Automated Measurement of Bulbar Redness

Paul Fieguth' and Trefford Simpson”

Purrosk. To examine the relationship between physical image
characteristics and the clinical grading of images of conjuncti-
val redness and to develop an accurate and efficient predictor
of clinical redness from the measurements of these images.

METHODS. Seventy-two clinicians graded the appearance of 30
images of redness on a 100-point sliding scale with three
referent images (at 25, 50, and 75 points) through a World
Wide Web-based survey. Using software developed in a com-
mercial computer program, each image was quantified in two
ways: by the presence of blood vessel edges, based on the
Canny edge-detection algorithm, and by a measure of overall
redness, quantified by the relative magnitude of the redness
component of each red-green-blue (RGB) pixel. Linear and
nonlinear regressors and a Bayesian estimator were used to
optimally combine the image characteristics to predict the
clinical grades.

Resuts. The clinical judgments of the redness images were
highly variable: The average grade range for each image was
approximately 55 points, more than half the extent of the
entire scale. The median clinical grade was chosen as the most
reliable measure of “truth.” The median grade was predicted by
a weighted linear combination of the edgeness and redness
features of each image. The strength of the predicted associa-
tion was » = 0.976, exceeding the strength of association of all
but one of the 72 individual clinicians.

Concrusions. Clinical grading of redness images is highly vari-
able. Despite this human variability, easily implemented image-
analysis and statistical procedures were able to reliably predict
median clinical grades of conjunctival redness. (Invest Oph-
thalmol Vis Sci. 2002;43:340-347)

he clinical judgment of ocular redness is complex and
poorly understood. Typically, the appearance of the eye is
judged based on a scale, and the examination of these scales
provides a lesson in contemporary views of measurement.
Even the simplest binary descriptive scale (red and not red)
may be regarded as quantitative with the data provided being
either nominal or ordinal." Other classifications include those
based on the underlying reference of the scale (verbal or
visual) and the numerical basis of the scale, whether discrete?
or continuous.?
Theoretical examination aside, the scales themselves are
typically poorly described and with few exceptions have been
untested.*? In addition to a lack of understanding of the scales
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themselves, there is no empiric information about how clini-
cians make judgments of redness. Indeed, our data show evi-
dence to suggest that clinicians quote wildly inconsistent
grades, even in the presence of a well-defined grading scheme.
Figure 1 summarizes the motivation of this article: Arrange-
ments* were made for 72 clinicians to grade the clinical ap-
pearance of the redness of 30 different pictures of conjuncti-
vas. The figure shows the results arranged in order of
ascending median redness (solid line), and plots the quartile
ranges. As is apparent, for each image the range of redness
estimated by the graders was at least 25% of the total scale, and
on average in excess of 55% of the total scale. These results
clearly show the extremely poor quantitative accuracy of such
clinical grading, and the degree of subjectivity that is present in
human grades. In light of the data in Figure 1, this article
presents an automated, objective alternative.

Clinical grading may be judged using at least two general
strategies. The first is primarily luminance- chromaticity based.
Judgments are made on the basis of the overall redness and
brightness (luminance) of the eye. As the redness increases, so
the luminance decreases. A second strategy is made on the
basis of the appearance of the visible vessels. This could in-
clude judgments of the diameter of vessels, vessel tortuosity,
and the proportion or number of vessels occupying the area to
be graded. The difference between these methods is really one
of scale: Luminance judgments would correlate with vessel-
appearance if the capillary beds giving rise to the conjunctival
flush were resolved. Similarly, with a sufficiently low resolu-
tion, smaller vessels would not be resolved and would “blend”
into the background redness. For any typical clinical observa-
tion, however, each type of judgment is possible and could
vary (to a large extent) independently of the other. The auto-
mated and objective approach proposed in this article is based
on the same two criteria: Two features are extracted from each
image, one based on redness and the other based on the
appearance of blood vessels.

Because of the vagaries of clinical scales and grading, there
have been a number of attempts to perform clinical grading
using automated methods. These have typically involved ex-
amining the structure in a particular area to determine the
characteristics of the vessels.>~® Most recently, Papas” showed
that the clinical grade of redness of a relatively small patch of
conjunctiva was strongly linearly associated with an automated
technique that measured the number of vessels in the patch.
This very interesting result is unfortunately difficult to relate to
clinical grading, however, because the regions evaluated were
relatively small and the task was somewhat different from
typical clinical grading where, usually, almost the whole nasal
and temporal bulbar area is graded.”>*'°

This was a study of the relationship between clinical grad-
ing and quantitative aspects of conjunctiva images, with the
goal of developing an automated estimator for conjunctival
hyperemia. The purpose of the estimator is to reproduce the
overall trend but to eliminate the inconsistent and irreproduc-
ible details of the clinical ratings. Quantifiable features were
correlated with the clinical grading data to produce an estima-
tor that is accurate, consistent, and repeatable.
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FiGUre 1. The extent of variations
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five curves indicate the minimum,
25th percentile, median, 75th per-
centile, and maximum grade for each 108
of 30 images. The scale was defined

using three benchmark images, at 0
grades of 25, 50, and 75 points, indi-
cated by circles.

METHODS

Data Collection

Thirty images of bulbar redness were used. These ranged in redness
from normal to severe. The images were derived from frontal photo-
graphs taken with constant magnification and diffuse white illumina-
tion and included enough of the lateral and medial canthi to recognize
nasal and temporal bulbar conjunctiva. The images rated as the least
and the most red are shown in Figure 2. A Web site was developed® to
display the images and to collect the ratings. The observers were
required to grade each image, presented in a random order, on a 0- to
100-point scale, using sliders for both the nasal and temporal bulbar
areas. Because of the inconsistencies between the computer monitors
of different graders, for example the brightness, contrast, and gamma
settings, each page of the survey included three smaller images that in
a previous experiment® were shown to represent approximately the
levels 25, 50, and 75 on a 100-point scale. Figure 3 shows a typical
display and rating page. The whole survey could be completed in
approximately 10 minutes, and therefore user tedium should not have
had a significant impact on the quality of the collected ratings.

Image Analysis

The least obvious step in our analysis is the determination of quanti-
tative, mathematical aspects of an image of the eye that correlate with
the grades as assessed by clinicians. The survey on the Web site
permitted respondents to describe the criteria by which they passed
judgment; however, even relatively precise statements such as “aver-

FiGUuRe 2. The best (a) and worst
(b) samples of the 30-image set.

30 Eye Images

age artery width” or “average redness” are not readily represented as
an image-processing algorithm because of the vast number of subjec-
tive and subconscious operations undertaken by the human visual
system.

Instead, we propose to analyze redness on the basis of two straight-
forward features, based on a model of the trauma mechanism. Con-
junctival hyperemia is characterized by the expansion of small arteries
just below the surface of the eye. As the blood vessels swell they
become much larger and easily detected as a red line on a white scleral
background. We propose to use an edge detector (specifically, the
Canny method'") to measure the total length of visible arteries. How-
ever, the smallest arteries are resolvable neither by the pixels in a
charge-coupled device (CCD) camera, nor by the human eye, and a
mild onset of hyperemia therefore begins as a diffuse reddening with
no discernible edges. In such cases, we propose an integrated measure
of redness.

We do not maintain that these represent the “optimum” features.
Rather, the rationale is that if the performance using just these sim-
plistic methods is good, then clearly additional study and criterion
refinement can only lead to a further improvement in the results.

Each image (), with composite components (I, I, I; for red,
green, and blue), is segmented into two nasal and temporal subsets (S,
S, respectively) to allow the two sides to be analyzed separately. The
redness feature
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represents the average integrated redness in the subimage (§). Note
that black pixels, which have no defined color, have been removed
from S. The denominator term normalizes the feature, so that —0.5 <

<1
Red image <> f; = 1
White, gray image <> f; = 0 ()

Blue, green image <> f; < 0

where f, is the redness feature. Even the most seriously traumatized eye
is not completely red. The feature range for the images in our exper-
iment was approximately 0 = f, = 0.25.

The edge feature

iES C S i
i = o= Canny(S) [‘;“MY( ! &

returns the fraction of pixels that are identified as edges—that is, the
ratio of the number of edge pixels, computed by a Canny edge detector
to the total number of pixels §. The premise of the edgeness feature
is that perceived redness is not just a function of average color, but is
also the number or density of arteries.

In preparing the segmented subsets S,,, S,, care had to be taken to
eliminate skin pixels with reddish hue that would bias redness feature
results, surrounding hair, whose strong contrast would affect the edge
feature, the pupil, and the iris. To ensure the accuracy of the results,
this segmentation was carefully performed by hand, although automat-
ing this step should be straightforward, because the color of the sclera
is quite distinct from its surroundings.

RESULTS

We collected two sets of data: the grades from clinicians
through the survey and the computed values of the redness
(f) and edge (f.) features.

Grading Analysis

Each of the 30 different eye images was graded by 72 clini-
cians. Although the results show a broad degree of consensus,
there was astonishing variability from person to person, shown
in Figure 1. The average range in the grades was 55—more
than half the entire range of the scale. Even the three calibra-
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FIGURE 3. A screen shot from the
survey web site. The three bench-
mark images are always visible to the
user at the bottom of the screen. The
two grades (temporal and nasal) are
set using the sliders on the right.

tion images were no exception, Although users were told to
grade the middle calibration image as 50, the grades assigned to
that image had a tremendous range, from 22 to 90. This range
is not due to the tedium of completing the survey, because the
variability was not observed to increase with the position (early
versus late) in the survey.

The histogram of the distribution of assigned grades around
the median is shown in Figure 4. The distribution is vaguely
Gaussian, with an odd superposition of spikes. Further analysis
of the data shows that the spikes are due to the human pref-
erence for round numbers. Multiples of five are more than four
times as prevalent as other numbers, lending further support to
the need for an objective grade.

The SD of the grading distribution for each eye varies
between approximately 6% and 15%. The trimmed SD, based
on keeping only the 50% most consistent grades, is consider-
ably tighter (as implied in Fig. 1), at 2.9% to 8%.

Feature Regression

Figures 5 and 6 show the raw data points of the redness and
edgeness features, respectively, versus the median human
grade. There is a clear relationship between the features and
the human data, although the relationship is not necessarily
linear (especially for f,), and may have varying degrees of
consistency (for example, the three or four outliers in the
edgeness data in Fig. 6).

Our goal is to predict, in some fashion, the grade from the
extracted image data. We denote by g(f) the estimated grade
g based on feature value f. Clearly, we want to constrain the
grade to lie within the scale

0 =g(f) =100. (€))

The solid lines in the Figures 5 and 6 represent the chosen
regressions. Because of the wide range of f,. (up to 1.0), a linear
fit is inappropriate, and a hyperbolic regression was therefore
chosen for f,, having an asymptote at g = 100 and a slope at the
origin of 45/0.05. Although unenlightening, for completeness
the temporal redness regression follows

8X(f) — 9008(f) - £, — 1098(f) + 90,0001, — 270 = 0. (5)

Although this may appear overfit, the equation was fit by
adjusting only one free parameter, once the slope and asymp-
tote were specified.
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odd periodicity, due to the human 0
bias toward round numbers (multi-
ples of 5 and 10).

A more straightforward linear regression was chosen for f_,
where the three misfitting data points were eliminated from
the coefficient learning process. The resultant expression for
the nasal edgeness regression is

g(f)=5+060 - £/0.16. ©)

With two estimators g(f,), g(f.) defined, there is clearly an
ambiguity regarding which estimator to use or whether the
estimators can somehow be combined automatically. If g(f,),
8(f.) are viewed as approximate “measurements” of the true
grade g, then under certain conditions the optimal linear Baye-
sian estimate of the grade is

6(f)ol + g(f)o?
ﬁﬁﬁzgﬁLﬁykf @)
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Median Expert Grade — Temporal

FIGURE 5. Temporal image grades
plotted against the integrated red-
ness feature (f,). Solid line: hyper-
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and the associated estimation error variance is

var[ g(f,, f)] = (C))

0.’ + o

where o2, o7 are the error variances of the single-feature
estimators g(f), 8(f,) respectively. (Ideally, g(f,), g(f.) should
be unbiased estimates of grade g, and the errors in the two
estimates are assumed to be independent.) These error vari-
ances cannot be deduced theoretically, but have to be inferred
from the data. We computed them as the smoothed local
sample variance of the human grades around the regressed
curves. The resultant 1-SD curves are shown in Figures 5 and 6.
Clearly the Bayesian estimator’ biases in favor of estimator
g(fo for eyes having only mild redness, and toward g(f,) for
severe redness.

bolic regression (equation 5); dashed 0
lines: the empirical 1-SD envelope
around the regression.
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Redness Feature — Temporal
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FIGURE 6. Nasal image grades plot-
ted against the edge fraction feature
(fo. Solid line: linear regression
(equation 6), computed omitting the
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Edgeness Feature — Nasal

0 0.02 0.04

These developments were discussed and illustrated, for
compactness, based on only one half of the data, ignoring the
nasal redness and temporal edgeness cases. In the following
results all the data are used.

Figure 7 shows the estimation results, using the Bayesian
estimator” for both the temporal and nasal data. The estimation
results lie very close to the dashed-line ideal, with a correlation
coefficient of 0.976 between the estimates and the human
medians. For comparison purposes, an equivalent plot is
shown in Figure 8, where a statistical sample of the human
grades is plotted against the median, for a corresponding cor-
relation coefficient of only 0.841.

The error bars in Figure 7 are unit SD in length, based on the
Bayesian error variance.? If the error variances are accurate,
they should meaningfully reflect the distribution of the esti-
mates ¢ around the true value g—that is,
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outlying images at large grades.
Dashed lines: empirical 1-SD enve-
lope around the regression.
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should be zero-mean, unit-variance Gaussian. Experimentally,

the distribution in equation 9 was found to be approximately

Gaussian, with a mean of —0.04 and a variance of 1.01, clearly

validating the estimated error variances.

Figure 9 compares the error SDs associated with the grading
estimates of individuals, the 50% most consistent individuals,
and our proposed automated system. Our system represents a
great reduction in error over the individuals and except for
cases of severe redness, where our regression and learning
have a paucity of data, our errors are competitive with the 50%
set. Finally, Figure 10 shows the performance of each individ-
ual, compared with our proposed system. Of the 72 clinicians
who took part in the experiment, only 1 was able to match the

FIGURE 7. Estimator performance
for both nasal and temporal data; the
correlation coefficient of the fit is

0 10 20 30 40 50 60 70
Median Expert Grade

0.976. The fit is best for low grades,
for which the most data were avail-
able.

80 920
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yields considerably improved repeat-
ability and error variances.

consistency (measured as the correlation coefficient) of our
proposed method. Clearly, our errors are competitive with or
better than even the most consistent graders.

DIScuUssSION

The results of this study reinforce previous results. Automated
measures provide information that is linearly associated with
subjective grades of redness. Our results are similar to those of
Willingham et al.® and Papas,” in that we each found strong
associations between the subjective grades and the measure-
ments, as opposed to the weaker associations of Guillon and
Shah.> Our methodology is more similar to that of Willingham
et al. and Papas, inasmuch as we used images that were graded,
whereas Guillon’s and Shah’s subjective data were collected in
vivo with a slit lamp biomicroscope. Our methods differ from
those of previous workers who have either not used first-order

Median Expert Grade

(overall redness) information or have used it separately from
second-order (vessel attribute) information. We provide a
novel, straightforward method for the combination of image
features that is remarkably concordant with the grades as-
signed by clinicians.

A primary objective of this study was to minimize the
required operator intervention. In some previous studies com-
binations of custom software and hardware have been used,
making the analysis inaccessible or expensive to develop, op-
erate, and maintain. For our research, commonly used desktop
computers (Pentium processor; Intel, Mountain View, CA; run-
ning Windows; Microsoft, Redmond, WA) performed the data
acquisition, and numeric processing was performed in an en-
vironment based on a widely available program (Matlab; Math-
Works, Natick, MA). Operator intervention was limited to a
few mouse clicks to assist in the segmentation of the eye,
removing the lids and the corneal components of the images.
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These processing steps can therefore be implemented almost
universally.

The way we chose to obtain grading was somewhat unusual
and perhaps controversial, in that we were unable to control
our observers and that our sampling method was far from
randomized. These experimental attributes are no different,
however, from any of the previous reports comparing auto-
mated methods to subjective methods of grading. Our sam-
pling method provided additional diversity, in that the clini-
cians were not from a single institution. The associated
diversity in skill set also provided a more realistic sense to the
grading data, in that not all graders were true experts who used
grading scales many times per day. In other words, despite
these additional sources of variability, the clinical data were
still remarkably well predicted by the proposed automated
measures.

The introduction stated that very little is known about
grading techniques. Of particular importance in this regard is
Figure 4, showing clear peaks at decimal and mid-decimal
values, similar to the effects observed in the literature.'® This
was not accomplished by accident, because the graders would
have had to carefully adjust a slider to generate these numbers.
This suggests strongly that there is a tendency not to use the
many steps on a 100-point scale and that, perhaps, all that is
required is a 20-point redness scale. There are theoretical and
practical implications of this,'>'# but the exact impact on the
accuracy and repeatability of redness grading would have to be
determined empirically.

Another result relating to grading was the large range of
grading associated with the reference images that were part of
the data set that clinicians graded. Although the median grades
were very similar to the reference grades (Fig. 1), there was a
surprisingly large range of grades associated with each refer-
ence. This suggests that the clinicians either could not psycho-
physically match grades to the references, an unlikely conclu-
sion, or that they chose to ignore the values assigned to the
reference. Clinicians have been shown to resist using tools that
are assistive,’> and this is perhaps a manifestation of this
phenomenon. The clinician disagrees with the grade assigned
to the reference and simply ignores it.

The results show that there were strong associations be-
tween the computed and clinically assigned grades. Figures 5
and 6 illustrate the distribution and variability of the individual

tained by the automated system.

computed grades. The error bars on Figure 7 show the vari-
ability of the combined computed grade for each image. In
comparison, estimates of the variability of the clinical graders’
performance are illustrated in Figure 8, using resampling tech-
niques.'® The point illustrated in comparing the latter two
figures is that there is more precision in the estimates using the
computed grades, clearly illustrated in Figure 9, which com-
pares the SD of the computed approach for each slide with the
actual SD of the graders.

The experiment was developed from questions of grading;
however, the data may provide information pertinent to other
areas. For example, how should images be compressed or
coded for telemedicine applications? Image compression re-
duces storage or transmission needs but may also be associated
with a loss of information. All the images in our analysis (and
web survey) were stored in a lossless (tagged information file
format [TIFF] file) form, precisely because it is unknown which
attributes of eye images may be discarded without removing
critical information. By better understanding which informa-
tion is needed clinically, more effective compression may be
developed that minimizes the loss of critical information at the
expense of unimportant image content—for example, by ex-
amining the changes in the image features f,, f. as a function of
the compression type. This is similar to previous suggestions'”
using perception to constrain image coding, except that the
data are clinically salient, rather than only perceptually salient.®

In conclusion, we have shown that computational tech-
niques may be used to measure the redness characteristics of
images of the bulbar conjunctival areas of eyes. These esti-
mates compared very well with those derived using clinical
grading methods. In addition, the method we propose has
much less variability than that which exists between clinical
graders. In the past 10 years, numerous methods have been
proposed to assign redness scores by computational methods.
The question then might be, how does the procedure devel-
oped here advance these methods? For example, Villumsen et
al.® had strong correlations between a computational and a
grading redness estimate. We believe that there are a number
of reasons why this experiment describes methods and results
that actually make it feasible to use this technique as a replace-
ment for grading the redness of images. First, the technology is
readily available and inexpensive. Whereas some previous stud-
ies have used rather exotic hardware and software combina-



IOVS, February 2002, Vol. 43, No. 2

tions, the algorithms we used are available to anyone using a
computer running almost every operating system that may be
encountered. Second, a minimum amount of operator inter-
vention is required. This removes some of the subjectivity in
some previous techniques and further lends itself to automa-
tion. And finally, we have shown that both accuracy and much
less variability are present in the automated technique than in
the subjective technique. These factors, we believe, provide a
strong rationale for the adoption of this technique to replace
clinical grading of bulbar redness. Because anterior segment
assessment is much more than just redness evaluation, how to
implement this technique more generally to replace in vivo
grading is yet to be determined.
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