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Abstract—This paper presents the Automatic Registration of
Remote-Sensing Images (ARRSI); an automatic registration sys-
tem built to register satellite and aerial remotely sensed images.
The system is designed specifically to address the problems asso-
ciated with the registration of remotely sensed images obtained
at different times and/or from different sensors. The ARRSI
system is capable of handling remotely sensed images geomet-
rically distorted by various transformations such as translation,
rotation, and shear. Global and local contrast issues associated
with remotely sensed images are addressed in ARRSI using
control-point detection and matching processes based on a phase-
congruency model. Intensity-difference issues associated with mul-
timodal registration of remotely sensed images are addressed in
ARRSI through the use of features that are invariant to intensity
mappings during the control-point matching process. An adaptive
control-point matching scheme is employed in ARRSI to reduce
the performance issues associated with the registration of large
remotely sensed images. Finally, a variation on the Random Sam-
ple and Consensus algorithm called Maximum Distance Sample
Consensus is introduced in ARRSI to improve the accuracy of
the transformation model between two remotely sensed images
while minimizing computational overhead. The ARRSI system
has been tested using various satellite and aerial remotely sensed
images and evaluated based on its accuracy and computational
performance. The results indicate that the registration accuracy
of ARRSI is comparable to that produced by a human expert and
improvement over the baseline and multimodal sum of squared
differences registration techniques tested.

Index Terms—Image registration, intersensor, intrasensor,
invariant descriptor, remote sensing.

I. INTRODUCTION

IMAGE registration is the process of aligning different im-
ages of the same scene acquired at different times, different

viewing angles, and/or different sensors. Image registration is
frequently used in remote sensing for a wide variety of tasks
such as change detection, image fusion, and image overlay.
Traditional image-registration techniques in remote sensing
required the manual selection of ground control points (GCPs)
at significant landmarks of the images. These GCPs are then
used to estimate the transformation model that aligns one image
to another. The primary drawback to this approach is that a
trained expert is needed to manually select each individual GCP
in the remotely sensed images. This is very laborious and time
consuming, especially when dealing with the large volumes of
remote-sensing data available today. Therefore, an automatic
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method of aligning such images is highly desired. A number
of methods have been proposed to automate the process of
image registration. These methods can be generalized into the
following categories.

1) Methods based on pixel intensities [1]–[6]: In these
methods, the similarity between pixel intensities is used
to determine the alignment between two images. Similar-
ity measures used in these algorithms include maximum
likelihood [1] and mutual information [2].

2) Methods based on frequency-domain characteristics [7]–
[9]: Such algorithms attempt to find an optimal alignment
match between two images based on characteristics in the
frequency domain. A common frequency-domain tech-
nique is phase correlation, which is based on the Fourier
Shift Theorem. The Fourier coefficients of first image are
divided by the Fourier coefficients of the second image,
and the inverse of the result is an image with a single
peak. This peak indicates the translation between the two
images. This technique has also been extended to account
for rotation and scaling [8].

3) Methods based on low-level features [10]–[13]: Such
techniques extract low-level features such as edges,
ridges, and corners from the images and use the cor-
relation between these features to determine the opti-
mal alignment between the images. These techniques
are useful for situations where the distinctive details are
prominent and when complex distortions exist.

4) Methods based on high-level features [14], [15]: Such
algorithms attempt to extract high-level features such
as regions and specific objects (e.g., roads, buildings,
and rivers) and attempt to find the optimal alignment
of the images by matching the features from one image
to another based on specific feature characteristics. For
example, regions may be matched based on their area,
perimeter, and centroid. These techniques are useful if the
structural characteristics of specific object types are well
known.

While these methods differ in their specific approach to the
automatic image-registration problem, the majority of these
methods, particularly for nonrigid registration, can be broken
down into the following steps.

1) Control-point (CP) detection: A set of potential CPs is
selected automatically from the set of images.

2) CP matching: Similarity analysis is performed to deter-
mine a set of matching CPs from the CP candidates.
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3) Transformation estimation: Based on the set of matching
CPs, the transformation model is estimated to provide the
best alignment between the images.

4) Transformation and resampling: The images are trans-
formed based on the determined model and are resampled
using an interpolation method.

Each of these steps plays an important part in the image-
registration procedure. Therefore, the following criteria are
important in the design of an automatic image-registration
system.

1) Efficiency: Given the large size of remotely sensed im-
ages, it is important to minimize the computational effort
required to perform each of these steps while maintaining
alignment accuracy.

2) Robustness: Differences in remotely sensed images of
the same scene often exist due to factors such as envi-
ronmental noise, differences in illumination and contrast,
and differences in viewpoint. Therefore, it is important to
minimize the effect of such image variances on image-
registration accuracy.

3) Accuracy: Visualization and analysis of remotely sensed
data require that a reasonable level of accuracy be
achieved during the registration process. Therefore, it is
important that the registration process produces an image
that is visually and numerically correct.

The main problem with previous work, including those
applied to remotely sensed images, is that they do not take
into account the registration issues and difficulties associated
with the characteristics of remotely sensed images. Therefore,
they are not well suited for the registration of intersensor and
intrasensor images in many situations. First, due to differing
environmental conditions and the fact that images are often
acquired at different times, remotely sensed images often have
contrast and illumination variations in both a global and local
sense. The performance of CP detection schemes employed
by many registration schemes are heavily affected by such
contrast and illumination conditions. Second, remotely sensed
images are often acquired using different modalities. In this
context, the term modalities refer to different sensor devices
that capture information at different frequency bands or using
different techniques (optical versus radar). As such, images
from different modalities have very different intensity map-
pings. This is problematic for most registration schemes, as
they rely on the exact pixel-intensity values to find matching
CP pairs. Third, remotely sensed images are often very large
in size and can result in performance issues, particularly in
practical systems with fast registration requirements, such as
on-the-fly visualization systems. Finally, the complex nature
of remotely sensed images often results in a high number of
mismatched CP pairs. Such outliers have a significant impact
on determining the transformational model required in aligning
the images together. The goal of this paper is to take each of
these criteria into consideration in the design of each of the
steps in the image-registration process to provide a practical
automatic nonrigid image-registration algorithm for such real-
time systems.

The main contribution of this paper is the Automatic Reg-
istration of Remote Sensing Images (ARRSI), an automatic
registration system designed for registering satellite and aerial
remotely sensed images. The system is designed specifically to
address the registration problems related to the characteristics
of remotely sensed images. ARRSI employ techniques based
on a phase-congruency model in the CP-detection process to
address global and local contrast and illumination conditions
that may affect the accuracy of the detected CPs. ARRSI uti-
lize phase-congruency moment-based patches as local feature
descriptors that are invariant to intensity-mapping conditions
during the CP-matching process. An adaptive CP-matching
scheme is employed in ARRSI to reduce the performance
overhead associated with the registration of large remotely
sensed images. Finally, an advancement on the Random Sample
and Consensus (RANSAC) algorithm called Maximum Dis-
tance Sample Consensus (MDSAC) is introduced in ARRSI
to provide an efficient and effective method of reducing the
effect of mismatched CPs and improving the accuracy of the
transformation model between two remotely sensed images.

In this paper, the theory underlying the design process of
each step in the image-registration process is presented and
explained in Section II along with an outline of the proposed
algorithm. The testing methods and test data are outlined in
Section III. The computational performance and registration
accuracy for intrasensor and intersensor and interband images
are discussed in Section IV. Finally, conclusions are drawn
based on the results in Section V.

II. THEORY

The ARRSI system utilizes various techniques to address the
issues related to computational complexity and robustness to
variations in the remotely sensed images. Hence, it is important
to discuss the theory behind the design process before outlining
the proposed algorithm. For each step of the automatic regis-
tration process outlined in Section I, the issues pertaining to
efficiency, robustness, and accuracy will be presented, and the
methods used to address these issues will be described and
explained in detail. The reference image refers to the image
to which sensed images are aligned. The reference and sensed
images are assumed to be at the same spatial resolution. If the
reference image and the sensed image are at different spatial
resolutions, then the image with the finer resolution is down-
sampled to that of the coarser resolution.

A. CP Candidate Detection

The first step in nonrigid automatic image registration is to
select a set of potential CPs from the reference image and
the sensed image. This can be accomplished using a num-
ber of feature-detection methods [16]–[19]. One particularly
interesting approach to feature perception is that based on
a phase-congruency model [20]–[22]. The phase-congruency
model for determining feature significance is based on the
local-energy model [23], which postulates that perceptually
significant features are situated at locations of the image where
the Fourier components are maximally in phase. This approach
is further reinforced by psychophysical evidence [24] showing
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that the human visual perception system is highly respon-
sive to visual features with high phase congruency. It was
shown that the phase-congruency model provides a measure
of feature significance that is invariant to illumination and
contrast conditions [22]. This is in contrast to gradient-based
methods, which are highly sensitive to such conditions, partic-
ularly suffering in situations where illumination and contrast
conditions vary within a single image. Given the significant
advantages of phase congruency over conventional gradient-
based approaches, the ARRSI system utilizes a candidate
CP-detection algorithm based around a phase-congruency
model. The phase-congruency measure used in the ARRSI can-
didate CP-selection algorithm is based on that presented in [22],
which was shown to provide good feature localization and noise
compensation. Local frequency information at a particular point
in the image is obtained using logarithmic Gabor filters over
multiple scales and orientations. The phase congruency at each
point in the image is

P (x, y) =

∑
n

W (x, y) �An(x, y)∆Φ(x, y) − T �∑
n

An(x, y) + ε
(1)

∆Φ(x, y) = cos
(
φn(x, y) − φ̄(x, y)

)
− ∣∣sin (φn(x, y) − φ̄(x, y)

)∣∣ (2)

where (x, y) indicates the coordinate of the point, W (x, y)
is the weighting factor based on frequency spread, An(x, y)
and φn(x, y) are the amplitude and phase at (x, y) at wavelet
scale n, respectively, φ̄(x, y) is the weighted mean phase at
(x, y), T is the noise threshold, and ε is a small constant
to avoid division by zero. The parameter values used in the
ARRSI system (W (x, y), An(x, y), φn(x, y), φ̄(x, y), and T )
are the same as those found in [21]. The only exception to
the parameters presented in [21] is that the ARRSI system
makes use of five discrete scales. Feature significance is then
derived using the principle moments of phase congruency. The
minimum moments provide a good representation of corner
feature significance and can be calculated as the expression
in (3), shown at the bottom of the page, where P (θ) is the
phase congruency at orientation θ. High values of m indicate
high corner strength. The resultant minimum moment map
can then be used to locate candidate CP locations with strong
feature significance. There are a number of issues that need
to be considered in terms of efficiency and robustness with
regard to using the phase-congruency detector for candidate CP
detection. Remotely sensed images are typically large in size,

resulting in high computational cost in the feature-detection
process. This is problematic for practical situations with fast
registration requirements, such as on-the-fly visualization. Fur-
thermore, remotely sensed images are generally complex by
nature and, hence, result in the detection of insignificant fea-
tures. One method of addressing these issues is by performing
image subsampling. A number of different image-subsampling
techniques have been introduced over the years, including some
more recent techniques designed for better quality and/or per-
formance [25], [26]. By downsampling the images, the compu-
tational effort required in the CP-detection process is reduced.
Furthermore, the downscaling process help reduce the detection
of insignificant candidates that may affect the accuracy during
the matching process. The downscaled image size is selected
based on the performance and accuracy requirements of the
underlying system. For example, an on-the-fly visualization
system would require fast image-registration performance and,
therefore, the images would be downscaled to more than that
of a system that requires a higher degree of accuracy and has
lower speed requirements. The ARRSI system utilizes bicubic
downsampling as it provides high overall speed and quality.

Another technique that can be used to improve registration
performance and accuracy in large and complex images is to
allow for the selection of regions of interest (ROIs) from which
CP candidates are selected. For example, in the case of image
mosaicking, it is easy to select rough ROIs around the areas in
which the images overlap each other. Not only will this improve
overall performance but it will also improve overall accuracy by
reducing the nonoverlapping regions present during the match-
ing process. Both subsampling- and ROI-selection techniques
are employed in the ARRSI system. In the ARRSI system, if
the user does not manually select a ROI, an estimated ROI
is automatically determined based on a priori georeferencing
information if it is available. The automatic ROI-estimation
process is performed by determining the overlapping region
between the two images based on available georeferencing
information. The estimated overlapping region is then increased
by 20% in each dimension to account for potential errors in the
georeferencing information. This new estimated overlapping
region is then set as the ROI in the corresponding images. This
helps to reduce total search size during the matching process as
well as improve the robustness of the system.

Another issue that needs to be considered is the effect of
the quantity of detected candidate CPs on the performance and
accuracy of image registration. Too few candidates result in
poor registration accuracy. However, too many candidates result
in high computational cost during the matching process. If a

m =
1
2


∑

θ

[
(P (θ) sin(θ))2 + (P (θ) cos(θ))2

]

−
√√√√4

(∑
θ

(P (θ) sin(θ)) (P (θ) cos(θ))

)2

+

(∑
θ

[
(P (θ) cos(θ))2 − (P (θ) sin(θ))2

])2

 (3)
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Fig. 1. Extracted CP candidates (as indicated by crosses). (Left) Reference
image. (Right) Sensed image.

traditional CP-matching algorithm is employed, then each CP
candidate from the reference image is correlated with each CP
candidate from the sensed image. This results in the number of
correlations to be in the order of O(n2). Even though ARRSI
introduces an efficient search strategy that achieves sub-O(n2)
performance, the correlation computations performed in the
matching process remains the computational bottleneck of the
system. Therefore, it is important to ensure that only significant
CPs are detected. After determining the minimum moment map
for the image, the threshold is set to a low threshold to, and
preliminary candidates are selected as points that are a local
maximum within a fixed radius r and have a corner strength
greater than to. Finally, only the strongest n candidates are
selected as the final set of CP candidates, where n is the number
of candidate points desired. Hence, the effective threshold is
adaptive to allow for the desired number of candidate points to
be retained and thus varies based on the image. Once the can-
didate points have been selected, the position of a CP candidate
is readjusted for subpixel accuracy by fitting a 2-D quadratic
to the corner strength in its local neighborhood and then finding
the maximum of the quadratic. This candidate-selection method
will be referred to as the adaptive phase-congruency feature
detector (APCFD) and provides an effective solution to the
above issues. Therefore, by reducing the problem-size through
image subsampling and ROI selection, as well as introducing
a feature-detection method that is illumination and contrast
invariant, the efficiency, robustness, and accuracy criteria are
satisfied. An example of CP candidates extracted using this
method is shown in Fig. 1.

B. CP Candidate Matching

After the CP candidates have been selected, the candidates
from the sensed image need to be matched with the candidates

from the reference image. The first issue in matching candi-
dates is the selection of an appropriate local-feature descriptor.
The simplest local-feature descriptor is to use the image inten-
sity within a close neighborhood. This is commonly known as
an intensity patch. However, there are a number of problems
with using such a local-feature descriptor. First, as with the case
of CP-candidate detection, one of the biggest problems with
intensity patches is variation in image illumination and contrast.
Remotely sensed images are often acquired at different times
and/or by different sensors. Therefore, corresponding patches
may appear different due to differing illumination conditions
and sensor sensitivities. The situation is made more difficult
in the case of intersensor images, where images acquired
with different modalities may have the same content mapped
to significantly different intensity values. Therefore, a local-
feature descriptor that is invariant to illumination and contrast
as well as intensity mappings is highly desired to improve the
robustness of the system. A popular local-feature descriptor that
is invariant to all of the above situations is the scale-invariant-
feature-transform descriptor [27], [28], which is also invariant
to scale and rotation. However, it is relatively computationally
expensive for situations with a large number of CP candidates.
Furthermore, since scale is typically known for remotely sensed
images and adjusted for prior to registration, simpler and more
efficient approaches can be used with similar results. To ad-
dress this issue in a more efficient manner, the proposed algo-
rithm makes use of phase-congruency moment-based patches
as local-feature descriptors. The maximum moment of phase
congruency provides a good representation of structural feature
significance within an image. The maximum moments can be
computed as the expression in (4), shown at the bottom of the
page, where P (θ) is the phase congruency at orientation θ.
High values of M indicate high structural feature significance.
There are a number of advantages in using this approach in
obtaining local-feature descriptors. This approach is invariant
to illumination and contrast variations. Furthermore, maximum
moments can be calculated in an efficient manner as its formula
is almost identical to that used to calculate minimum moments.
As such, most of the calculations made in determining the
minimum moment map during candidate CP detection can be
reused to calculate the maximum moment map. Finally, it is
invariant to intensity mappings. This is important as images
from different modalities can have very different intensity
mappings. Therefore, it is a suitable local-feature descriptor for
both intrasensor and intersensor images.

Another issue faced in candidate matching is the computa-
tional cost of the matching process itself. The matching process

M =
1
2


∑

θ

[
(P (θ) sin(θ))2 + (P (θ) cos(θ))2

]

+

√√√√4

(∑
θ

(P (θ) sin(θ)) (P (θ) cos(θ))

)2

+

(∑
θ

[
(P (θ) cos(θ))2 − (P (θ) sin(θ))2

])2

 (4)
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is typically done through an exhaustive search, where each CP
candidate from the sensed image is matched with every candi-
date CP from the reference image. The number of correlations
that needs to be performed using this approach is in the order of
O(n2). This method is computationally expensive, particularly
for large sets of CP candidates. Therefore, a method that
reduces the search size while maintaining registration accuracy
is desired for improving the computational efficiency of the
system. In devising an efficient search strategy, it is important
to take two key factors into account: 1) the center of the search
window and 2) the size of the search window.

To determine the center and size of the search window for
a particular CP candidate in the sensed image, it is useful to
exploit the spatial relationships of neighboring CP candidates.
First, let us define a mapping vector as a vector that maps the
coordinates of a CP candidate in the sensed image to its corre-
sponding CP candidate in the reference image. For example,
the mapping vector between a point A at (x, y) = (1, 1) in
the sensed image and its corresponding point A′ at (x′, y′) =
(3, 5) is computed as (∆x,∆y) = (2, 4). It is intuitive that
there is a high probability that the candidates within a close
neighborhood in the sensed image will have corresponding
candidates that are spatially close to each other in the reference
image. Therefore, a good center point for the search window of
a particular candidate can be determined based on the mean
mapping vector of its matched neighboring candidates. For
example, if the mean vector is (∆xmean,∆ymean) = (2, 4),
then the center point of the search window for a point B at
(x, y) = (2, 2) in the sensed image is computed as (x′, y′) =
(4, 6) in the reference image. Similarly, the search-window size
can be determined based on the mean deviation of the mapping
vectors of neighboring candidates. A large mean deviation
indicates that the corresponding candidates are not localized
near the selected center point and so a larger search size is re-
quired to maintain matching accuracy. Based on these statistical
relationships, a novel adaptive search strategy is devised for the
proposed algorithm.

First, the sensed image is divided into k nonoverlapping
partitions and the CP candidates are then grouped based on the
partition where they reside. For each partition, m candidates are
selected at random from the sensed image and are compared
against all candidates in the reference image that fall within a
radius of rmax around its location. In the case where georef-
erencing information is not known, the value of rmax is set as
100% of the maximum dimension and the value of m is set
to 50% of candidates in a partition. If a priori georeferencing
information is available, then each of the selected candidates
from the sensed image is instead compared against those in the
reference image that fall within a radius of rmax around the esti-
mated corresponding coordinate in the reference image. In this
case, the value of rmax is set to 33% of the minimum dimension
to account for errors due to distortion and inaccuracies in the
georeferencing information. Furthermore, the value of m is set
to 30% of candidates in a partition due to better initial local-
ization as a result of georeferencing information. These default
parameters were determined based on testing with a variety of
different remote-sensing images and can be changed by the user
to improve results for a specific type of image. The similarity

between a candidate in the sensed image and a candidate in the
reference image is calculated by finding the correlation of max-
imum moments of phase congruency within a w × w neighbor-
hood centered on the candidates. The value of w depends on the
characteristics of the remote-sensing images being registered
and can be determined experimentally based on the application.

The normalized cross-correlation measure is

corr(CP1, CP2) =

∑
x

∑
y

(
M̄CP1(x, y)M̄CP2(x, y)

)
√∑

x

∑
y

(
M̄CP1(x, y)

)2 (
M̄CP2(x, y)

)2
(5)

where CP1 and CP2 are CP candidates in the sensed image
and the reference image, respectively, and M̄CP1(x, y) and
M̄CP2(x, y) are the maximum moments of phase congruency
as per (4) at (x, y) within a neighborhood centered at CP1
and CP2, respectively. Based on the matched candidate pairs,
the mean vector and mean deviation of the mapping vectors
are computed. For each remaining candidate in a partition,
the search-window size is adjusted adaptively based on the
equation

r = rsmin + (min(MD/rsmin, 1)) (rsmax − rsmin) (6)

where rsmin and rsmax are the minimum and maximum allow-
able search radii, respectively, and MD is the computed mean
deviation in the current partition. The relationship between the
radii is

rsmin < rsmax < rmax. (7)

By default, rsmin is set to 13% of minimum dimension and
rsmax is set to 30% of minimum dimension unless otherwise
specified by the user. These values were chosen based on testing
with a variety of different remote-sensing images and can be
changed by the user to improve results for a specific type of
image. The center point of the search window for the remaining
CPs in the partition is set based on the computed mean vector
in the current partition as described above. An example of this
decision strategy for the remaining CPs is shown in Fig. 2.

Finally, the matching CP candidate pairs are determined by
searching for maximal correlation peaks between candidates
that are two-way consistent. For example, if the maximal
correlation peak of CP1 corresponds to CP2 and the maximal
correlation peak of CP2 corresponds to CP1, then they are con-
sidered a matching pair. Hence, the total amount of correlation
matching performed is significantly reduced when compared
to an exhaustive search and so the computational efficiency of
the algorithm is improved to achieve sub-O(n2) performance.
Therefore, the efficiency and robustness criteria are satisfied in
ARRSI by the invariant local-feature descriptor and the adap-
tive search strategy used. The coordinates of the corresponding
pairs are then scaled back to that of the original images.

C. Outlier Rejection and Transformation Model Estimation

After the matching CP candidate pairs have been found,
it is necessary to determine a spatial transformation model
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Fig. 2. This illustrates an example of deciding what candidates in the refer-
ence image are compared against a candidate in the sensed image in ARRSI.
Based on matched coordinates of previously selected candidates within the
partition, the center and size of the search window for a selected candidate
located at (x, y) = (50, 50) within the partition are determined to be (x, y) =
(50, 150) and r = 75, respectively. Therefore, all candidates in the reference
image that reside within a circle that is centered at (x, y) = (50, 150) and
have a radius of 75 are compared against the selected candidate. In this case,
the candidate at (x, y) = (50, 50) in the sensed image is compared against the
two candidates at (x, y) = (40, 130) and (x, y) = (30, 170) but not against
the candidate at (x, y) = (100, 50).

that maps the CP candidates from the sensed image to corre-
sponding CP candidates in the reference image. There are a
number of issues that need to be considered in order to establish
a final transformation model. First, the type of models that
represents the spatial transform between the sensed image and
the reference image needs to be established. Common spa-
tial transformation models used in image registration include
translation, rigid, similarity, affine, projective, polynomial, and
piecewise linear. The model used will depend on the types
of relative geometric distortions exhibited in the sensed im-
age. For the purpose of fast image registration of remotely
sensed images, ARRSI support both the affine and projective
transformation models due to low model-estimation complexity
and the ability to handle most common geometric distortions
found in remotely sensed imagery such as affine transforma-
tions (translation, rotation, scale, and shear) and perspective
transformations. A more complex transformation model would
be necessary for handling more complex cases such as spatially
variant terrain relief images.

The second issue that needs to be considered is the method of
estimating the parameters of the selected transformation model.
One common approach of model-parameter estimation is least
squares estimation as it often provides optimal estimates. How-
ever, the main problem with least squares estimation methods
is the fact that they perform poorly in the presence of outliers.
This is particularly problematic in the case of automatic image
registration due to the high probability of candidate mismatches
during the candidate-matching process. One approach to im-
proving the robustness of the model-estimation process is to
eliminate outlier candidate pairs from the set of candidate
pairs. Two commonly used techniques for performing outlier
rejection are least median of squares (LMS) [29] and RANSAC
[30], which have proven popular due to their effectiveness
and efficiency. In both algorithms, a subset of candidate pairs
is selected at random from the total set of candidate pairs.

Fig. 3. Final set of candidate CPs (as indicated by crosses). (Left) Reference
image. (Right) Sensed image.

These pairs are then used to estimate a candidate transformation
model. In the case of LMS, the process is repeated for K
iterations, and the candidate solution with the lowest median
squared residual error is selected as the final transformation
model. In the case of RANSAC, the process is repeated for K
iterations, and the candidate solution with the highest number
of inliers based on squared residual error is selected as the best
transformation model. In the case of RANSAC, the number of
iterations can be determined as

K =
log(1 − p)

log (1 − (ninliers/N)s)
(8)

where p is the desired probability of selecting at least one
transformation model that is free of outliers within K iterations,
ninliers is the number of candidates that fit the current estimated
model, N is the total number of candidates, and s is the
minimum number of candidates needed to fit the transformation
model. The key advantage of RANSAC over LMS is that
RANSAC also yields a final set of inliers that can then be used
to determine a more refined transformation model using least
squares estimation.

One issue with the use of the above algorithms is that
all randomly selected candidate subsets are evaluated equally.
Therefore, candidate subsets that consist of closely spaced can-
didates are treated the same as candidate subsets that consist of
well-spaced candidates. However, subsets with closely spaced
candidates do not provide a good representation of the overall
transformation between the sensed image and the reference
image. This problem can be illustrated with a simple example.
Imagine that the transformation between the sensed image and
the reference image is a clockwise rotation. Therefore, the
candidates at the top right side of the sensed image are mapped
to corresponding candidates that are positioned below and to
the right of it, and the candidates at the bottom-left side of the
sensed image are mapped to corresponding candidates that are
positioned above and to the left of it. Therefore, if a subset
consists of candidates that are clustered to the top right of
the image, the resultant transformation-model estimate would
reflect a translation if a similarity model was fitted. However, if
the subset consists of candidates from both the bottom-left and
top right side of the image, then the resultant transformation
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TABLE I
REGISTRATION ACCURACY

model would reflect a rotation if a similarity model was fitted.
To address this problem, a variation on the RANSAC algorithm
is introduced. It will be referred to as MDSAC. Rather than
selecting a single subset per iteration, a number of subsets
are selected and the sum of squared distances between the
candidates within each subset is computed. The subset with
the maximum sum-squared distance is used to produce the
model estimate. This provides an effective and efficient method
of encouraging subsets with better spaced candidates, thus
improving the robustness of the system. An example of the
final set of CPs for the sensed image and the reference image
determined using MDSAC is shown in Fig. 3. This set of
CPs, now largely free of outliers, is then used to estimate the
final transformation model using a least squares algorithm such
as the normalized direct-linear-transformation (DLT) algorithm
described in [31].

D. Transformation and Resampling

Finally, the sensed image is transformed based on the final
transformation model and then resampled using an interpola-
tion method such as bilinear and bicubic interpolation depend-
ing on the level of image quality and the level of computational
performance required.

E. Registration Algorithm

Based on the above theory, the ARRSI automatic registration
algorithm is summarized as follows for a sensed image f and a
reference image g.

1) Detect a set of CP candidates from f and g using the
APCFD algorithm described in Section II-A. ROI may
be specified manually or determined automatically using
georeferencing information to improve performance and
accuracy of the system.

2) Determine a set of CP candidate pairs between f and g
by matching the maximum moments of phase congruency
around the candidates using the efficient search strategy
described in Section II-B.

3) Apply the MDSAC algorithm described in Section II-C
on the set of CP candidates to determine a final set
of CPs.

TABLE II
REGISTRATION ACCURACY OF INTER3 AT VARIOUS ROTATIONS

4) Use the DLT algorithm to estimate a final transformation
model using the final set of CPs.

5) Use the final transformation model to transform f into an
aligned image f ′.

III. TESTING METHODS

The ARRSI system was implemented in MATLAB and was
tested using six sets of images derived from the U.S. Geo-
logical Survey (USGS) Global Visualization Viewer project,
one set derived from the Spaceborne Imaging Radar-C/
X-Band Synthetic Aperture Radar (SIR-C/X-SAR) project and
one set from Intermap Technologies Inc. The test sets can
be divided into two categories: 1) intrasensor and intraband
images and 2) intersensor and interband images. Intersensor
and interband images are typically more difficult to register due
to the differing intensity mappings of remotely sensed images
acquired using different modalities and frequencies. Therefore,
intersensor and interband images are more important in testing
the effectiveness of the ARRSI system. All test images are
eight-bit grayscale images. Each test set consists of a reference
image and a sensed image. A description of each test case is
described below.

1) INTRA1: Set of two 902 × 1131 orthorectified air-photos
of Highlands Ranch, CO, 1-m resolution. This test set was
provided by Intermap Technologies Inc.

2) INTRA2: Set of two 774 × 750 Landsat-7 ETM+
images from USGS project, 240-m resolution. Band: 3.
Reference image: Lat/Long: 64.2/ −81.5. Date:
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Fig. 4. Image registration from INTRA2 test set. (Left) Reference image. (Center) Sensed image. (Right) Aligned images.

Fig. 5. Image registration from INTER1 test set. (Left) Reference image. (Center) Sensed image. (Right) Aligned images.

2002/7/26. Sensed image: Lat/Long: 64.2/ −79.9. Date:
2002/7/17.

3) INTRA3: Set of two 771 × 749 Landsat-7 ETM+ images
from USGS project, 240-m resolution. Band: 3. Refer-
ence image: Lat/Long: 53.1/ −82.4, Date: 2003/3/18.
Sensed image: Lat/Long: 53.1/ −80.8, Date: 2003/3/27.

4) INTER1: Set of two 761 × 748 images from USGS
project, Lat/Long: 46.0/ −83.8, 240-m resolution. Ref-
erence image: Sensor: Landsat-7 ETM+, Band: 3, Date:
2003/4/12. Sensed image: Sensor: Landsat 4–5 TM,
Band: 5, Date: 2006/06/15.

5) INTER2: Set of two 761 × 748 images from USGS
project, Lat/Long: 69.6/ −92.7, 240-m resolution. Ref-
erence image: Sensor: Landsat-7 ETM+, Band: 5, Date:
2000/7/24. Sensed image: Sensor: Landsat 4–5 TM,
Band: 3, Date: 1999/7/6.

6) INTER3: Set of two 761 × 748 images from USGS
project, Lat/Long: 46.0/ −113.1, 240-m resolution. Ref-
erence image: Sensor: Landsat-7 ETM+, Band: 5, Date:
2001/8/17. Sensed image: Sensor: Landsat 4–5 TM,
Band: 3, Date: 2006/2/12.

7) INTER4: Set of two 761 × 748 images from USGS
project, Lat/Long: 48.9/ −68.8, 240-m resolution. Ref-
erence image: Sensor: Landsat-7 ETM+, Band: 5, Date:
1999/12/14. Sensed image: Sensor: Landsat 4–5 TM,
Band: 3, Date: 2005/10/13.

8) INTER5: Reference image: Sensor: Landsat-7 ETM+,
Band: 3, Lat/Long: 48.9/ −68.8, 240-m resolution,
Date: 1999/12/14. Sensed image: Sensor: SIR-C/
X-SAR, Lat/Long: 41.8/ −70.3, 25-m resolution, Date:
1994/04/15.

Each sensed image in a test case is registered with the
reference image in the same test case. For all test cases,
the number of initial CP candidates was set to a maximum
of 300 candidates in each image and the sensed image was
split into 16 nonoverlapping partitions. However, it is possible
to utilize overlapping partitions to provide better local esti-
mates for the adaptive search strategy used during the CP-
candidate-matching process. The downscaling algorithm used
in ARRSI is set up such that the maximum dimension is
400 pixels for all test cases except for INTRA1, where the
images are downsampled such that the maximum dimension is
500 pixels. This is done to improve the overall performance of
the system.

A set of 30 CP pairs was selected manually at the original
resolution for each test case. From the set of manually selected
GCP pairs, 20 pairs were selected for training purposes and
the remaining ten pairs were selected for testing purposes. To
judge the registration accuracy of the proposed algorithm, the
root-mean-squared error (rmse) is computed for the ten test
pairs. The unit used for determining rmse is based on pixels
at original resolution. The rmse computed for a transformation
model that was fitted using the 20 training pairs is used as the
reference baseline standard. The baseline automatic registration
algorithm described in [6] and the multimodal registration
algorithm proposed in [3] were used for comparison. Finally, to
test the robustness of ARRSI and the baseline algorithm under
rotation conditions, the sensed image of the INTER3 test case
was rotated around its center by ±{5◦, 15◦, 30◦}, and the rmse
was computed for each rotation. The multimodal registration
algorithm was not evaluated for rotation conditions because it
does not handle rotations.
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Fig. 6. Image registration from INTER2 test set. (Left) Reference image. (Center) Sensed image. (Right) Aligned images.

Fig. 7. Image registration from INTER5 test set. (Left) Reference image. (Center) Sensed image. (Right) Aligned images.

IV. EXPERIMENTAL RESULTS

The registration accuracy results are shown in Table I. It
can be observed that the ARRSI system achieved rmse that
are higher but within the range of that achieved by the manual
selection of CP pairs in seven of the eight test cases. In the
INTER3 test case, the proposed algorithm slightly outperforms
the results achieved using the manually selected CP pairs. It
can also be observed that the ARRSI system outperformed the
multimodal registration algorithm proposed in [3] in seven of
the eight test cases. Furthermore, the ARRSI system signifi-
cantly outperformed the baseline algorithm in four of the eight
test cases. The registration accuracy for the INTER3 test case
at various rotations is shown in Table II. It can be observed
that the ARRSI system achieved rmse that is comparable to
that produced by manually selected CP pairs for ±{5◦, 15◦}.
For rotations of ±30◦, the ARRSI system performs poorly and
is unable to produce a correct alignment. This illustrates the
limitations of the ARRSI system in terms of robustness under
rotation conditions. An example of the registration achieved
for four of the test cases is shown in Figs. 4–7. By visual
inspection, it appears that the registration is valid and accurate
in all test cases. These results illustrate the effectiveness of
the ARRSI system for registering intrasensor and intersensor
remotely sensed images.

To analyze the effectiveness of the aforementioned MDSAC
algorithm, motion-model estimation was performed for two
test sets TEST1 and TEST2. The number of outlier pairs is
pruned such that only 20% of the total pairs left are outliers.

Fig. 8. Average rmse versus number of iterations for TEST1.

The algorithm was run for 100 iterations and the rmse of the
resultant estimated model at various iterations was measured
using a set of 30 ground-truth test CP pairs. Given the random
nature of the algorithm, a total of 30 test trials were performed
and the results were used to obtain an average rmse at various
iterations. Figs. 8 and 9 show the average rmse plot for TEST1
and TEST2, respectively. The results for the standard RANSAC
algorithm are provided as a comparison. It can be observed
that the MDSAC algorithm provides noticeable performance
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Fig. 9. Average rmse versus number of iterations for TEST2.

improvements over the standard RANSAC method in both
cases. In the case of TEST1, it took RANSAC 26 iterations
to achieve similar results as MDSAC after 16 iterations. In
the case of TEST2, it took RANSAC 90 iterations to achieve
the similar results as MDSAC after 50 iterations. Therefore,
MDSAC is able to arrive at an estimated motion model with
reasonably low rmse in fewer iterations than RANSAC. This is
important as it indicates that the resultant pruned set of pairs
is largely free of outliers and can be used to produce a more
accurate estimation of the global motion using DLT.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced ARRSI, a new system for
performing efficient and robust registration for remotely sensed
images. Experimental results show that overall registration per-
formance and accuracy are relatively high. It is our belief that
this method can be successfully implemented for intrasensor
and intersensor image registration and rectification purposes.
Future work includes investigating the effectiveness of the
ARRSI system using different similarity metrics such as sum
of square differences and mutual information, as well as image-
analysis techniques for automating the setting of parameters for
the registration system.
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