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Abstract

Characterization of mitosis is important for understand-
ing the mechanisms of development in early stage embryos.
In studies of cancer, another situation in which mitosis is
of interest, the tissue is stained with contrast agents before
mitosis characterization; an intervention that could lead to
atypical development in live embryos. A new image pro-
cessing algorithm that does not rely on the use of contrast
agents was developed to detect mitosis in embryonic tissue.
Unlike previous approaches that uses still images, the algo-
rithm presented here uses temporal information from time-
lapse images to track the deformation of the embryonic tis-
sue and then uses changes in intensity at tracked regions to
identify the locations of mitosis. On a one hundred minute
image sequence, consisting of twenty images, the algorithm
successfully detected eighty-one out of the ninety-five mi-
tosis. The performance of the algorithm is calculated us-
ing the geometric mean measure as 82%. Since no other
method to count mitoses in live tissues is known, compar-
isons with the present results could not be made.

1. Introduction

Studies of embryo development [1] have shown that mi-
tosis (cell division) rate and orientation can play a signifi-
cant role in tissue growth and elongation. To correlate local
tissue deformations in embryos with mitosis frequency and
direction, an algorithm to quantify mitosis in time-lapse im-
ages of the embryo was required. This requirement is part
of a larger research program to quantify birth defects in de-
veloping embryos [2].

Two approaches have been considered for identifying
mitosis. The first approach involves counting the number of
cells in each frame by isolating and tracking all the cells in
the image sequence. This approach will yield the frequency
and orientation of mitosis as well as the lineage of indi-
vidual cells. The second approach involves locating where

mitosis is occurring in each frame based on local features.
Unlike the first approach, this approach will only yield the
frequency and orientation of the mitosis, because individual
cells are not tracked.

For the first approach, based on cell counting, all cells
in the embryonic tissue must be segmented. Existing seg-
mentation techniques [13, 15] rely on high contrast images,
where cell boundaries are clearly visible and thus can not
be used reliably for embryonic tissue images [6] (Figure
1). There are also methods for counting cells in cell cul-
tures [11]. These methods are meant for situations where
individual cells are isolated from each other, not for cases
where cells are closely packed as they are in embryonic tis-
sues.

Figure 1. Images of Embryonic Tissue.

The second approach, using local features, has been suc-
cessfully used to detect mitosis in still images of stained
cancer tissues [7,8], by locating the resulting compact, dark
regions with highly uneven boundaries. The embryonic tis-
sue images (Figure 1) are somewhat similar to the cancer
tissue images (Figure 2), but mitotic cells in embryonic tis-
sues are not necessarily the darkest regions in the image
(Figure 3). In the case of cancer tissue, mitotic cells are
made to be the darkest region by carefully controlling the
staining and imaging conditions of the tissue. When imag-
ing embryo development, stains can not be used since stains
will influence live embryo development. As a result, spe-
cialized image processing methods must be employed.

Similar to [7] and [8], a method for identifying mito-
sis based on gray scale intensity analysis is presented here.
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Figure 2. Images of Cancer Tissue [8]. Mito-
sis is outlined in white on the right image.

Figure 3. Image of Embryonic Tissue with Mi-
tosis. The mitosis regions, circled, are not
the darkest regions in the image.

Unlike [7] and [8], this approach uses temporal informa-
tion to detect regions which decrease in gray scale inten-
sity, instead of finding dark regions in a single still image.
The intensity decrease is caused by the nucleus division as
seen in Figure 4. In order to detect these intensity changes,
direct frame differencing can not be applied due to tissue
displacement and deformation between frames. Each pixel
might be tracked from one frame to the next before com-
paring pixel intensity. However, this process is too com-
putationally expensive and not all pixels can be uniquely
tracked from one frame to the next. Instead, the algorithm
presented here tracks local regions using a triangular mesh.
Frame differencing between corresponding regions is then
used to identify mitosis.

Figure 4. Single Mitosis.

2. Deformable Grid Tracking

Before mitosis can be identified by studying intensity
drops in embryonic tissue, corresponding tissue segments
between frames must be identified. This can be accom-
plished by deforming a triangular mesh between frames
[10], such that the corresponding triangles on the frames
correspond to the same region of tissue.

The triangular mesh at frame T can be represented by a
set of vertices ST = {~v1, . . . , ~vL}T , where ~v is the image
coordinate of a single vertex. Then tracking the triangular
mesh from frame T to frame T + 1 becomes a question of
tracking the set of vertices ST to frame T + 1. Each of the
vertices can be tracked from frame T to T + 1 using local
features [14], however, some vertices might not have suffi-
ciently accurate local features to be tracked. An alternate
method is preferred.

An alternative to tracking each vertex is to first track a
set of key points FT , that have unique local features, from
frame T to T +1. Then using the original location of the key
points FT , and the tracked location of the key points F̂T+1,
the triangular mesh from frame T (ST ) can be tracked to
frame T + 1 (ST+1) [10].

2.1 Key Point Selection

The set of key points FT to be tracked to frame T +1, can
be chosen by analyzing the current frame for locations that
are suitable for tracking and ignoring any previous points
that were tracked from frame T − 1 to frame T . How-
ever, ignoring the previously tracked points is not advisable
because statistical trackers such as the Kalman Filters [5]
need to track a point over multiple frames before converg-
ing. Therefore, the set of key points for tracking FT are
selected from the set of tracked points F̂T and the set of
points suitable for tracking (AT ) in the current frame.

A tracked point is kept as a key point while it is still
a suitable point for tracking. The probability of a tracked
point, F̂T (i) being a suitable point for tracking in frame
T can be determined given all points in frame T that are
suitable for tracking AT .

P (i) = exp

([
min

(∥∥∥F̂T − ~a
∥∥∥)]2

−2σ2

)
, (1)

∀~a ∈ AT .

Anchor points AT = {~a1, . . . ,~aL}T are the set of all points
in frame T that are suitable for tracking, where ~a is the im-
age coordinate of a single point. The value of σ allows for
some variability in the closeness of the tracked point to an
anchor point in the current frame.

A point from F̂T is added to FT if the average of its
probability of being an anchor point using (1) for the last
X frames is above PThresh. An average is used because an
anchor point tracked over multiple frames can have one or
two frames where the probability is low due to focus or il-
lumination problems. The parameters X and PThresh were
chosen empirically based on studying a time-lapse images
of embryos from a training image sequence: X = 4 and
PThresh = 0.5.
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Once all relevant points from F̂T are added to FT , the re-
maining space in FT is filled with points from AT such that
points added from AT are within ∆MAX from the closest
point in FT . ∆MAX is the maximum possible displacement
of an anchor point between frame T and T + 1. In the first
frame where tracked points, F̂T=0, are not available, the key
points are selected as all anchor points in the frame.

2.2 Anchor Points

In Section 2.1, the anchor points AT for each time frame
T is assumed to be given. For a user to manually select all
anchor points in each frame is too tedious. Therefore, in this
section a method for automatically selecting anchor points
is presented.

Anchor points are all points in the current frame that are
suitable for tracking. To isolate the points that are suitable
for tracking, all points on the cell sheet are classified as ei-
ther lying inside a cell, on a boundary between two cells or
on a junction between multiple cells. When tracking points
using local region information, only junction points can be
tracked uniquely to the next frame as seen in Figure 5. This
problem is called the aperture problem and occurs in all lo-
cal region based tracking schemes [12]. As a result of the
aperture problem, only junction points are selected as an-
chor points.

Figure 5. Matching edge, inside and junction
points between frames. Only junction points
can be uniquely matched.

The junction points can be detected by finding intersec-
tions of cell boundaries. To isolate all junction points, all
cell boundaries need to be found such that each individual
cell is segmented in the image. However, as stated before,
due to lack of contrast not all cells can be segmented. There-
fore, only junction points between boundaries with high
enough contrast will be detected as anchor points.

To detect those boundaries with high contrast the Gabor
filter (GF) is used. The use of the GF to detect cell bound-
aries was successfully demonstrated in electron microscopy
images [13]. Four GFs, as formulated in [13], are used to

detect cell boundaries. All four filters are tuned to a line
width of 5 pixels and a line spread of 10 pixels; convert-
ing line width and spread to the frequency and bandwidth
of the Gabor filter is presented in [13]. The four filters have
an orientations of −45o,0o,45o and 90o.

The magnitude of the real part of the Gabor filtered im-
ages can be combined to determine the magnitude of the cell
boundaries. The four filtered images IRGF

−45 , IRGF
0 , IRGF

45

and IRGF
90 are first combined in pairs to get two estimates

of the edge magnitude. The first estimate B̂1 is obtained
in (2) using the 0o and 90o orientation filters. These two
orientations of the GF will give high responses for horizon-
tal and vertical boundaries but weaker responses for diag-
onal boundaries. The second estimate B̂2 is obtained in
(3) using the −45o and 45o orientation filters. These two
orientations of the GF will give high responses for diagonal
boundaries and weaker responses for horizontal and vertical
boundaries. The two boundary estimates are then combined
in (4) to obtain a more accurate estimation of cell boundary
strengths in all orientations.

B̂1 =
√

(IRGF
0 )2 + (IRGF

90 )2 (2)

B̂2 =
√

(IRGF
−45 )2 + (IRGF

45 )2 (3)

B = max
(
B̂1, B̂2

)
(4)

Erroneous boundaries are then eliminated by threshold-
ing Ifiltered with the phase response of the Gabor filter.
All boundary points having a phase response between 170o

to 190o are kept as potential cell boundaries. The poten-
tial boundaries are then thresholded to a binary image and
thinned to one pixel width using a morphological skele-
tonization operation [3]. The resulting binary boundary im-
age is then used to obtain junction points.

Given the binary boundary image, all junctions between
three boundary segments are detected as junction points.
Initial guesses of these triple junction points are obtained by
filtering the binary boundary image using all four 90o rota-
tions for each of the three masks shown in Figure 6. These
initial guesses are then improved by checking the lengths
of each of the three branches meeting at the junction point.
The reasoning behind this is that not all detected boundaries
are actual cell boundaries. These noise boundaries, created
by illumination defects, will not be as long as actual cell
boundaries.

To check the length of the branches, a circle of radius
R (R ≈ 5 pixels) is placed on each of the potential junc-
tion points. The point is kept as a junction point if the three
branches from the potential junction point reach the circum-
ference of the circle without touching each other. This can
be determined by using the following two rules:
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Figure 6. Masks used to find triple junction
points.

1. There are any three boundary points on the circum-
ference of the circle that are directly connected to the
junction point.

2. If the junction point is removed, the three boundary
points on the circumference are no longer connected.

Figure 7 illustrates some valid and invalid junction points
based on the above two rules.

Figure 7. Invalid and valid triple junction
points based on the branch length test using
a circle.

Of the detected junction points, all points that are ∆MAX

distance apart from each other are chosen as anchor points
AT .

2.3 Tracking Key Points

Once the set of key points FT are selected they need to
be tracked from frame T to T +1 before the triangular mesh
ST can be deformed from frame T to T +1 relative to these
key points. Tracking of key points FT from frame T to T+1
is accomplished using a Kalman Filter (KF) [5]. A veloc-
ity based model with position measurements as defined in
equations (5),(6) and (7) is used.

~z =
[
x y vx vy

]T
(5)

~z(t + 1) =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

~z(t) + I~ω(t) (6)

~m(t) =
[
1 0 0 0
0 1 0 0

]
~z(t) + ~V (t) (7)

Here ~ω(t) ∼ N(~0, P ), ~V (t) ∼ N(~0, R), (x, y) is the lo-
cation of the point, (vx, vy) is the velocity of the point and
~m(t) is the measured location of the point. The initial co-
variance matrices P and R are chosen as diagonal matrices
with large value along the diagonal. This weighting ensures
that the measurement is weighed more than the KF predic-
tion at the start.

The displacement measurement of a point in FT from
frame T to T + 1 needed for the KF is obtained by match-
ing phase responses of the point from frame T to all points
in a local N by N neighborhood of the KF’s predicted lo-
cation in frame T + 1. The matching in the local N by
N neighborhood is accomplished using the phase disparity
measurement developed in [4]. The phase disparity measure
was chosen over the spatial correlation method presented
in [14], because phase response was shown to be more ro-
bust against illumination and perspective deformations [4].

The covariance matrix for the measurement is obtained
as the variance of the phase disparity measures in the local
N by N neighborhood [12]. The local neighborhood size N
is chosen as 2∆MAX .

The phase response used for tracking is obtained from
a Gabor filter bank with twelve filters. Each of the twelve
filters were tuned in the same manner as in Section 2.2. The
filters were tuned for three line widths of 5, 10 and 15 pix-
els. For each of the three line widths, a Gabor filter at ori-
entations of −45o,0o,45o and 90o were used.

2.4 Grid Fitting

In grid fitting, the triangular mesh from frame T needs
to be transformed to frame T + 1 relative to the tracked key
points. That is, the locations of the triangular mesh vertices
at frame T + 1, ST+1, need to be estimated based on ST ,
FT and F̂T+1. The algorithm presented in [10] is applied
for this with slight modifications.

The deformed grid ST+1 is estimated by minimizing the
objective function ε(ST+1) [10].

ε(ST+1) = εD(ST+1) + εC(ST , ST+1, FT , F̂T ) (8)

εD represents a limit on the mesh deformation and εC rep-
resents the correspondence between the anchor points from
frame T and the points tracked to frame T + 1.

2.4.1 Deformation Constraint

The deformation can be limited using a second order deriva-
tive constraint, namely, the tissue is only allowed to deform
smoothly like a rubber sheet that is being stretched. A sim-
ilar constraint was used in the previous work on tracking
points on the deformable tissue [14].

Fourth Canadian Conference on Computer and Robot Vision(CRV'07)
0-7695-2786-8/07 $20.00  © 2007



Figure 8. Mesh vertex ~vi and its 6 neighbors.

Given a point on the triangular mesh and all its neigh-
bors, as illustrated in Figure 8, the smoothness constraint
for point i can be written as

εDi = (2~vi−~v1−~v4)+(2~vi−~v2−~v5)+(2~vi−~v3−~v6) (9)

The second derivative constraint (10) for all points on the
mesh can be written using a sparse, banded matrix K, so
that the constraint follows the formulation in [10].

εD(ST+1) = 1/2(XT KX + Y T KY ). (10)

2.4.2 Correspondence Constraint

The correspondence constraint, used for grid fitting, is ob-
tained from [10] as

εC(ST , ST+1, FT , F̂T ) =

−
K∑

i=1

ρ(
∥∥∥F̂T (i)− TS(FT (i), ST+1, ST )

∥∥∥ , r) (11)

where i = 1 . . .M and TS() transforms an anchor point
from frame T to frame T + 1 with respect to the triangular
mesh using Barycentric triplets [10].

In [10], ρ, from (11), is given as

ρ(δ, r) =

{
3(r2−δ2)

4r3 δ < r

0 otherwise.

The δ < r check is performed in [10] because in their case
the anchor points have one to many mapping. That is, an an-
chor point in frame T is matched to multiple potential points
in frame T +1 because in object detection there can be large
translations, rotations and perspective changes. In the case
of tracking within consecutive frames of an image sequence
for a reasonable ∆t, large translations, rotations and per-
spective changes will not occur. As a result the tracking
algorithm in Section 2.3 will obtain a one to one match be-
tween consecutive frames. Therefore the equation for ρ was
modified to

ρ(δ, r) =
3(r2 − δ2)

4r3
. (12)

Finally the value of r as in [10], starts as a large number
and decreases after each optimization of the objective func-
tion (8). The starting value for r was chosen as 3∆MAX

where ∆MAX is the maximum possible displacement of an
anchor point between frame T and T +1. This starting value
of r is much smaller than the starting value recommended
in [10] because very little deformation occurs between con-
secutive frames.

3. Mitosis Detection

The triangular mesh that is tracked from frame to frame
essentially tracks the section of tissue inside each triangle
from frame to frame. Given the location of all these small
tissue segments, a study of the tissue’s colour or intensity
can be performed. Intensity decreases in tissue regions
where mitosis is taking place. Therefore, by studying the
intensity of each segment of tissue in the triangular mesh
over multiple frames, all tissue segments that undergo an
intensity change can be isolated. Then studying the magni-
tude of the intensity change, the size of the tissue segments
that changed in intensity and the duration of the intensity
change the locations of mitosis can be isolated.

The decrease in intensity of tissue segments between
frames can be obtained as the difference in the average gray
scale value inside corresponding triangles in the tracked tri-
angular mesh. Given GT

i , the average gray scale intensity
for triangle i in frame T , the gray scale intensity decrease at
frame T for triangle i, DT

i , can be obtained as

DT
i = GT

i −min
(
GT+1

i , GT+2
i , . . . , GT+Q

i

)
. (13)

The value of Q is chosen such that it represents the dura-
tion of mitosis. All negative values of DT

i are set to zero
because only decreases in intensity are of interest. The dif-
ference values are then thresholded to obtain the locations
of mitosis.

Several criteria can be used to threshold DT
i : magnitude,

spatial spread and temporal spread. First, mitosis tends to
have a large decrease in intensity, whereas lighting changes
will not produce such a large decrease in intensity. Sec-
ondly, if the triangles in the mesh are smaller than the cells,
then areas of mitosis will have several adjacent triangles
with large intensity change. Finally, since mitosis occurs
over several frames, the areas of large intensity change will
persist over multiple frames.

First a magnitude threshold defined in (14) is applied to
DT

i to obtain areas of large intensity changes.
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D̂T
i =

{
1 DT

i > GT
i Tm + Tb

0 Otherwise.
(14)

Thresholding is based on the original average gray scale
value of the triangle GT

i , because sample data indicated that
a bright cell will have a larger decrease in intensity during
mitosis than a darker cell. The values of Tm and Tb are
highly dependent on the quality of image. Currently they
are selected by viewing a small sample of mitosis in a given
image sequence.

Secondly the spatial spread of the detected regions in
D̂T is thresholded. To perform thresholding on the spatial
spread, a list of connected tissue segments with D̂ = 1 is
obtained for each frame T as OT . The size of each con-
nected regions, hence forth referred to as objects, is deter-
mined as the number of triangles in each connected objects.
A size threshold of TL is applied to all objects in OT such
that all objects in OT with less than TL connected trian-
gles are eliminated. TL is chosen as the number of triangles
that can fit within the width of the cell. In order to use
this thresholding technique, the resolution of the triangular
mesh must be fairly high. Since tracking a high resolution
triangular mesh from frame to frame is computationally ex-
pensive, a low resolution mesh can be used for tracking then
later interpolated to obtain a higher resolution.

Finally, the remaining objects in OT are further pruned
using the temporal spread of the objects. Given Q, the dura-
tion of mitosis and Y the time to the nucleus division (Fig-
ure 9) it can be estimated that there will be Q − Y + 1
frames where the large decrease in intensity can be detected
during mitosis. As a result, any object in list OT that are not
present for Q − Y + 1 frames are deleted as false positive.
An object in frame T is said to be present in frame T + 1 if
any triangle from object OT

i overlaps with a triangle from
any object in frame T + 1.

Figure 9. The time for mitosis and nucleus di-
vision is illustrated. The maximum decrease
in intensity is seen two times (Q − Y + 1 =
4− 3 + 1 = 2).

The remaining objects in OT are the locations of mi-
toses. However, the total mitoses can not be obtained by

counting the objects in OT because each object in OT is
detected over at least Q−Y +1 frames. Therefore, the tem-
poral location must be isolated before counting the number
of mitoses. Currently the temporal location of a mitosis is
set to the frame in which the object OT

i first appears. The
object is deleted in the consecutive frames before determin-
ing the mitosis count.

4. Testing & Results

A twenty frame test image sequence, taken over one hun-
dred minutes, was used to evaluate the mitosis counting al-
gorithm. Ninety-five mitosis locations were identified man-
ually on the test image sequence. The performance of this
algorithm is not compared with other algorithms as no ex-
isting algorithms for detecting mitosis in live tissues were
found.

For the test images the parameters that were used are
Tm = 70/255, Tb = 5/255, TL = 5, Q = 4 and Y = 2.
The parameters TL, Q and Y are fixed to the size of the
cells and the duration of mitosis. The values of Tm and Tb

were estimated manually by studying the intensity change
of mitoses. Though a full sensitivity study of Tm and Tb is
not performed here, it was found that reasonable changes in
these values did not significantly change the detection rate.
Furthermore, these values can easily be estimated based on
the division of a well illuminated cell and a poorly illumi-
nated cell.

The classification results for the given parameters are
presented as a confusion matrix in Figure 10. Some of the
detected mitosis are illustrated in Figure 11. A frame from
the image sequence is illustrated in Figure 12 with some
intermediate data for tracking grid as well as detecting mi-
tosis.

Predicted

Positive Negative

Actual
Positive 81 14

Negative 21 N/A

Figure 10. Confusion matrix for mitosis de-
tection.

From the confusion matrix, the true positive rate (TP) is
found as 85% and the precision (P) is found as 79%. The
accuracy can not be calculated from the confusion matrix
without knowing the true negative classification quantity.
Therefore the performance of the algorithm is found using
the geometric mean [9] (g −mean) as 82%.

g −mean =
√

TP ∗ P (15)

Fourth Canadian Conference on Computer and Robot Vision(CRV'07)
0-7695-2786-8/07 $20.00  © 2007



Figure 11. Consecutive frames with mitosis and the detection results. The triangular grids detected
as mitosis are outlined in white or black. White is the start of a detected mitosis sequence and black
is the subsequent detections of a detected mitosis.

(a) Frame 8 Segment: Key
Points (F8)

(b) Frame 8 Segment: Tri-
angular Mesh (S8)

(c) Frame 8 Segment: In-
terpolated Mesh

(d) Frame 8: Average Intensity (G8) (e) Frame 8: Intensity Drop (D8) (f) Frame 8: Mitosis Locations (O8)

Figure 12. The intermediate and final results for frame 8 in the test image sequence.
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There are two causes for the false negative rate. First,
the intensity decrease during nucleus division was not high
enough to be detected. This can be due to poor contrast and
or focus changes during mitosis. Second, multiple mitoses
in adjacent cells are detected as one. The intensity decrease
of adjacent mitosis are joined together as one because the
resolution of the triangular mesh is not high enough to de-
tect the separation between the intensity drops.

False positives are caused by errors in tracking due to
the density of the key points used in tracking the triangu-
lar mesh. When a cell divides, its neighbors shift positions
slightly; the shift is confined to a local region. If there are
no key points present in this local region, the motion will
not affect the deformation of the triangular mesh. In some
cases this results in the algorithm detecting the slight move-
ment of a boundary between a light cell and a dark cell as
an intensity drop caused by mitosis.

5. Future Work

Some of the false negatives and false positives are caused
by illumination defects during imaging. These are difficult
to compensate during mitosis detection, however, to correct
for errors in detecting adjacent cell devision and motion of
cell boundaries between dark and light cells is possible.

The problem of adjacent mitosis detection is caused by a
lack of triangular mesh resolution. Therefore, for all mito-
sis locations detected by triangular mesh difference, a pixel-
by-pixel difference in intensity can be calculated within the
triangular mesh. This will not be as computationally expen-
sive as performing pixel-by-pixel intensity difference for
the entire image and can potentially increase the resolution
sufficiently to separate the multiple mitosis.

After mitosis, the region where the cell divided will have
a boundary (line) between the two new child cells. If there
is an intensity drop caused by the motion of a cell bound-
ary, the location of the intensity drop will not have a new
boundary. By detecting the presence of a new boundary af-
ter mitosis, the false positives caused by the motion of cell
boundaries can be reduced.

6. Conclusions

An algorithm for identifying mitosis in time lapse
images of live embryonic tissue is presented. Unlike
previously published research, which classify mitosis as
the darkest region in the image, the presented algorithm
uniquely uses temporal information to detect mitosis. By
using the temporal intensity change of cells during mitosis,
the presented method can detect mitosis automatically even
when the mitosis regions are not the darkest regions in the
image.

The algorithm tracks the overall motion and deforma-
tion of the embryonic tissue with a triangular mesh before
detecting mitosis by looking for intensity drops associated
with division. The algorithm achieved a performance of
82%. The algorithm presented here is expected to signifi-
cantly enhance the evaluation of the role of mitosis in early
embryo development.
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