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Abstract

The automated classification of operational sea ice satel-
lite imagery is important for ship navigation and environ-
mental monitoring. Annually, thousands of large synthetic
aperture radar (SAR) scenes are manually processed by the
Canadian Ice Service (CIS) and pixel-level interpretation is
not feasible. Trained ice analysts divide SAR images into
”polygon” areas and then identify the number and type of
ice classes per polygon. Full scene unsupervised classifica-
tion can be performed by first segmenting each polygon into
distinct regions algorithmically. Since there is insufficient
information to assign a sea ice label for each region within
an individual polygon, a Markov random field formulation
using joint information to label each region in a full SAR
scene has been developed. This approach has been success-
fully applied to operational CIS data to produce pixel-level
classified images and is the first known successful end-to-
end process for automatically classifying operational SAR
sea ice images.

1. Introduction

Spaceborne synthetic aperture radar (SAR) has been
used operationally for sea ice monitoring applications such
as climate research and ship navigation. Currently, SAR
sea ice images are manually analyzed by sea ice experts to
provide clients with a coarse ice map. According to the
Canadian Ice Service (CIS), approximately four thousand
10Kx10K RADARSAT-1 (a Canadian SAR satellite) im-
ages are processed every year [6]. Manual pixel-level in-
terpretation of SAR sea ice images is not feasible and an
automated approach is desired.

Methods have been proposed which try to classify SAR
sea ice imagery by mapping every pixel directly to sea
ice types using the statistics from training samples [1, 3,
4, 10, 18]. The features corresponding to same ice type
vary according to various environmental and sensor condi-

tions making training samples unreliable even within scene.
Hence, the classification techniques relying on the thresh-
olds and statistics derived from training samples [19, 22]
might not perform well for operational use. The solution
might be the investigation of features and statistics that have
common characteristics over all sea ice scenes or extracting
features from samples obtained from the images themselves
by initial unsupervised segmentation. The last option has
been adapted in this research and the sea ice classification
is performed in two stages: unsupervised segmentation fol-
lowed by sea ice labeling.

Several techniques have been proposed to automatically
segment SAR sea ice scenes into disjoint regions [5, 9, 17,
20, 23]. Among these, IRGS [23] has shown outstanding
performance segmenting both operational SAR sea ice and
general purpose imagery. The segmentation technique has
been successfully tested and CIS validated using a variety
of SAR sea ice images. IRGS has also evolved into a soft-
ware system called MAGIC [5] to use CIS source data and
enable consistent testing in an easy-to-use GUI framework.
For these reasons IRGS has been used as the segmentation
algorithm in our research.

Although tremendous progress has been made on SAR
sea ice segmentation, limited research has been performed
on ice type labeling and the initial attempts [13] provide
classification results which are locally optimal in nature.
To obtain the classification result which is optimal over the
whole scene, labeling can be performed automatically using
information from all polygons simultaneously.

Operational processing of SAR sea ice imagery is sum-
marized in Fig. 1. The first step as shown in Fig. 1(a) is
image acquisition by RADARSAT- 1,2 satellites. A CIS
sea ice analyst manually divides the image into polygon re-
gions, referred to as polygons, as shown in Fig. 1(b) and
just reports the sea ice types that exist in each polygon. To
automatically classify images based on metadata provided
by sea ice analyst, unsupervised segmentation using IRGS
can be performed on every polygon independently to pro-
duce Fig. 1(c). The challenge is to assign a sea ice label
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to each segmented region in each polygon across the entire
SAR scene as per Fig. 1(d). Subsequently, this research fo-
cuses on solving this labeling problem utilizing information
from the full scene.

The novel sea ice labeling technique is proposed which
seeks a global solution over the full SAR scene. The pro-
posed approach uniquely models the spatial relationship of
regions between the polygons in the form of new polygonal
neighborhood system embedded in a Markov random field
(MRF) framework [2]. As such, region labeling is formu-
lated as an energy minimization problem. Energy is a global
metric over the full SAR sea ice scene utilizing information
from all polygons. Energy minimization is achieved using
the optimization with Metropolis sampling [15] to accom-
modate the idea that the labeling state of the regions of the
polygon is one of the permutations of assigned labels to that
polygon. This definition is derived from the fact that the
ice types in each polygon are provided by the analyst. The
operational side of the proposed framework is that no train-
ing samples are required and that the domain knowledge is
solely based on the metadata provided by the analyst in step
Fig. 1(b).

The rest of the paper is organized as follows. Section 2
describes sea ice labeling model. Section 3 includes the
methodology for solving the objective function and select-
ing parameters. The performance of the proposed algorithm
using operational SAR sea ice imagery of Arctic region is
investigated in Section 4. Final remarks are included in Sec-
tion 5.

2. Sea Ice Labeling Model

2.1 Definitions

Let S denote a discrete 2D rectangular image space of
size M ×N . X = {Xs|s ∈ S} represents the random field
defined on S, where Xs is the random variable representing
the grey tone or the multivariate feature. The segmented im-
age Y = {Ys|s ∈ S} is another univariate 2D image space
defined on S where each discrete valued random variable
Ys, having a value in {1, . . . nr}, represents the region to
which the site s belongs. Suppose there are nl different sea
ice classes in Y . Let Z = {Zs|s ∈ S} be another 2D ran-
dom field defined on S where each discrete valued random
variable Zs, having a value in {1, . . . nl}, represents the sea
ice classes to which site s belongs. Suppose the realization
of Z is z = {zs|s ∈ S}, then the sea ice labeling problem
can be formulated as an estimation of z from y and x:

L :
{ {xs|s ∈ S}

{ys|s ∈ S} −→ {zs|s ∈ S} (1)

Definitions essential to the proposed classification model
are given next.

Figure 1. Classification of full scene opera-
tional SAR sea ice images. r, P ,l refer to re-
gion, polygon and sea ice label, respectively.
(a) Original SAR image. (b) Image manually
divided into polygons with appropriate ice
type metadata. (c) Image with every polygon
automatically segmented into regions using
IRGS [23]. (d) Image with every region auto-
matically labeled with sea ice type. This pa-
per focuses on (d), the labeling problem.

Definition 1: A graph G := (r, ∂) consists of re-
gions r = {r1, r2, . . . , rnr} having boundaries
∂rij = {s, t|s ∈ ri, t ∈ rj , t ∈ Ns} where Ns is
defined as first-order neighborhood of site s.

Definition 2: Two regions ri, rj are neighbors if and only
if ∂ri,j �= ∅. Nri is the neighborhood of a region ri

comprising all regions rj for which ri, rj are neighbors
and has a symmetrical relationship rj ∈ Nri ⇔ ri ∈ Nrj .
Neighborhood system Nr is set of all neighborhoods.

Definition 3: Two regions ri, rj are polygonal neighbors if
and only if ∂ri,j �= ∅ and ri, rj � Pq for some polygon Pq .
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Npi is the polygonal neighborhood of a region ri compris-
ing all regions rj for which ri, rj are polygonal neighbors
and has symmetrical relationship rj ∈ Npi ⇔ ri ∈ Npj .
Polygonal neighborhood system Np is a set of all polygonal
neighborhoods.

Constraint 1: The labeling realization {zs|s ∈ Pq} of some
polygon Pq is constrained to one of the permutations of sea
ice classes given for that polygon.

2.2 Feature energy model

The statistical nature of SAR images indicates that the
amplitude of the scattered signal is gamma distributed, how-
ever, in-house testing and published research [21] indicate
that modeling features as a Gamma mixture produces seg-
mentation results comparable to Gaussian mixtures. Thus,
for simplicity, features are assumed to be Gaussian mixture
modeled and the region energy of K dimensional features
is defined as:

E(ri) =
∑
s∈ri

1
2

ln(2π)K |Σlri
|

+
1
2
(xs − ulri

)T Σlri

−1(xs − ulri
) (2)

here ulri
,Σlri

are the mean and covariance of the class hav-
ing same label as region ri. |Σlri

| is the determinant of the
covariance matrix and T is the transpose operation. The en-
ergy of a region in Eq. 2 is the sum of the energies of all
sites s belonging to that region. The total energy Ef over
all regions is:

Ef =
nr∑
i=1

E(ri) (3)

2.3 Pairwise node clique energy

The pairwise clique potential which is used to model the
spatial context is expressed as:

V2(ri, rj)(ri,rj)∈NP
=

{
βg(∇ri,rj ) lri �= lri

0 lri = lrj

(4)

where β is the weight for spatial model and lri and lrj are
the labels assigned to ri, rj respectively.

g(∇ri,rj) = 1 −∇ri,rj (5)

is the edge penalty term with the edge strength

∇ri,rj =
∑

s,t∈∂ri,j

|xs − xt| (6)

normalized to the range [0 . . . 1]. Using the Eq. 4 and the
total energy for the regional interactions can be derived as:

Er =
∑

ri,rj∈Nr

V2(ri, rj) (7)

The regions in the same polygon are never assigned the
same label and based on the fact that β is constant inter
polygon pairwise clique energies βg(∇ri,rj )ri, rj � Pq

have no effect in energy minimization process. Thus, the
total energy for the regional interactions is:

Er =
∑

ri,rj∈NP

V2(ri, rj) (8)

2.4 Energy Minimization

Subsequently, the MAP estimation derived from
Bayesian theory is the estimator which tries to maximize the
a posteriori probability. The labeling is achieved in the fol-
lowing section by first estimating the parameters and then
by minimizing the total energy:

arg min
{zs|s∈S}

(αEf + βEr) (9)

3. Optimization and Parameter Estimation

To optimize Eq. 9 the combination of simulated anneal-
ing (SA) and Metropolis sampling has been applied which
uses a commonly used temperature schedule [16].

There are four parameters to be estimated: ulri
, Σlri

, α
and β. Since no training data is provided and the segmenta-
tion is unsupervised, the EM [24, 7] algorithm can be used
for estimating ulri

,Σlri
, mean and covariance, parameters

for every class to which regions ri belong. EM is suitable
for maximum likelihood estimation of feature parameters of
incomplete data [24] and the convergence of the EM algo-
rithm is known [14].

Here, β is set to one and the parameter α needs to be
estimated accordingly. In conventional multi-level logistic
(MLL) models [12], α is selected to be constant leading to
solution divergence in early stages due to too much weight-
ing of the spatial context model. To deal with this problem,
the feature and spatial model relative weights can vary with
each iteration [8]. In this research, the same approach is
followed to determine α. As such, the parameter α can vary
according to:

α(θ) = c1 0.9θ + c2 (10)

where c1, c2 are constants equal to 0.1. Eq. 10 monotoni-
cally decreases α with each iteration θ.
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(a)

Figure 2. Polygons of full SAR sea ice scene
in Fig. 3(a)

4. Experimental Results

4.1. SAR Sea Ice Image

Using the technique described in Section 3, sea ice
labeling was performed on an operational SAR sea ice
scene. The image in Fig 3(a) is the SAR sea ice
scene of Arctic region with latitude/longtitude ranges of
{69.7270◦, 76.9649◦}/{−80.5216◦,−66.0010◦} and has
been acquired by the RADARSAT-1 satellite in ScanSAR
mode on October 30, 2005. For image archival and for test-
ing purposes, CIS applies 2x2 block averaging which cor-
responds to a pixel resolution of 100m and to an image size
of 5008x5387 pixels in our case. The SAR scene with over-
laid operator drawn polygons is depicted in Fig. 2 and the
corresponding polygon metadata as generated by an oper-
ator is listed in Table 3. The unsupervised segmentation
with IRGS shown in Fig 3(b) is arbitrarily colored, since
displaying in grey-scale does unavoidably reduce segmen-
tation details.

4.2. Testing

Fully validated field ground truth for the operational
SAR sea ice image is not available. For unequivocal valida-
tion, one would have to perform judicious field sampling of
the sea ice on site across a 500km by 500km region during
the SAR satellite overpass. Due to the logistical impossi-
bility of such a validation exercise, we instead rely on the

Table 1. Metadata for Fig. 2. Using the World Meteoro-
logical Organization (WMO) standard [11], labels refer to
new ice (1), grey ice (4), grey white ice (5), multiyear ice
(9), and fast ice (L)

Polygon #iceclasses labels
P1 3 {5, 4, 1}
P2 2 {4, 1}
P3 3 {5, 4, 1}
P4 3 {9, 5, 4}
P5 2 {4, 1}
P6 3 {9, 5, 4}
P7 2 {4, 1}
P8 2 {L, 5}
P9 3 {L, 4, 1}
P10 2 {L, 5}
P11 2 {L, 5}
P12 2 {L, 5}
P13 3 {5, 4, 1}
P14 3 {L, 5, 4}
P15 3 {L, 5, 4}
P16 3 {5, 4, 1}
P17 2 {4, 1}
P18 3 {9, 5, 4}
P19 2 {4, 1}
P20 3 {5, 4, 1}
P21 2 {4, 1}
P22 2 {4, 1}

decades of CIS experience and know-how for interpreting
SAR imagery for validation purposes. As such, the seg-
mentation and labeling results presented here have been val-
idated by a trained SAR sea ice expert at CIS.

The proposed sea ice labeling algorithm has been applied
to an IRGS segmented image Fig. 3(b) and the result dis-
playing in Fig. 3(c) with more than 80% accuracy reported.
The justification is the accurate localization and labeling of
new ice, grey ice, grey white and multiyear ice types in the
image. Misclassification might occur for any one of the fol-
lowing reasons.

1. The number of classes provided might be determined
incorrectly by the ice analyst.

2. Ice analyst might be biased toward assigning thicker
ice type in some polygons. This is due to erring on the
side of caution with regards to providing products for
ship routing.

3. Polygons are drawn manually so the boundaries are
often imprecise and accidentally include ice types not
recorded for a particular polygon.
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4. The segmentation might fail over some complex sce-
narios resulting in incorrectly formed regions. For ex-
ample, the ice type discrimination might depend on
floe shape characteristics and not on the grey tone.
The current segmentation algorithm relies on grey tone
alone.

Note that most of the reasons for misclassification are based
on operator error when generating the polygon regions.
Generally, if the operator provided information is accurate
(number of ice types, ice type labels, boundaries between
polygons) then the segmentation has a stronger accuracy
and the labeling process produces a more accurate pixel
classified map.

To test the role of the spatial context model in the la-
beling process, we removed the Er term from Eq. 9 to
only consider the feature model term Ef . By removing
the spatial context model, only the Gaussian mixture model
(GMM) remains. The labeling result using GMM alone is
illustrated in Fig. 3(d). In this case, half of the regions has
been misclassified compared with the result in Fig. 3(c).
This clearly indicates that the spatial interaction of poly-
gons is essential in the overall model to generate accurate
labeling.

To better evaluate and visualize classification results of
proposed sea ice labeling technique the image in Fig. 3(c)
has been transformed to a color image in Fig. 4 using World
Meteorological Organization (WMO) standard codes [11].

5. Conclusions

An efficient method has been designed and implemented
for full automatic classification of SAR sea ice images. In
the classification process, the scene has been automatically
segmented and operationally acceptable labeling result has
been obtained. This is the only known end-to-end process
for automatically segmenting and labeling operational SAR
sea ice imagery. The algorithm uses the information from
all polygonal regions and finds the optimal configuration of
labels based on an objective function composed of both a
feature model and spatial model. To demonstrate the func-
tionality and the concept the results have been presented
with an operational RADARSAT-1 image provided by CIS
with corresponding operational metadata. The classification
performance can be improved further by solving the exist-
ing limitations described in Section 4.2.
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Figure 3. (a)Original full SAR sea ice scene of Arctic region (October 30, 2005). Polygon boundaries
are overlaid on the image as white contours. (b) The unsupervised segmentation of image in (a)
using IRGS. (c) The labeled output using the proposed algorithm with accuracy at least 80%. (d)The
labeled output with using just the feature model represented by a Gaussian mixture model. Without
the spatial context model, the labeling process produces poor results.
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Figure 4. Classification result of Fig 3(c) using the WMO color code [11].
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