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Abstract

The detection of cracks in concrete infrastructure is a problem of great interest. In particular, the detection of cracks in buried pipes is a

crucial step in assessing the degree of pipe deterioration for municipal and utility operators. The key challenge is that whereas joints and

laterals have a predictable appearance, the randomness and irregularity of cracks make them difficult to model. Our previous work has led to

a segmented pipe image (with holes, joints, and laterals eliminated) obtained by a morphological approach. This paper presents the

development of a statistical filter for the detection of cracks in the pipes. We propose a two-step approach. The first step is local and is used to

extract crack features from the buried pipe images; we present two such detectors as well as a method for fusing them. The second step is

global and defines the cracks among the segment candidates by processes of cleaning and linking. The influences of the parameters on crack

detection are studied and results are presented for various pipe images.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Segmentation of pipe images aims at the separation of

distresses (if any) from the image background. Thus, as a

result of the segmentation process, each image pixel is

classified into two categories: healthy (background) and

distress (other). We have previously developed a morpho-

logical approach to the segmentation problem [1], as shown

in Fig. 1. Experimental results have demonstrated that the

proposed approach is effective in segmenting holes, joints,

laterals and pipe collapse. However, the segmentation and

classification of cracks in a pipe surface (the focus of this

paper) is particularly difficult because of the irregularities in

crack shape and size, the background camouflage of

corroded areas, debris, patches of repair work, and areas

of poorly illuminated conditions.

Crack detection is of broad interest and has been studied

extensively because a wide variety of civil structures can
0926-5805/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.autcon.2005.02.006

* Corresponding author. Tel.: +1 814 865 9433; fax: +1 814 863 7304.

E-mail addresses: sunil@engr.psu.edu (S.K. Sinha),

pfieguth@uwaterloo.ca (P.W. Fieguth).
crack (roads, bridges, pipes, pillars, columns, beams, etc.),

and an assessment of cracking may be crucial for reasons

of safety and cost-effective maintenance. Indeed, many

researchers have paid a great deal of attention to automated

cracking detection/classification. Li et al. [2] proposed an

algorithm for pavement cracking detection based on certain

histogram assumptions. A standard model was proposed to

represent pavement surface images toward a unified and

automated acquisition of key characteristics for improving

data quality [3]. However, this model did not discuss how

to employ such a mode in crack detection/classification

system. An approach to the recognition of segmented

pavement distress images was studied in Mohajeri and

Manning [4]. It uses directional filters to classify the

cracks. The crack is longitudinal if there is a high

concentration of object pixels in a narrow interval of x

(transverse) coordinates, and it is transverse if there is a

high count of object pixels in a narrow interval of y

(longitudinal) coordinates. However, it is difficult to get a

segmented crack image, and it is also not clear how to

identify other crack types by analyzing these counts.

Another statistical approach [5] recognized the imperfec-
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Fig. 1. A morphological approach [1] to joint/lateral discrimination using different structuring elements: a horizontal element (top) of length 285 mm, consistent

with the geometry of a joint, as opposed to a circular element (bottom) of radius 57 mm, tuned to the shape of a lateral.

S.K. Sinha, P.W. Fieguth / Automation in Construction 15 (2006) 58–72 59
tions of segmentation that cause difficulty in distinguishing

pavement-cracking types, particularly between multiple and

mushroom cracks. In this method, the original image is

enhanced by subtracting an average of a few plain (non-

distress) images from the same series to compensate for the

lighting variations. A crack is detected by assigning one

out of four values to each pixel, based on its probability of

being an object pixel. Regazzoni [12] defines a cooperative

process between three levels of a Bayesian network [21],

allowing the introduction of local contextual knowledge as

well as more global information concerning straight line.

Hellwich [13] uses Bayesian a priori information concern-

ing line continuity expressed as neighborhood relations

between pixels.

Interest in crack-like features is far broader than civil

infrastructure, and many approaches have been developed

to deal with the detection of linear features such as road

networks in satellite images, arteries in retinal images,

bone structures, cell boundaries, etc. [5–11]. Nearly all of

these methods approach crack/line detection similarly, as a

local spatial operator, seeking narrow regions (cracks)

whose statistics are at odds with the surroundings (back-

ground). By adjusting this detector over position, size and

orientation, cracks of different sizes and angles may be

found. The approach proposed in this paper builds on

these methods, and the experimental performance is found

to be in good agreement with the manual detection of

cracks.
2. Proposed statistical filters for crack detection

We propose a two-step algorithm for the detection of

crack features in the segmented underground pipe images.
The first step is local and uses statistical properties to extract

crack features from the segmented image, which are treated

as crack segment candidates. In the second step, global

cleaning and linking operations merge segments to form

cracks.

The algorithm begins by performing a local detection

of cracks, based on the fusion of the results from two

crack detection filters, both taking the statistical proper-

ties of image into account. The first crack detector D1 is

based on a ratio edge detector: An in-depth statistical

study of its behavior is given in Lopes et al. [9]. The

second crack detector D2, which has emerged from this

research, uses the operators of Yakimovsky [10].

Responses from both the first and second detectors are

merged to obtain a unique response as well as an

associated direction in each pixel. The detection results

are post-processed to provide candidate segments. Fig. 2

shows the different steps of the proposed crack detection

algorithms.

Both detectors are based on the same basic model,

considering the relative statistics of those adjacent regions

R1, R2, and R3 as shown in Fig. 3. We denote by |Ri|, li, ri
2

the number of pixels, sample mean, and sample variance

over Ri.

2.1. Crack detector D1

The ratio crack detector is defined as the ratio of the

average of pixel values of two non-overlapping adjacent

neighborhoods. The response of the detector between region

i and j is defined as

rij : rij ¼ 1�min li=lj; lj=li

� �
ð1Þ



Fig. 2. The proposed method for crack detection in underground pipe images.
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thus, the overall response is

D1 ¼ min r12; r13ð Þ ð2Þ
the minimum response of the ratio crack detector on

both sides of the hypothesized crack structure. Implicitly,
Fig. 3. Crack model used by the tw
D1 is a function of location (x,y) and of model

parameters (l, m, n, h). With detector D1, a pixel is

considered as belonging to a crack when its response is

large enough, i.e., higher than some a priori chosen

threshold s1.
o crack detectors D1 and D2.
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2.2. Crack detector D2

In practice, the ratio crack detector D1 is accurate, but

only the mean comparison component behaves well when

the operator is not centered on an edge interface.

Therefore, we decided to use the variance comparison

also as suggested by Yakimovsky [10]. The operators of

Yakimovsky assume that cracks are interfaces between

sets of points, each set being described by a normal

distribution. The mathematics for distribution parameter
Fig. 4. Crack detection filters response bef
comparison is used to form a function of crack strength in

an area.

The resulting discriminate D2 is

D2 ¼
r2
0

� �jR0j

r2
1

� �jR1j r2
2

� �jR2j

#"
ð3Þ

where r0
2 is the sample variance over the combined region

R0=R1?R2?R3, and where absolute value is the number

of pixels in region R.
ore cleaning and linking operations.
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A pixel is considered as belonging to a crack when its

response D2 is large enough, i.e., higher than some a priori

chosen threshold s2.

2.3. Fusion of responses

In the previous sub-sections, we have addressed the

problem of detection of cracks in the segmented pipe

images, using two detectors D1 and D2. Since there does not

appear to exist a single detector suitable for reliable

detection of cracks, we decided to merge information from
Fig. 5. Filters response after clean
both D1 and D2 by using an associative symmetrical sum, as

defined in [14]:

Fused Responsef D1;D2ð Þ

¼ D1D2

1� D1 � D2 þ 2D1D2

; with D1;D2a 0; 1½ � ð4Þ

This fusion operator has been chosen because of its

indulgent disjunctive behavior for high values (D1>0.5,

D2>0.5), its severe conjunctive behavior for small values

(D1<0.5, D2<0.5), and its adaptive behavior in other cases.
ing and linking operations.
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Since the behavior of this operator depends on the position

of the responses compared to the value 0.5, we first centered

both D1 and D2 responses before applying the fusion, so

that the decision threshold corresponds to 0.5. In order to do

so, and constraining the values to lie in the interval [0,1], we

replace D̄=max[0, min(1, D+0.5�Dmin)], so the fused

response becomes f(D̄1, D̄2). As a result, the decision

threshold applied on f is automatically the central value 0.5

of the interval [0,1].

To detect most of the cracks, the operators must be

applied in all possible directions. If the operator is applied

separately for each direction, the same threshold must be

used for all the considered directions. In this study, we

found it appropriate to limit consideration to four directions

(0-, 45-, 90-, 135-) for the detection of cracks. The response
image is thresholded with a threshold of 0.5, resulting in a

binary image. The thresholded response from the crack

detector is shown in Fig. 4. As seen in Fig. 4(b), the image

contained many disjointed crack segments and noise. A

necessary step for all detection methods based on local

detectors is a non-local linking process.

2.4. Cleaning and linking operations

No detection method is perfect, in the sense that it finds

all crack pixels and only crack pixels. Usually, unwanted

noise is present in the form of short, erratic edges, and some

crack pieces remain disconnected from other pieces by gaps.

Both of these problems are addressed in the cleaning and

linking process.

As with crack detection, linking methods may be local or

global. Local methods deal with a neighborhood around the

pixel to be linked, analyzing the characteristics of these

neighboring pixels to determine where the links should be.

The simplest of local schemes focus on a small neighbor-

hood and use information from earlier edge detection in

order to find pixels with similar characteristics. As the size

of the neighborhoods gets larger, searches are introduced

based on a variety of path metrics [15]. Fuzzy reasoning has

also been used to deduce which pixels in the search area

should be linked together [16]. Global methods look at the

overall pattern of cracks and try to describe the features

using few variables, for example, modeling the crack image

as a potential function [17], using a Hough transform [18],

Markov random fields [19], or least-square-error curve

fitting [20].
Table 1

Characteristics of the pipe image data set for evaluation of crack detection filter

City Clean pipe Transverse crack Longitudinal c

Los Angeles 15 15 10

Toronto 15 5 12

Boston 15 12 8

Washington, DC 15 8 5

Albuquerque 15 5 0
The linking procedure that follows in this study is local

and specifically focuses on linking pixels that represent

cracks. That is, we wish to assert a prior model—cracks are

usually long and relatively thin—to influence which

neighborhoods are searched for points to link together. A

hierarchical clustering technique [21] is used for linking

small gaps and removing unwanted noise (short, isolated).

The nearest neighbor [21] similarity measure is used in

clustering because it is naturally well suited to extract string-

like clusters.

The first step in the linking process is to establish which

crack points are end points and the direction in which the

crack is heading. Once this is established, the crack clusters

are linked if the distances between their end points are less

than 15 pixels (a gap size selected empirically). Steps are

taken to connect end points of each cluster only once. In this

manner, links are made that fill small gaps in crack

segments. This also allows some of the noise to be

eliminated by deleting isolated clusters with few pixels.

The filter response after cleaning and linking operations is

shown in Fig. 5.

The linking method can be further improved if special

cases are accounted for. Linking only takes place between

end points, ignoring the fact that other crack points may

provide a better starting point for linking. The links are

made with straight lines, neglecting the possibility that the

crack may be in the process of curving. Overall, some

crack gaps may be missed and some false links may be

made. Nonetheless, provided that enough cracks are kept in

the crack detection stage, this linking process will fill most

of the gaps that should be filled and remove some of the

noise.
3. Detector parameter estimation

We have applied the crack detector to 250 underground

concrete sewer pipe images with or without cracks, images

obtained from SSET inspection of flush cleaned concrete

sewer pipes 18 in. in diameter from various municipalities in

North America. The characteristics of the data set are

summarized in Table 1. The evaluation of crack detection is

carried out by comparing the automatically detected cracks

with ground truth from manual crack extraction as shown in

Fig. 6. The purpose of this evaluation is to estimate the

model parameters (l, m, n of Fig. 3).
rack Diagonal crack Multiple crack Mushroom crack

7 15 5

2 20 3

3 10 2

5 10 3

3 5 2



Fig. 6. Software for extraction of crack reference map for evaluation of the proposed crack detection filters; original crack image is shown on the left side of the

window and the manually plotted crack reference map on the right window.

S1=Cf7d(Ct) (true positive)

S0=Cf7not d(Ct) (false positive)

S3=Ct7d(Cf) (true positive)

S4=Ct7not d(Cf) (false negative)
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We will assess the matching between hand labeling and

automatic extraction using a Fbuffer method_ [22], a simple

matching procedure in which a buffer of constant

predefined width is constructed around the crack data in

two steps. In the first step, a buffer of constant width is

constructed around the ground truth data using a morpho-

logical dilation operation as shown in Fig. 7(a). The parts

of the extracted data within the buffer are considered as

matched and are denoted as true positive; the unmatched

extracted data are denoted as false positive. In the second

step, matching is performed the other way, a buffer now

constructed around the extracted crack data, as shown in

Fig. 7(b), and the part of the reference data lying in the
Fig. 7. Matching principle for the evaluation of crack detector
buffer is considered as matched. The unmatched reference

data is denoted as false negative. Fig. 8(a–i) illustrates this

matching procedure.

Let Cf be the set of pixels detected as crack pixels in the

image filtered by filter f, and Ct the set of true crack pixels,

extracted manually by the experts and d( ) the morpho-

logical dilation by some structuring element. Then the pixel

sets of interest are
responses. (a) Matched extracted. (b) Matched reference.



Fig. 8. Illustration of the procedure of matching the images for detection of true and false pixels.
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Now, the probability of detection (Pd) and false-alarm

(Pfa) can be defined as follows:

Pd ¼
Number of detected crack pixels

Number of true crack pixels
; Pd ¼

jS3j
jCtj

ð5Þ

Pfa ¼
Number of false� alarm pixels

Number of non� crack pixels
;

Pfa ¼
jS2j þ jS3j

jI j ð6Þ

where |I| are the numbers of pixels in the whole image I.

Thus, we can quantify the performance of the crack

detectors as a function of the detector parameters: size of

neighborhood and decision threshold. The probability of

detection (Pd) is plotted against the probability of false

alarm (Pfa), optimizing the widow size, over parameter sets

l=3, 5, 7, 9, 11, 13, 15, m=3, 5, 7, 9, 11, and n=2, 3, 4, 5,

6, 7. As would be expected, it was found that larger

neighborhoods reduced noise sensitivity, but increased the

probability that small cracks would be missed. Therefore, in

order to maximize crack detection, the filters must operate

over neighborhoods of different sizes. Three sizes of crack

detection filters are selected based on empirical Receiver

Operating Characteristic (ROC) curves [16] for detecting

various cracks.
An ROC curve summarizes the range of tradeoffs

between true positive and false positive crack pixels, as

determined by comparing the detected crack pixels to the

specified ground truth. ROC curves are plotted as a

function of Pd and Pfa for different neighborhood sizes.

As an example, ROC curves for neighborhood size (m=5,

n=3, l=7) are shown in Fig. 9(a–c). As usual, the

detection probability (Pd) decreases and the false-alarm

rate (Pfa) increases as the threshold increases. The thresh-

old s1, s2 may be deduced as a compromise between Pfa

and Pd.

In this study, Pfa is selected as 9% (7% false-positive and

2% false-negative) as suggested by municipal engineers and

thus determining the threshold value, the corresponding

window size is selected which gives the maximum Pd value.

This process is repeated for the three different classes of

cracks: minor, major and multiple cracks. Therefore, three

optimal sizes of windows and the corresponding threshold

values s1 and s2, as shown in Table 2, are used for detection

of cracks in underground pipe images.
4. Conventional techniques for crack detection

To study the performance of proposed crack detection

filters, we propose to compare them with conventional



Table 2

Optimal window size for central and adjacent regions with threshold values

for crack detection filters

Filter size m n l s1 s2

Small 3 2 5 0.05 0.15

Medium 5 3 7 0.1 0.25

Large 7 5 11 0.175 0.35

Fig. 9. (a) Probability of detection vs. the minimum threshold value of crack detection filter. (b) Probability of false alarm (positive) vs. the threshold value of

crack filter. (c) Probability of false alarm (negative) vs. the threshold value of crack filter.
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techniques: Canny’s edge detector [23] and Otsu’s thresh-

olding [24]. The Canny operator is used because it can

perform very well in detecting edges due to intensity

changes. It is known for emphasizing weak edges and yet

suppressing edge output due to noise. Otsu’s thresholding

method is selected because it is non-parametric, unsuper-

vised and automatic. The following sub-sections will briefly

discuss these techniques.

4.1. Canny edge detection

Edge-detection techniques segment objects by outlining

their boundaries using information on gray-scale disconti-
nuity. This step, however, seldom produces connected

object edges due to noise and other factors. Thus, edge

linking and other boundary detection methods usually

follow to transform the set of edge pixels obtained into a
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meaningful set of object boundaries. The Canny edge

detector [23] uses linear filtering with a Gaussian kernel

to smooth the noise in the image. Next, the edge strength

and direction are calculated for every pixel by differ-

entiating the image in the horizontal and vertical directions

and computing the gradient magnitude and direction. The

next step, non-maximal suppression, sets the edge strength
Fig. 10. Crack detection filters response af
of each candidate edge pixel to zero if its edge strength is

not larger than those of the two adjacent pixels in the

gradient direction. The pixels that survive the non-maximal

suppression thinning process are labeled as candidate edge

pixels. An adaptive thresholding method is then applied on

the thinned edge magnitude image to obtain the final edge

map.
ter cleaning and linking operations.
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4.2. Otsu’s thresholding

The Otsu method [24] is an automated and unsupervised

method of thresholding using gray-level histograms. A

discriminant criterion between two classes of pixels is

computed for each possible threshold k; the optimal

threshold is that gray level where this measure is maxi-
Fig. 11. Otsu’s meth
mized. It has the advantages that it is simple and easy to

implement and the threshold thus selected is not based on

the differentiation (a local property) but rather on the

integration (a global property) of the histogram. As a result,

the criterion measure is always unimodal and stable. Given

V gray levels {0, 1, 2,. . ., V�1}, let the number of pixels in

gray level v be denoted by nv and the total number of pixels
od response.
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be N. To simplify, the gray-level histogram is normalized

and regarded as a probability distribution function:

Pv ¼
nv

N
Pv 	 0

XV�1

V¼0

Pv ¼ 1 lT ¼
XV�1

V¼0

vPv ð7Þ

Suppose we divide the pixels into two classes C0 and C1

(background and object) by a threshold value at k. Then
Fig. 12. Canny’s me
probabilities of class occurrences x and class mean levels l
for both classes are given by

x0 ¼
Xk
V¼0

Pv and l0 ¼
1

x0

Xk
V¼0

vPv ð8Þ

x1 ¼
XV�1

V¼kþ1

Pv and l1 ¼
1

x1

XV�1

V¼kþ1

vPv ð9Þ
thod response.



Table 3

Comparison under completeness metric (ideal response=1)

Methods Minor cracks Major cracks Multiple cracks Mushroom cracks

Proposed 0.9 0.85 0.8 0.77

Canny 0.35 0.99 0.96 0.27

Otsu 0.57 0.64 0.99 0.96

Table 5

Comparison under quality metric (ideal response=1)

Methods Minor

cracks

Major

cracks

Multiple

cracks

Mushroom

cracks

Proposed 0.89 0.84 0.76 0.73

Canny 0.37 0.29 0.4 0.25

Otsu 0.14 0.06 0.38 0.36
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To measure the ‘‘goodness’’ of the threshold, a criterion

is introduced by Otsu:

g ¼ r2
B

r2
T

ð10Þ

where rB
2=x0(l0�lT)

2+x1(l1�lT)
2 is the between-class

variance and r2
T ¼ ~V�1

v¼0 v� lTð Þ2Pv is the total variance.

We search for the optimal threshold k, which maximizes

g, and then perform global thresholding to obtain the final

binary image.
5. Experimental results

We have tested the proposed crack detection filters by

applying them to a variety of segmented underground pipe

crack images and compared the results with those obtained

by using the Canny’s edge detection and the Otsu’s

thresholding technique.

5.1. Visual comparisons

Examples of the three approaches are shown in Figs. 10–

12. It can be observed that the proposed filters perform

better than the Canny’s method and the Otsu’s technique for

detection of various kinds of cracks in underground pipe

images.

The second and third rows in Figs. 10–12 show some

minor and major cracks. The proposed algorithm performs

well [Fig. 10(c)], detecting most of the minor and major

crack structures in the images, while missing only the

micro-cracks (second row) that experts in the pipe industry

feel do not cause any structural problem.

The fourth row has a dark background with multiple

cracks. In this case, the crack detection step performed well,

but the results are noisy with a few false alarms. The

cleaning and linking operations clearly show their effective-

ness, able to fill gaps between the detected segments,

providing a good map of the pipe surface, while suppressing

most of the false alarms. In fact, the results are close to those

that could be obtained by a trained human operator.
Table 4

Comparison under correctness metric (ideal response=1)

Methods Minor

cracks

Major

cracks

Multiple

cracks

Mushroom

cracks

Proposed 0.99 0.98 0.94 0.93

Canny 0.52 0.29 0.41 0.65

Otsu 0.15 0.06 0.37 0.35
The last row in Figs. 10–12 has a combination of many

minor and major cracks (typically called a mushroom crack)

with patches in the background. In this case the crack detection

step performs less well, with many false-alarm responses. The

performance evaluation of mushroom cracks is not easy

because it is difficult even for human operators to track them.

Nevertheless, the detection of a profusion of cracks, correlated

with truth, is immediately apparent in Fig. 10(c).

5.2. Performance measure comparison

The following performance measures for crack extraction

are intended to compare the results of different crack

detection techniques, rather than to evaluate the extraction

and the matching results in an absolute way, but giving a

more quantitative and less subjective comparison than

visually.

5.2.1. Completeness

Completeness ¼ length of matched reference

=length of reference

,
S3

S3 þ S4
Completenessa 0; 1½ � ð11Þ

The completeness is the percentage of the reference data

that is explained by the extracted data, i.e., the percentage of

the reference network that lies within the buffer around the

extracted data. The optimum value for the completeness is 1.

5.2.2. Correctness

Correctness ¼ length of matched extraction

=length of extraction

,
S1

S1 þ S2
Correctnessa 0; 1½ � ð12Þ

The correctness represents the percentage of correctly

extracted crack data, i.e., the percentage of the extracted

data that lies within the buffer around the reference network.

The optimum value for the correctness is 1.
Table 6

Comparison under redundancy metric (ideal response=0)

Methods Minor

cracks

Major

cracks

Multiple

cracks

Mushroom

cracks

Proposed 0 �0.01 0 0.02

Canny 0.24 �1.45 0.54 0.091

Otsu �1.41 �1.72 �0.25 �0.31
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5.2.3. Quality

Quality ¼ length of matched extraction

=
�
length of extraction

þ length of unmatched extraction
�

,
S1

S1 þ S2 þ S4
Qualitya 0; 1½ � ð13Þ

The quality is a more general measure of the final result

combining completeness and correctness into a single

measure. The optimum value for quality is 1.

5.2.4. Redundancy

Redundancy ¼
�
length of matched extraction

� length of matched referenceÞ
=length of matched extraction

,
S1 � S3

S1
Redundancy

a � V; þ V½ � ð14Þ

The redundancy represents the percentage, to which the

correct (matched) extraction is redundant, i.e., it overlaps

itself. The optimum value for the redundancy is 0.

The experimental results of performance measures are

summarized in Tables 3–6. The performance of the proposed

method is strikingly higher than the Canny or Otsu methods,

particularly with respect to the latter three criteria, and is

consistent with the visual results of Figs. 10–12.
6. Conclusions

The crack detection filters proposed in this paper can be

simply divided into three steps: the crack detection filters

D1 and D2 are used to extract cracks by taking into account

the statistical properties of pixels within a small neighbor-

hood; then the responses from both detectors are merged to

obtain a unique response as well as an associated direction

at each pixel; finally, the detection results are post-

processed by cleaning and linking operations to provide

crack segments.

In this paper a methodology for the evaluation of

automatic crack detection filters based on the comparison

to manually plotted reference data is presented. The

proposed evaluation scheme captures the characteristics of

the individual detection results and can thus serve as a basis

for comparison. Depending on the application at hand, some

of the quality measures may be more relevant than others

(details can be found in [25]).

Comparing the proposed crack detection filters and the

conventional detection techniques (i.e., Canny’s and

Otsu’s), greatly improved experimental results has been

achieved by the proposed statistical filters. The crack filters

process along four directions over windows of increasing

size and followed by cleaning and linking operations and
can detect minor cracks (with small windows) as well as

major cracks (with larger windows). The overall perform-

ance of proposed crack detection filters is found to perform

well for underground pipe images with minor, major, and

multiple cracks. Images with mushroom cracks are not

detected as well, and although the performance evaluation

of mushroom cracks is not easy because of the difficulty for

human operators to establish ground truth, the results in

Table 3 are quite promising.
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