detectors on both 
sides of a region. Let index 1 denotes the central region 
and indexes 2 and 3 both lateral regions, as shown in 
Figure 4. The amplitude of pixel x is noted A,, so that the 

empirical mean p i  of a given region i having n, pixels is: 

pi = [ $kzei A, . The response of the edge detector 

between region i and j is defined as qj 
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‘igure 3. Diagram showing the diflerent s t e m  of the 
proposed crack detection algorithm. 

CRACK 
DETECTOR D2 

and the response to D1 as r = min(c2,r,3), the 
minimum response of a ratio crack detector on both sides 
of the crack structure. With detector D1, a pixel is 
considered as belonging to a crack when its response r is 
large enough, i.e., higher than some a priori chosen 
threshold rmin. 

The geometric shape of the filter (Figure 4) is 
adequate, but many directions have to be tested. Besides, 
the width of a crack not being precisely defined, several 
widths for region 1 ,  2 ,  and 3 are tried. Thus, considering 
N, directions d,, ke  {I ,..., Nd}for the crack 
detector. Because of the chosen length of the mask, at 
least eight directions have to be used to guarantee that any 
crack, whatever its direction, has the same detection 
probability. 

3.2. Cross-Correlation Crack Detector D2 

This approach is inspired from the work of 
Yakimovsky [16]. The ideal crack best approximating the 
amplitude in a given window WX, around a pixel X ,  and 

for a given direction d ,  (k E {I,. . . , N, }) is computed 
by using the Yakimovsky’s operators. The operators of 
Yakimovsky assume that edges are interfaces between sets 
of points, each set being described by a normal 
distribution. The mathematics for distribution parameter 
comparison is used to form a function of crack strength in 
an area. 

I PZ Pi P3 

4 
Figure 4. Crack model used by the two crack detectors. 

where, 
O,, =Variance for region 1,2, and 3 taken together. 2 

(m + 
jL, =Mean for region 1,2, aiid 3 taken together. 

2 

2 

mP,,Oi =Samples, mean, variance for region 1 

%&,U2 =Samples, mean, variance for region 2 and 3. 

A pixel is considered as belonging to a crack when its 
response s is large enough, i.e., higher than some a priori 
chosen threshold Smin , Once this ideal crack is defined, 

the validity of the hypothesis “there is a crack in x ,  with 

the direction d,” is tested by using the normalized 

centered cross-correlation between pixels of Wx, and the 
ideal crack. 

The crack detector D2 is defined by the minimum 
response p (cross-correlation coefficients) of the filter on 
both sides of the structure p = min(p,, , pZ3).  A crack 
is detected when the response is higher than the decision 
threshold pdn. 
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,obtained for f ( x ,  y )  = xy  X Y  .(x, Y )  = 1- x- y + 2xy  

Symmetrical sums represent ‘hybrid’ aggregation 
operators. More generally, any associative symmetrical 
sum has the following behavior: 

Conjunctive if 

max(n ,y ) i~ :o (x ,y ) -<min(x ,y ) ,  

min(x,y)> , ) $ : o ( x , y ) > m a x ( x , y ) ,  
Disjunctive if 

Compromise if 

x 5 ,)$ I y : x I ( T ( x , y ) l  y ,  

and the reverse inequality holds if y 5 < X This 

illustrates the variable behavior of 0 ,  depending on the 
values to be combined. Thus such operators are context 
independent variable behavior operators (CIVB) [17]. 

A- ’ 

5. From Pixels to Segments 

Starting from the response of the crack detector at 
each pixel, segment primitives are generated by the 
following procedures, whose aim is to suppress local false 
alarms and obtain a ‘cleaner’ binary result by using simple 
heuristic rules. 

Since isolated pixels have little chance of belonging 
to a crack, a pixel suppression step is first performed. 
For each pixel kept with direction 

= *  I -?= 
! - 1  

i g u r e  5(b). Thresholded responses of the crack detectoi 
for multiple cracks in the underground pipe. 

L 

d ,  (k E (1,. . . , Nd}), other selected pixels are 

searched with a direction close to d ,  in an angular 
beam around it. If none is found, the pixel is 
suppressed. 
In order to suppress other dubious responses due to 
small local structures, the best line in a given 
neighborhood is detected. To do so, a local Hough 
transform [I81 is applied on a 5x5 pixel tiling of the 
image. Each pixel is attributed a vote for its 
associated direction. Only the pixels greater than pre- 
assigned threshold values are kept, the others are 
suppressed. 
The next step aims to fill small gaps between selected 
pixels. Pixels are linked in the direction d ,  of any 
pixel; the pixels belonging to an angular beam around 
d ,  with a direction close to d ,  and at a distance less 
than four pixels are linked to it. 
Since cracks are obtained as segment chains, they me 
not precisely located. For crack visualization, a 
simplified snake based method has been used [19]. 

6. Results on Scanned Pipe Images 

In this paper, an almost unsupervised method has 
been proposed for detecting the cracks, as seen in 
underground pipe scanned images. The method includes 
both high and low level treatments. All the parameters for 
the detection of cracks are determined experimentally. 
Thresholded responses of the crack detectors after fusing 
and linking operations are shown in Figure 5(a) and 5(b). 

The first image [Fig. 2(a)] is a part of Toronto sewer 
pipeline system, showing some minor cracks in the pipe 
surface. In this case, the crack detection step performs 
quite well [Fig. 5(a)] detecting most of the crack structures 
in the image. The second scanned image [Fig. 2(b)] is 
from the city of Boston. This image has dark background 
pipe surface with multiple cracks, most severely above the 
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pipe joint. In this case, the crack detection step performed 
well, but results are noisy with many false nlarms. The 
cleaning and linking operations shown to be a powerful 
method, which is able to fill gaps between the detected 
segments providing a map of the crack pipe surface, while 
suppressing most of the false-alarm detection [Fig. 5(b)]. 
In fact, the results are close to those that could be obtained 
by a trained human operator. 

7. Conclusion 

This paper address the problem of underground pipe 
crack detection using an approach based on Bayesian 
framework. The local crack detector deal with scanned 
images considering their statistical properties. Since there 
does not appear to exist a single coherent model suitable 
for reliable detection of pipe cracks, it is essential that 
some means of integrating information from multiple 
image operators and knowledge source be devised. This 
research has provided a simple mechanism for integrating 
the information provided by the two operators for the 
specific task of crack detection. Plans for future work 
include the continuing development of fully automated 
technique for defect detection in the underground pipe 
scanned images. 
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