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Abstract—An automatic method for segmenting skin lesions
in conventional macroscopic images is presented. The images
are acquired with conventional cameras, without the use of
a dermoscope. Automatic segmentation of skin lesions from
macroscopic images is a very challenging problem due to factors
such as illumination variations, irregular structural and color
variations, the presence of hair, as well as the occurrence of
multiple unhealthy skin regions. To address these factors, a
novel iterative stochastic region-merging approach is employed
to segment the regions corresponding to skin lesions from
the macroscopic images, where stochastic region merging is
initialized first on a pixel level, and subsequently on a region level
until convergence. A region merging likelihood function based on
the regional statistics is introduced to determine the merger of
regions in a stochastic manner. Experimental results show that
the proposed system achieves overall segmentation error of under
10% for skin lesions in macroscopic images, which is lower than
that achieved by existing methods.

Index Terms—Ilesion, skin cancer, stochastic, region merging,
iterative.

I. INTRODUCTION

According to the Skin Cancer Foundation, skin cancer is
the most frequent form of cancer in the United States [1]. Of
greater concern is the fact that there is a continuous increase
in skin cancer incidence over time in many areas of the world
such as Singapore [2], Slovakia [3], and the Netherlands [4],
with no signs of leveling off [4].

To date, the most effective way to reduce the mortality
related to skin cancer is through early skin examination to
identify possible signs of skin discoloration and abnormalities.
The early detection of such abnormalities is particularly impor-
tant, since these abnormalities may evolve to skin cancer [5].
In skin examinations it is important to differentiate malignant
from nonmalignant lesions. This enables malignant melanoma
skin cancer to be diagnosed at an earlier and much more
treatable stage, in turn helping to avoid unnecessary surgery
and improving patient morbidity and mortality. Unfortunately,
the individual skin examination of a large population (where
each individual may be a potential patient) can be expensive
for most health care systems, given the limited number of
specialists trained for performing proper skin diagnosis, and
their location in specific health care providers at larger centers
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Fig. 1. Examples of macroscopic images of skin cancer regions. Challenges
in segmenting cancer regions in an automated manner include illumination
variations, irregular structural and color variations, the presence of hair, as
well as the formation of multiple cancerous regions.

to optimize the associated infrastructure costs (i.e., hospitals
and clinics). Usually, a dermatologist performs a thorough
patient skin examination using a dermoscope’.

A particularly promising development that has the potential
for improving skin cancer diagnosis is the remote clinical
diagnosis in telemedicine, where macroscopic images of the
suspected skin area are transferred to the clinician over the
Internet for remote examination. In this way, suspicious skin
lesions are pre-screened using images acquired with conven-
tional cameras, and if the image analysis suggest a lesion that
needs special attention, the patient is immediately referred to a
dermatologist [6]. Therefore, allowing for patients who would
otherwise have no access to skilled dermatologists to receive
proper clinical diagnosis for suspicious skin discoloration and
abnormalities. Given the potential for this enabling technology,
there has been great interest in developing computer-aided
systems to assist in the rapid clinical analysis and diagnosis
of dermatological skin lesions (e.g. melanomas) [7], [8] Such
computer-aided systems have now been tested remotely using
the Internet and has been shown to be effective and have
great potential for widespread use. Motivated by the potential
to allow for remote clinical diagnosis in telemedicine, where
macroscopic images are used for initial diagnosis instead of
dermoscopy images, our focus is on computer-aided clinical
diagnosis of skin lesions from conventional macroscopic im-
ages as opposed to dermoscopy images.

An essential step in the computer-aided clinical diagnosis of
skin lesions is the automatic segmentation of the lesions from
macroscopic images. The segmentation is very challenging due

'A dermoscope, or dermatoscope, is a tool widely by dermatologists to
help with examining the skin. Usually, a dermoscope is a hand held optical
device, much like a magnifying glass, with a light source attached (generally
specific for dermatological use): (a) They help to differentiate melanocytic
lesions from nonmelanocytic and malignant lesions from nonmalignant; (b)
Dermoscopy can be used to justify a case for surgical excision; and (c) The
examination with a dermoscope helps to provide a careful examination of the
patient’s skin, and can reassure the patient that he/she has received a thorough
skin examination.
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to factors such as illumination variations, irregular structural
and color variations, the presence of hair, as well as the
existence of multiple lesions in the skin, some of which can
be seen in Fig. 1.

Several methods have been proposed to tackle this important
task. A popular class of approaches to skin lesion segmentation
is thresholding [8], [9], [10], [11], [12], which has been
shown to be effective for situations where the lesions have
consistent characteristics and the surrounding skin regions are
homogeneous in nature, as well as well handling situations
characterized by multiple regions. However, such approaches
face difficulties in situations characterized by structural, il-
lumination, and color variations, where no clear threshold
can be found that separates the lesion regions from the
surrounding skin regions, and resulting in poor segmentation
accuracy. Another popular class of approaches is based on
active contours [25], [14], [15], where a curve is evolved
towards the boundaries of the skin lesion regions. While more
robust than thresholding at handling noise, artifacts, and varia-
tions in illumination and color, active contour approaches can
face difficulties in situations characterized by weak contrast
between the skin lesions and the surrounding skin regions.

A new class of approaches to skin lesion segmentation
that has been recently investigated are methods based on
Markov Random Fields (MRF) [20] and other statistics [16],
[17], which take into consideration local spatial interactions
and densities. Of particular interest is the employment of
the statistical region merging algorithm [18] for skin lesion
segmentation as proposed by Celebi et al. [17], which has
been shown to work well with dermoscopy images. While
computationally efficient and effective for dermoscopy images
since the dermoscope is focused on a small area (typically
containing a single lesion under ideal lighting conditions), such
an approach has difficulties dealing with macroscopic images
characterized by noise and artifacts, structural, illumination
and color variations, multiple lesions, and weak boundary
separation. This leads to oversegmentation and undersegmen-
tation results under the degradations commonly found in
macroscopic images. A survey on skin lesion segmentation
can be found in [19].

The research goal of this paper is to address the afore-
mentioned issues to obtain accurate skin lesion segmentation
performance, specifically from macroscopic images in an
automated manner. The proposed iterative stochastic region
merging method is robust to noise and artifacts, multiple
lesion regions, structural variations, illumination and color
variations, and weak boundary separation between skin lesions
and surrounding skin, which are the key challenges to skin
lesion segmentation in macroscopic images. To the best of
the authors’ knowledge, such an iterative stochastic region
merging approach to skin lesion segmentation has not been
previously proposed. The proposed method differs greatly
from current methods based on the statistical region merging
algorithm [18] such as [17]. First, while current methods
make use of the merging criteria proposed in [18] to make a
deterministic merging decision, the proposed merging decision
extends upon this by introducing a new merging likelihood
function that allows for a stochastic merging decision. More

importantly, unlike current methods that attempt to obtain the
segmentation results within a single pass, the proposed method
introduces a new multi-pass strategy that continually refines
the segmentation results to improve segmentation accuracy.
Such differences play an important part in the improved
segmentation performance of the proposed method for skin
lesion segmentation, which will be illustrated in Section III-A.

This paper is organized as follows. First, the proposed
method is described in Section II. Second, the experimental
results using real macroscopic images of various types of
dermatological lesions are presented in Section III. Finally,
conclusions are drawn and future work is discussed in Sec-
tion IV.

II. METHOD

The proposed iterative stochastic region merging method
for skin lesion segmentation can be summarized as follows.
Each pixel in the image is assigned to a unique region, and
these regions are subsequently merged with other regions in
a stochastic manner, based on a region merging likelihood
function. The regions formed during this initial phase are then
merged using the same stochastic region merging process to
yield the final segmentation results. The theory behind the
proposed automatic segmentation system will be described in
the following sections.

A. Problem Formulation

Let S be the discrete lattice upon which the image of the
skin lesions is defined, and s € S be a site in the lattice, which
in the case of the image refers to a pixel location. Let R, be a
random variable taking on a region label {1, ..., k}, denoting
a unique lesion region or the surrounding skin region, and Fj
be a random variable taking on the color associated with s.
To keep the method illumination and color invariant, there is
no prior model or prior region associated with healthy skin.

Given an image f, let f = {fs|s € S} be the observed color
image, and r = {r,|s € S} an instantiation of the region label
field. The problem of skin lesion segmentation can therefore
be treated as an inverse problem, where we wish to determine
r given f, formulated as the following Maximum a posteriori
(MAP) estimation problem:

7= argmax {P(r[f)}, (1)

where P(r|f) is the posterior. Based on Bayes’ theorem, the
problem posed in (1) is equivalent to

7= argmax {P(f|r)P(r)}, @

where P(f|r) is the color-to-label assignment likelihood, P(r)
is the region label prior, and P(f) = 1. The solution to the
problem defined in (2) is difficult to solve directly due to
complex imaging challenges, such as noise and artifacts, multi-
ple lesion regions, structural variations, illumination and color
variations, and weak boundary separation between unhealthy
skin regions and surrounding skin regions. These are the key
challenges to skin lesion segmentation in macroscopic images.
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B. First Stage - Initialization

To better handle illumination and color variations, as well
as noise and artifacts, one effective approach is to employ a
Markov Random Field (MRF) model [20] for the prior P(r)
in (2), where the image is modeled in terms of local spatial
interactions of its sites. More specifically, the probability
distribution at a site s is dependent only on its neighboring
sites. This MRF spatial context model is realized in the first
stage of the proposed algorithm in the following manner.

Given a M x N image f, since there are no initial knowledge
or assumptions about the image (e.g., no knowledge about the
number of regions), we first assume that each site s represents
a unique region (i.e. a pixel), and we assign each site s a
unique region label R = {1,..., M x N}. An arbitrary site
labeling order can be used.

We then construct a region adjacency graph [20], where
each vertex represents a region R, and the graph edges E
connect each vertex (representing an individual region R) to
its adjacent graph vertices (i.e., to the regions adjacent to R
on the discrete lattice S) (see Fig. 2). At this stage, we set up
the region adjacency graph such that:

o each site s represents a unique region and is represented
by a single vertex,

« each site s has eight neighbors on S that it is directly
connected to, and so each vertex has eight adjacent
vertices on the graph.

29

Fig. 2. An example of a region adjacency graph, where each vertex represents
a region R, and the graph edges E connect each vertex (representing an
individual region R) to its adjacent graph vertices (i.e., to the regions adjacent
to R on the discrete lattice S).

C. Second Stage - Stochastic Region Merging

Based on this MRF model, we employ a stochastic region
merging strategy to solve the problem posed in (2), where a
region R, is merged with an adjacent region R, thus taking on
the region label R}, with a merging probability of a(R,, Rp).
A thorough explanation of the MAP problem being solved
via region merging and an MRF model can be found in [21].
To compute the merging probability a(R,, Rp), we introduce
a new stochastic region merging likelihood function, which
accounts for P(f|r) in (2). The proposed stochastic region
merging likelihood function extends upon the statistical region
merging theory proposed by Nock and Nielsen [18],

(E [Ra] — E [Ry))*
A (RCU Rb)

a(Rq, Ry) = exp , 3)

where E].] is the expected value of elements in the region,
and A is a statistical region merging penalty function defined

as :

D¢ [In(®(f)?)
2Q | ®(Ra)

N In (®(f)?)

A(Ra;Rb) = (I)(Rb) P

4)

where ®(.) represents the number of elements contained in
the set provided as the argument (e.g., ®(f) is the number
of pixels in the image f), D represents the dynamic range
of f (e.g., 256 for an 8-bit image), and () is a regularization
term. In the situation where we are dealing with color images,
Eq. (3) is computed for each color channel, and the final
merging likelihood is the product of the individual likelihoods
of each channel. Based on the computed merging probability
a(R,, Ry), we decide whether R, is merged with Ry, in the
following probabilistic manner. We generate a random number
u from a uniform distribution between 0 and 1. If the random
number w is less than a(R,, Rp), then R, is merged with Ry.
Otherwise, the regions are not merged.

Several observations can be made about the proposed
stochastic region merging likelihood function. First, the merg-
ing probability « increases as the size of regions decrease.
Therefore, small regions are more likely to merge than large
regions, which is useful for the handling of noise and arti-
facts, which are typically characterized as small regions and
should merge with larger regions to avoid oversegmentation.
Second, a decreases as the difference in regional expectations
(E [R4) — E'[Rp)) increases, thus reducing the probability that
regions with very different characteristics from merging and
hence promoting intra-region homogeneity. Third, o decreases
as ( increases, thus increasing the probability of merger when
@ is low and decreasing the probability of merger when @ is
high. What this effectively does is allow for more flexible con-
trol over the segmentation scale (e.g., increasing () promotes
oversegmentation). Unlike the original deterministic statistical
region merging theory proposed by Nock and Nielsen [18], the
introduction of the stochastic aspect into the region merging
process allows for increased segmentation robustness that is
less prone to being trapped in local optima. For example, in
the deterministic approach, region merging occurs only if the
regional expectation difference (i.e. E[R,] — E[Rp]) is less
than a hard statistical threshold. Therefore, even if the regional
expectation difference is greater than the threshold by even a
very minute quantity due to factors such as noise and artifacts,
structural, illumination and color variations, and weak bound-
ary separation, region merging will not occur despite their
relative similarity. On the other hand, in the proposed method,
the merging probability of such a case would be relatively
high and so region merging will likely occur. We will show in
the experimental results an illustrative comparison between the
deterministic approach and the proposed stochastic approach
to justify our proposed approach.

To determine the order of merger evaluation, all adjacent
region pairs are placed in a priority queue based on ascending
regional expectation differences (E [R,] — E [Rp]) (lower re-
gional expectation differences have higher merger evaluation
priority). As the stochastic region merging progresses, the
region adjacency graph is updated to reflect the region merging
decisions at each step.

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, Permission must be obtained from the | EEE by emailing pubs-permissions@ieee.org.



This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

Tteration 1 Iteration 2

Fig. 3.

Iteration 3 Iteration 4

An illustration of the iteration process for an example image. The nodes and edges of the region adjacency graph are overlayed on the segmentation

results at each iteration. In these cases, each region is considered a site in the lattice. Each site (i.e., graph vertex) is depicted in the centroid location of each
spatial region. At each iteration, the set of regions determined in the previous iteration are refined using a stochastic region merging process. This is repeated

until convergence.

Algorithm 1 Iterative Stochastic Region Merging

1: Assign each site s in the image f a unique region label
(Note: order of assignment does not matter).

2: Construct an initial region adjacency graph, where each
vertex represents a site s with eight adjacent vertices each
(i.e., its eight neighbors).

3: repeat

4:  Place all adjacent region pairs into a priority queue

based on ascending regional expectation differences.

5:  repeat
6: Remove region pair R, and R, from priority queue.
7: Merge region pair R, and R, with a probability

(R4, Rpy) based on the proposed region merging
likelihood function in (3).

8: If merging occurs, update the adjacency graph.

9:  until Priority queue is empty

10:  Decrease () by half.

11: until Convergence

This process is continued until all adjacent region pairs in
the priority queue have been evaluated to yield an initial seg-
mented result, thus constituting one iteration in the proposed
method.

D. Stage Three - Iterative Refinement

After the priority queue has been emptied, the adjacent
region pairs from the initial segmentation results are inserted
into the priority queue in ascending regional expectation
difference order, and the stochastic region merging process
is repeated, with () decreased by half for each iteration, to
yield refined segmented results. The number of regions is
decreased at each step, and this iterative process is continued
until convergence (no further changes to the region adjacency
graph, or only two regions left), to yield the final set of
segmentation results with %k different regions, each assigned
a unique region label {1,...,k}. An example of the iterative
process is shown in Fig. 3. The largest region, measured
by area in pixels, in the segmentation results is assumed to
correspond to the surrounding skin region, while the remaining
regions correspond to the skin lesion. The pseudo-code for
the proposed iterative stochastic region merging algorithm is
presented in Algorithm 1.

This proposed iterative process departs significantly from
the original deterministic statistical region merging theory
proposed by Nock and Nielsen [18], which is not iterative
and has a tendency to oversegment with high values of @,
and undersegment with low values of (). Given the iterative
nature of the proposed algorithm, ) can be set to an arbitrarily
high initial value (e.g., @ = 100 in our tests, with Q > 5
for all iterations to avoid undersegmentation based on our
experiments).

III. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed method,
segmentation was performed on 60 test macroscopic images
containing 40 malignant cases (20 melanoma cases and 20
carcinoma cases), and 20 benign cases (20 naevi cases). This
large variety of dermatological lesions allows us to better study
the practical performance of the proposed method. These test
macroscopic images range in size from 720 x 480 pixels to
473 x 720 pixels, and are representative of real-world scenar-
ios, where the images are characterized by noise and artifacts,
structural, illumination, and color variations, as well as unclear
separation between unhealthy skin regions and surrounding
skin regions, making them noticeably more challenging to
segment than dermascopy images. The proposed method was
implemented in MATLAB, and tested on an Intel Pentium 4.3
GHz machine with 1 GB of RAM, with @) set to an initial
value of 100.

A. Comparison with Deterministic Statistical Region Merging

Given that the proposed method extends upon the original
deterministic statistical region merging algorithm proposed by
Nock and Nielsen [18] that integrates a MRF model [20],
and other methods have utilized this approach for skin lesion
segmentation [17], it is worthwhile to provide a comparison
between the proposed method and the deterministic algorithm.
The computational complexity of the proposed algorithm with
respect to the original deterministic statistical region merging
algorithm proposed by Nock and Nielsen [18] is difficult
to determine from an analytical perspective, given that it
depends on the complexity of the underlying image and on the
amount of segments proposed at each iteration. However, to
put things into perspective, the deterministic statistical region
merging algorithm proposed by Nock and Nielsen [18] takes
approximately 2 seconds to segment one image, while the
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Q=20 Q=40

Q=80 Q=100
Fig. 4. Segmentation results using the original deterministic statistical region merging approach [18] with various values of @, and the results of the proposed
stochastic region merging approach. It can be observed that, regardless of the value of @ selected, the deterministic approach is unable to achieve correct
segmentation results, while the proposed stochastic approach is able to give accurate segmentation results.

proposed method takes approximately 6 seconds to segment
one image. However, in terms of segmentation accuracy, the
original deterministic statistical region merging algorithm will
give inaccurate results in situations characterized by noise
and artifacts, structural, illumination and color variations,
multiple lesions, and weak boundary separation, while the
proposed algorithm is robust to these conditions and will
provide significantly more accurate results. An illustration
of the segmentation results using the original deterministic
statistical region merging algorithm with various values of
@, and the results of the proposed stochastic region merging
approach is shown in Fig. 4. It can be observed that, regardless
of the value of () selected, the deterministic approach is unable
to achieve correct segmentation results, while the proposed
stochastic approach is able to give accurate segmentation
results. In fact, based on exhaustive tests for the () range of
[20,200], there are no values of () that provides reasonable
segmentation results for the set of test images.

B. Comparison with State-of-the-art Methods

For comparison purposes, we used the automatic skin lesion
segmentation (SLS) approach proposed by Xu et al. [9],
the multi-directional gradient vector flow (MGVF) approach
proposed by Tang [15]. We also tested a state-of-the-art
color image segmentation method recently proposed by Li et
al. [22], which segments images using a region-based vari-
ational approach based on level set active contours (LSAC).
The LSAC method was chosen as it represents the state-of-
the-art in region-based active contour methods, as well as the
SLS and MGVF methods, which were shown to provide strong
segmentation accuracy for various types of skin cancer regions,
thus acting as good indicators of the level of segmentation
accuracy that can be achieved by current techniques in this
area. It should be noted that the parameters of the LSAC, SLS,
and MGVF methods have been set based on that presented
in their respective literatures, given that the goal is for fully
automatic skin lesion segmentation without manual interven-

Q=60

Proposed

tion. The SLS and MGVF methods have been implemented
based on their respective works in MATLAB, while the LSAC
method used is that provided by the authors of [22].

Given the ground truth measurements by a trained expert
(denoted by G'T), the obtained segmentation results (denoted
by SR) using the proposed system and the tested methods
was computed over all test images and compared using three
different metrics:

1) The segmentation error (SE) as defined by [17]

o ASRDGT)

1
AGT) x 100%, ®)
where @ denotes XOR operation and A(.) denotes the
area.
2) The true detection rate (TDR) as defined by [25]
_ A(SRNGT)
3) The false positive rate (FPR) as defined by [25]
_ A(SRN GT)

The SE metric provides a good indication of overall seg-
mentation performance, but does not give a good indication
on specific characteristics of the segmentation methods. To
complement this overall metric, the TDR metric provides a
good indication of undersegmentation error while the FPR
metric provides a good indication of oversegmentation error.
As such, the use of these three metrics provide an overall
picture of the different aspects of the segmentation algorithms.
In order to evaluate the repeatability of the results given the
stochastic nature of the algorithm, the overall segmentation
error presented for the proposed approach is based on a total
of 20 repeated trials for each image. Furthermore, note that,
as discussed in [9], given that ground-truth measurements
are made by trained experts, there exists minor variations
between the ground-truth measurements made by different
experts. Therefore, the ground truth measurements by a second
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Fig. 5.

trained expert was used to investigate inter-observer variation.
All ground-truth measurements were produced using Adobe
Photoshop. It was found that the inter-observer variation is
within 3%, and as such allows for reasonable quantitative
assessments. All the methods produced errors in their segmen-
tations of the test images, and we verified statistically if these
methods produced the same segmentation errors on average.
This hypothesis was rejected using analysis of variance (i.e.,
the two-way ANOVA test) considering a significance level of
0.05 (ie., FF = 29.50 and Prob(F > 29.50) < 0.0001),
suggesting that at least one of the methods produces an average
segmentation error that is statistically different from the error
averages for all tested methods. To identify the methods that
have similar performances, we grouped the methods with sta-
tistically similar average segmentation errors using the Tukey’s
Honestly Significant Difference (HSD) test [23]. Considering
a significance level of 0.05, the following three groups of
segmentation methods were identified : (a) LSAC [22] and
SLS [9] form group 1; (b) SLS [9] and MGVF [15] form
group 2; and (c) the proposed method stands alone in group
3.

The segmentation performance metrics on the 60 real
macroscopic images are shown in Table I, and shed several
important insights on the performance and particularities of
the proposed method. Firstly, the proposed method achieved

MGVF [15] Proposed

Sample skin lesion segmentation results for Tests 1, 2, 3 and 4 (first to fourth rows, respectively).

the lowest SE, which indicates that the proposed method has
the strongest overall performance when compared to the SLS,
MGVE, and LSAC methods. Secondly, based on the TDR
metric, it can be observed that the proposed method has a
slight tendency to under-segment when compared to MGVF,
but provides significantly better TDR than LSAC and SLS.
Third, based on the FPR metric, it was observed that the
proposed method resulted in relatively few false positives as
with LSAC and SLS, while MGVF exhibited significantly
higher number of false positives. Finally, the proposed method
performs equally on both malignant and benign cases.

TABLE I
SEGMENTATION PERFORMANCE METRICS ON 60 REAL MACROSCOPIC
IMAGES, BASED ON MEASUREMENTS MADE BY THE FIRST EXPERT.

[ Method | SE (%) | TDR (%) | FPR (%) |
LSAC [22] 35.24 70.49 1.83
SLS [9] 27.98 75.28 2.94
MGVEF [15] | 26.74 95.92 15.78
Proposed! 9.16 93.06 3.03

IThe results presented for the proposed approach is based on a total of 20
repeated trials for each image to evaluate the repeatability of the results given
the stochastic nature of the algorithm.

Sample segmentation results from five of the tested macro-
scopic images are shown in Fig. 5. Visually, the proposed
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method was able to segment the lesion regions with a higher
level of accuracy for almost all tests when compared to the
SLS, MGVEF, LSAC methods. However, when compared to
the proposed method in Test 4, MGVF provides a slightly
more accurate segmentation at the top-right hand corner of
the skin lesion. This suggests that our proposed method
potentially can be more effective in segmenting skin lesion
regions from macroscopic images than comparable state-of-
the-art segmentation methods available in the literature. The
effectiveness of the proposed method compared to the other
tested methods may be attributed to two factors. First, unlike
the other tested approaches, the proposed method introduces a
stochastic aspect into the region merging process, which allows
for increased robustness against being stuck in local optima,
which is particularly important in complex situations occurring
in dermatological image analysis, characterized by noise and
artifacts. In fact, the key advantage of the proposed region-
based approach over thresholding methods is its robustness
to noise as well as illumination and color variations. Second,
the iterative nature of the proposed method, where regions are
merged from a pixel basis to region basis, lends itself better to
situations characterized by strong illumination variations and
weak boundary separation than approaches such as MGVF and
LSAC. In fact, the key advantage of the proposed region-based
approach over active contour based approaches is its robust-
ness to illumination variations and weak boundary separation,
which would result in oversegmentation or undersegmentation
results for active contour based methods.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we described an automatic method for seg-
menting skin lesions in macroscopic images based on iterative
stochastic region merging. The images are acquired with
conventional cameras, without using a dermoscope, which
facilitates the remote image acquisition in telemedicine. The
proposed method can be part of a system designed to help in
the quantitative analysis of skin lesions for remote clinical
pre-screening in teledermatology. Our experimental results
indicate that our proposed segmentation method potentially
can provide more accurate skin lesion segmentations from
macroscopic images than comparable methods existing in the
literature. In the next stage of our research work, we intend
to test our method in larger datasets, including different kinds
of pigmented skin lesions. Also, we plan to investigate how
to incorporate new features to our segmentation approach
to further improve its segmentation accuracy, such as using
textural information in region merging, and techniques to
compensate for illumination variations.
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