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Abstract—Four computer vision algorithms to measure the
average orientation, shape and size of cells in images of biological
tissue are proposed and tested. These properties, which can
be embodied by an elliptical ‘composite cell’ are crucial for
biomechanical tissue models. To automatically determine these
properties is challenging due to the diverse nature of the image
data, with tremendous and unpredictable variability in illumi-
nation, cell pigmentation, cell shape and cell boundary visibility.
First, a simple edge detection routine is performed on the raw
images to locate cell edges and remove pigmentation variation.
The edge map is then converted into the magnitude spatial-
frequency domain where the spatial patterns of the cells appear as
energy impulses. Four candidate methods that analyze the spatial-
frequency data to estimate the properties of the composite cell
are presented and compared. These methods are: Least Squares
Ellipse Fitting, Correlation, Area Moments and Gabor Filters.
Robustness is demonstrated by successful application on a wide
variety of real images.

Index Terms— composite cell, average cell, shape detection,
geometry, texture, orientation, aspect ratio, spatial-frequency,
embryology, morphogenesis, tissue mechanics, microscopy

I. INTRODUCTION

HIS paper addresses a novel computer vision problem: to

estimate the average orientation, shape and size of cells
in an image of biological tissue (Fig. 1). These features can
be represented by an elliptical ‘composite cell’ as introduced
by Brodland and Veldhuis [1]. This composite cell is defined
by its orientation a from the horizontal and major and minor
axes Linajor and Lpinor, respectively (Fig. 2). The aspect
ratio x and the area A of the ellipse correspond to the shape
and size of the composite cell and can be calculated from the
axis lengths:

Lmajo’r

j = magor, (1a)
Lminor

A= szajoerinar- (1b)

4

The objective of the present work is to develop an algorithm
that can estimate «, x and A and is robust to unpredictable
image characteristics. This paper proposes four different algo-
rithms that estimate these properties from the spatial-frequency

Fig. 1. An image of an embryonic epithelium.

domain data. The methods are compared through application
to a wide variety of real images.

Section II provides background information on this research,
which includes a description of the project context, related
research and an explanation of how the the composite cell
properties can be estimated from spatial-frequency data. The
four proposed algorithms are described in Section III, followed
by experimental results in Section IV. Conclusions are made
in Section V.

II. BACKGROUND
A. Project Context

This research is in support of biomechanical modelling of
embryonic development [2], the purpose of which is to un-
derstand the mechanics of embryogenesis and the mechanical
basis of birth defects such as spina bifida and cardiac septum
defects. Slight irregularities in the stresses occurring in the
embryonic epithelia, of which embryos are largely composed,
are believed to cause these conditions. It has been shown
that these stresses are related to the orientation, shape and
size of the epithelium cells as characterized by «a, x and A
respectively [3]. Thus, to understand embryo development, it
is crucial to measure these properties.
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Fig. 2. The composite cell is defined by its orientation o and its major and
minor axes, Lmajor and Lyinor-

(d)

Fig. 3. Variation in image characteristics: (a) illumination, (b) cell pigmen-
tation, (c) cell boundary visibility and (d) cell shape and orientation.

The tissue images considered in this paper were taken from
intact developing axolotl (amphibian) embryos using a custom
microscope setup [4] and from excised pieces of embryonic
tissue placed in a novel instrument that can apply a tensile
stress to them [5]. The characteristics of the images make
it difficult to design a robust algorithm, primarily due to
variability of the image characteristics. Substantial variability
is found in illumination, cell pigmentation, cell boundary
visibility and cell orientation and shape (Fig. 3). Finally, cell
mitosis can cause dark spots to appear between newly forming
cells, which can be mistaken as individual cells. An algorithm
that is insensitive to these variations is desired.

The need to automate this process rather than relying on
human measurement is two-fold. First, the large number of
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images that must be analyzed makes human measurement
impractical. Second, avoiding human bias is preferred, and
this can only be guaranteed with an automated method.

B. Related Research

To the best of the authors’ knowledge, the specific problem
considered in this paper has not been addressed in the research
literature. However, the problem is related to texture analysis.
The embryonic tissue can be thought of as a texture, having
a certain average orientation and ‘texture element’ shape and
size. The primary drawback of the existing methods discussed
below is that they are applied only to simple texture images
containing very regular lattice structures.

For measuring texture orientation, Vaidyanathan and Lynch
analyzed the directionality of detected edges [6]. Sourice et
al. proposed computing autocorrelation of pixel intensities to
find texture orientation [7]. These methods were tested only
on images containing roughly parallel lines, and hence are not
appropriate for complex cellular images. Others have focused
on computing texture orientation by exploiting patterns in the
spatial-frequency domain. These techniques are based on the
concept that the power spectrum energy is concentrated along
an axis perpendicular to the texture orientation. Bigiin et al.
[8] propose a method to find an axis of symmetry in the
power spectrum in order to estimate orientation while Kass and
Witkin [9] use an orientation-selective bandpass filter and find
the orientation yielding the greatest response. These methods
were also only tested on simple images containing parallel
lines.

Also relevant is the body of research on the structural
analysis of texture. These methods attempt to detect regularly
occurring texture elements arranged according to a ‘placement
rule’. The placement rule consists of two dominant orientations
with corresponding frequencies (Fig. 4). Matsuyama et al.
automatically find the placement rule through analysis of the
spatial-frequency domain [10] while others use co-occurrence
matrix features to perform this task [11] [12]. There are three
issues with these methods. First, they are meant for use with
simple, regularly repeating texture images (as in Fig. 4a). The
embryonic tissue images do not match this description, since
they can have large variations in cell size and placement.
Second, the embryonic cells are tightly packed which makes
it impossible to isolate a single cell in a parallelogram-shaped
window (as in Fig. 4b). Finally, here it is desired that the
orientation of the cells themselves be detected, rather than the
orientation of the placement pattern of the cells. The vertical
orientation of the elements in Fig. 4a is not captured in the
given placement rule. While a placement rule could be used to
find k and A, these algorithms are not suited to the embryonic
tissue images.

A previous attempt was made by the authors to estimate the
parameters of the composite cell [14], using a novel contrast
enhancement method and a watershed segmentation algorithm
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(b)

Fig. 4. Placement rule defining texture element positions. (a) Regularly-
repeating texture image [13]. (b) Placement rule grid lines defined by two
orientations and two frequencies.

to individually identify the cells. The values of 6, x and A
were found by averaging over all the detected cell segments.
Unfortunately, this approach was not sufficiently robust to be
widely applicable on embryonic tissue images. Variation in cell
edge visibility within images made the selection of contrast
enhancement and segmentation thresholds very difficult.

Since none of these algorithms can reliably estimate «, k
and A, algorithms that use only spatial-frequency magnitude
information are proposed.

C. PFatterns in the Spatial-Frequency Domain

An image is converted into the spatial-frequency domain
using a two-dimensional fast Fourier transform (FFT). The
magnitude response image (| F'|) can then be plotted on hori-
zontal u and vertical v axes, in pixel units of cycles per image
(c.p-i.) with the origin of |F| shifted to the center of the image
to follow convention.

To illustrate how composite cell properties can be measured
in the spatial-frequency domain, first consider the synthetic
(Voronoi tessellation) cell image (Fig. 5a) [15] and its cor-
responding |F'| image (Fig. 5b). Note the obvious elliptical
shape of the energy distribution.

The necessary information can be derived from an ellipse to
fit to the energy distribution in |F'|. The strong high-frequency
response shown in the vertical direction (along the v axis)
in the |F| image corresponds t0 Lo and can be seen
visually in the spatial domain as the high density of cell edges
encountered in the vertical direction. The relatively weaker
low-frequency response in the horizontal direction (along the
u axis) corresponds t0 Ly,qjor, and can be seen in the spatial
domain as the lower density of cell edge encountered in the
horizontal direction. It is important to note that the strongest
response in the | F'| image corresponds t0 Lyinor because the
number of repetitions of the minor axis in the image is greater
than that of the major axis. The orientation, «, is simply
perpendicular to the major orientation of the ellipse in the
|F'| image. The axis lengths of the ellipse in the |F| image
can be easily converted from c.p.i. to pixels, allowing « and
A to be calculated using Eq. (1a) and (1b) respectively.
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Fig. 5. A cellular image and its corresponding Fourier transform. (a) A
synthetic 350x350 cellular image with &« = 0°, kK = 1.8, A = 24. The
composite cell is drawn in black. (b) Corresponding magnitude response (| F|)
image in pixel units of cycles per image. Transform of composite cell is shown
as white ellipse. A square root point operator has been applied to enhance
visibility.

The benefit of using the spatial-frequency domain is that the
FFT has the effect of averaging spatial variation. In context
of this research, the variations in cell shape and orientation as
well as in cell edge visibility are averaged. The other image
characteristic issues, illumination and pigmentation variation
are addressed in the preprocessing method outlined in the next
section.

The difficulty in using a spatial-frequency approach is
achieving an accurate fit of an ellipse to the |F| energy
distribution. As shown in the next section, images of real
axolotl embryonic epithelia do not typically produce |F|
images as clean as that shown in Fig. 5b. Four methods to
achieve this ellipse fitting are presented.

Stationarity of the geometric parameters of interest is as-
sumed. If these cellular properties vary from location to
location, this would create multiple patterns in the spatial-
frequency domain, which would not be appropriate data for
the proposed methods.

III. METHODS

Three preprocessing steps ameliorate the problematic image
characteristics.

1) Perform edge detection: This is performed on the spatial
domain image to detect cell boundaries and remove
the effect of cell pigmentation. The authors used the
magnitude of the combined horizontal and vertical Sobel
operators [16] but any other fundamental edge detector
could be used. The FFT is applied to this image.

2) Set low-frequency components to zero: Frequencies com-
ponents at or below 4 cycles per image are set to zero
since these components represent spatial patterns too
large to be individual cells. The image data will not
be captured at such cell resolutions. This also removes
low-frequency illumination variation.
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Fig. 6. Summary of methods for finding composite cell parameters «, ~ and
A from the |F'| image.

3) Threshold |F|: The |F| image is thresholded by setting
to zero components below 77 = 0.30 (on a 0-1 scale),
in order to remove low-energy noise.

Four methods have been developed to determine the param-
eters of an ellipse that is fit to the |F| energy distribution.
These are: Least Squares Ellipse Fitting, Correlation, Area
Moments and Gabor Filters. A summary of how the composite
cell parameters are found for each method is shown (Fig. 6).

A. Least-Squares Ellipse Fitting

A direct way to fit an ellipse to the |F’| image data is to find
the best-fit ellipse in a least-squares sense. Numerous methods
have been developed for fitting ellipses to data points. Many
of these techniques fit data points to a general conic section
and impose an additional constraint to force the solution into
an ellipse. Fitzgibbon et al. present a direct least squares based
ellipse specific method that is robust and computationally
inexpensive [17]. This algorithm is applied to the |F'| image.

The |F| image data is converted into a set of data points
in the following manner: a data point at pixel column x and
row y is created for each 0.1 pixel intensity value. Thus a
pixel with an intensity of 0.4 would be converted into four
data points. Such a bin value was chosen to create sufficient
points to characterize the |F'| image. Once the ellipse is fit to
this data, o, Lyqjor and Liiner can be calculated directly,
and k and A can then be calculated using Egs. (1a) and (1b).

This values of x were biased high for this algorithm. This is
because the energy corresponding to Lm0 in the |F'| image
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was larger than that corresponding to L., 0. The fitted ellipse
would therefore consistently be ‘stretched’ in the L,,inor
direction, resulting in a greater x value. A linear corrector
function was empirically determined (using test images) that
minimized the least-squared error of k:

k =k —To(k' —1) 2)

where T5 = 0.33 and «’ is the biased estimate of the true
. Note that this function does not adjust v’ = 1, since the
aforementioned bias would not have an effect in this case as

Loinor = Lmajo’r .

B. Area Moments

Area moments provide a measure of the resistance of an
object to angular acceleration about an axis. The ellipse in
|F'| can be thought of as a two-dimensional object of varying
density (pixel intensities) centered at the origin. The idea of
using area moments in the | F'| image to find texture orientation
was suggested by Bigiin et al. [8]; their method actually solves
a matrix eigenvalue problem in the spatial domain.

It is proposed that this concept be implemented completely
in the magnitude spatial-frequency domain where all three
composite cell parameters can be determined. First, the mo-
ments about the v and v axes ([, I,,) and product of inertia
(Iyy) of the |F'| image can be found as follows [19]:

rows cols

Io=)Y Y |F|

v=1u=1

(3a)

rows cols

L= Y |F|-v

v=1u=1

(3b)

rows cols

Iuv:ZZ\F\wrv

v=1u=1

(o)

After computing these inertial measures, o can be computed

as: of
« = arctan <Iu_1v> (4a)
provided I, # I,. In the case that [, = I,
/4 if I, >0
a=<¢0 if I, =0 (4b)
—7/4 if I, <0

Using Mohr’s circle [19], |F| can be rotated by « to set I,
to zero, resulting in only two moments:

I+ 1 I, —I,\>
u v u v 12
Bl J(B52)

Ly=1I,+1,— I

I = (5a)

(5b)
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K can then be calculated directly as a ratio of the roots of
these moments [20] using:

_ maz(\/Iz, V1) ©

min(vI, vTi)
As with the LSEF method, the s values for this method were
biased high. The corrector function in Eq. (2) is applied again
here.

To estimate A, an ellipse constrained to the estimated «
and x was found that contained a certain fraction 73 of the
energy in the |F'| image. The fraction was empirically found
to be T3 = 0.28. An ellipse constrained to the estimated « and
 that minimized a least squares distance to the data points
was also attempted. This, however, gave inferior results and is
mentioned briefly in the results section.

C. Correlation

The third approach uses the correlation coefficient to find
orientation. The axis lengths are found by searching for
maxima along two rays in the |F'| image: one parallel and
one perpendicular to the detected orientation.

This correlation coefficient, —1 < p < 1, is defined for two
data vectors, a and b as:

_ El(a— pa)(b— p)]
r= var(a)var(b) @

where E[.] is the expectation operator and var(.) is the sample
variance operator. The sample means for a and b are p, and
respectively. New images are created by incrementally rotating
|F'| through 1° < a < 90°. After each rotation, the image is
“folded” along the vertical v axis, and p is measured between
corresponding pixel intensities using Eq. 7. This is done by
arranging the pixels in the left and right halves of the image
into vectors a and b respectively. When the |F| ellipse is
aligned (either horizontally or vertically) with the v and v
axes, p is at a maximum (Fig. 7). The angle of rotation used
to produce the maximum p corresponds to the orientation of
either Linajor OF Liinor-

The maximum responses along the w and v axes are
now found. A narrow 3-pixel-wide band along each axis is
considered to account for any small errors in the orientation
estimation. Of the two detected maxima, the response found at
the higher frequency corresponds to L, While the response
found at the lower frequency corresponds to L, jo,. Gaussian
smoothing with ¢ = 1 is applied along the narrow bands to
minimize the effect of noise. Now « is known and x and A
can be calculated from the measured axis lengths using Egs.
(1a) and (1b).

D. Gabor Filters

Gabor filters are a class of multi-channel filters capable of
decomposing an image into a collection of frequency and ori-
entation texture features using multiple resolution techniques
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Fig. 7. Estimating orientation using Correlation. (a) Input image with cells

rotated at 60° to the horizontal; (b) corresponding preprocessed |F| image;
(c) p vs. angular rotation shows a well-defined maximum at 60°. This angle
corresponds to the orientation of either Lipqjor OF Lminor-

[21] [22]. This means that a Gabor filter can be designed to
be sensitive to specific frequencies and orientations. This is in
contrast to the orientation-selective filters proposed by Kass
and Witkin that can be tuned to specific orientations only [9].

The magnitude response of Gabor filters serves as the basis
for this algorithm, which searches for the filter parameters
that produces the strongest magnitude response in the |F|
image. In this framework, filter responses are tested at every
second whole value of frequency in the range minpreq <
F < maxppeq, and every third whole valued orientation in
the range —90° < o < 90°, where minp,eq and maxp,eq are
dependent upon the image size and chosen to ensure sufficient
coverage of the filter in the search space.

The frequency and orientation of the Gabor filter that
produces the strongest magnitude response will be associated
with the orientation and axis length of either Lg,qjor OF
Lyyinor- A ray perpendicular to this axis is then searched to
find the frequency that produces the strongest response. This
corresponds to the other axis length of the composite cell. The
axes with the higher and lower frequencies become Ly,ipnor
and Ly,qjor, respectively. The orientation is then associated
with Lyajor. As before, x and A can then be found using
Egs. (1a) and (1b).

Gabor filters were found to be satisfactory only for very
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regular celluar images with very strong patterns in the |F|

energy distribution [18]. They did not work well for typical 3 SR
cell images and hence are not included in the following sec- T %’
tion. The maximum Gabor filter responses were consistently J"’% b i |
being ‘pulled’ to frequencies that were too high, apparently NP, F ‘—J‘z
because of the larger filter bandwidth associated with the i |
higher frequency Gabor filters when implemented using a 2 '.\
pseudo-wavelet format [22]. P~ o R
A

IV. EXPERIMENTAL RESULTS o
(b) 672x672

Ten images of real embryonic epithelia were used to test the
Least-Squares Ellipse Fitting (LSEF), Area Moments (AM)
and Correlation (CORR) algorithms (Fig. 8). These images
were chosen because they demonstrate a wide variety of image
characteristics. The corresponding preprocessed |F'| images
are also shown (Fig. 9).

Tables I-III compare the results of the three methods. The
‘true’ o, k and A (&, A and A respectively) shown in
the leftmost column of each table were calculated by hand-
segmenting the test images. For & and &, the average I,
I, and I, were calculated over all cells and Egs. (3)-(6)
were applied. Note that & is therefore the average cell aspect
ratio in the direction of &. For A, the cell areas were simply
averaged. Only the cells with completely visible boundaries
were hand-segmented. This method was validated by applying
it to Voronoi tessellations with known &, s and A values, and
comparing these values to the measured ones. It is understood
that hand-segmenting the images results in only the best
estimate of &, k and A. Standard deviations of &, A and A
over all cells (04, 0z and o 4 respectively) are also shown in
the leftmost column of the tables. It was expected that if o4,
oror o4 were large, then the performance of the algorithms
would be degraded.

The distance of the measured o from & is measured in
degrees (e, = a — &) and number of true standard deviations
((a = €a/0s). The distance of the measured x from & is
measured in dimensionless units (¢, = k — k) and also in
number of true standard deviations ((,, = €, /o). Finally, the
distance of the measured A from A is measured in square
pixels (e4 = A — A) and also in number of true standard
deviations (4 = €4/0 i) The errors as measured in standard
deviations are considered most informative since they take into
account the natural variability of the cells. The design objective
is for the estimated «, x and A values to consistently lie within
a distance of one true standard deviation from their true values
(.e. [Ca| <1, |¢s] <1 and |C4] < 1) for all image types.

The LSEF method was accurate for estimating & since |(, |
was always less than 0.59. The LSEF method, as well the AM
and CORR methods, had difficulty with image (a) and (j) since
K is very close to 1; meaning that the composite cell is almost
circular and hence & is difficult to detect, even visually. In
contrast, the orientation in image (c) is easily detected because (i) 233x233 (J) 367x367
 is large. For estimating &, the LSEF achieved the goal of
|¢x| < 1 for every image. The largest errors were for images

(c) 349x349 (d) 385x385

(f) 577x577

(h) 232x232

Fig. 8. Test images and image sizes in pixels.
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TABLE I
DISTANCE FROM & FOR EACH METHOD IN DEGREES (€4, = o — &) AND
NUMBER OF STANDARD DEVIATIONS ({o = ca/(rd). BEST RESULTS
SHOWN IN BOLD.

Image: &, o4 LSEF AM CORR

€a | Ca € | Ccz € | Ca
a: 36.8°, 49.2° +29.2° +0.59 +21.4° +0.43 +15.2°  +0.31
b:173.1°, 16.1° -3.7° -0.23 +1.7° +0.11 +2.9°  +0.18

c: 85.99, 17.6° -1.1° -0.06 +0.1° +0.01 +0.1°  +0.01
d:141.0°, 33.1° -3.6° -0.11 -3.7° -0.11 -5.0° -0.15
e:120.5°, 13.3° +1.5° +0.11 +0.5° +0.04 -3.5°  -0.26
f: 87.8°, 21.6° -7.0° -0.32 -7.5° -0.35 -0.8°  -0.04
g: 50.0°, 8.7° +0.5° +0.06 -0.5° -0.06 -1.0° -0.11

h: 7.4°, 27.8° +4.7° +0.17 +5.0° +0.18 +6.6°  +0.24
i: 53.3°, 35.2° +3.1° +0.09 +0.9° +0.03 +2.7°  +0.08
jo B7.7°, 44.1° +15.0° +0.34 | +14.3° +0.32 | +27.3° +0.62
Average
absolute 6.9 0.21 5.6 0.16 6.5 0.20

TABLE II
DISTANCE FROM &; FOR EACH METHOD IN DIMENSIONLESS UNITS
(€5, = Kk — R) AND NUMBER OF STANDARD DEVIATIONS ({x = € /0%).
BEST RESULTS SHOWN IN BOLD.

Image: R, o LSEF AM CORR
€ | Cr{ €x | Cn €x | Cn
a: 1.05, 044 | +0.06 +0.14 | +0.05 +0.11 | +0.38 +0.86
b: 1.76, 0.56 -0.46 -0.82 -0.24 -0.43 +0.95 +1.70
c: 2.28, 0.67 -0.21 -0.31 -0.09 -0.13 -0.78 -1.16
d: 1.50, 0.60 | +0.06 +0.10 | +0.25 +0.42 -0.07 -0.12
e: 1.93, 0.42 -0.28 -0.67 -0.19 -0.45 -0.50 -1.19
f: 1.51, 0.36 -0.08 -0.22 -0.06 -0.17 -0.08 -0.22
g 1.99, 0.62 -0.26 -0.42 -0.05 -0.08 -0.16 -0.26
h: 1.32, 0.51 | +0.11 +0.22 | +0.19 +0.37 -0.22 -0.43
i: 1.48, 0.67 -0.15 -0.22 -0.09 -0.13 +0.35 +0.52
j: 1.10, 0.30 -0.01 -0.03 0.00  0.00 +0.33  +1.10
Average
absolute 0.17 0.32 0.12  0.23 0.38 0.76

TABLE III
DISTANCE FROM A; IN SQUARE PIXELS (¢4 = A — A) AND NUMBER OF
STANDARD DEVIATIONS (4 = €4/0 ;). BEST RESULTS SHOWN IN BOLD.

(2 (h)
Image: A, o i LSEF AM CORR
ea | Ca| ea [ ¢a €ea | Ca
a: 2744, 1267 | -2135 -1.69 | -1107 -0.87 -180 -0.14
b: 2027, 708 -871 -1.23 +66 +0.09 +624 +0.88
c: 479, 200 -206 -1.03 +161 +0.81 +1272 +6.36
d: 619, 222 -440 -1.98 -115 -0.52 +1027 +4.63
e: 656, 178 =372 -2.09 +31 +0.17 +450 +2.53
f: 1010, 395 -461 -1.17 +658 +1.67 +2700 +6.84
g: 810, 233 -504 -2.16 =244 -1.05 -275 -1.18
h: 337, 152 -200 -1.32 -17 -0.11 +41 +0.27
i: 373, 158 -219 -1.39 -29 -0.18 +262 +1.60
j: 194, 85 -62 -0.73 +160 +1.88 | +1301 +15.31
Average
absolute 547 1.50 258 0.74 811 2.08

Fig. 9. |F| images of test images after preprocessing. Concentric circles
show 25 and 50 c.p.i.
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(b) and (e), which were due to the fitted ellipse being pulled by
energy in the Ly, ;o direction. This reveals a weakness of the
LSEF method: energy responses away from the fitted ellipse
have a strong effect on it due to the squared nature of the
distance measure. This problem affected the LSEF estimation
of A: the fitted ellipse was too large for every image, resulting
in a consistent underestimation of A.

The AM method performed slightly superior to the LSEF
method in estimating & and A, and also achieved the goals
of |(o] < 1 and |(x| < 1. The method also achieved |(4| <
1 except for images (f), (g) and (j). It was found that the
threshold 75 was appropriate for images with 10-18 minor
axis cycles per image. Images (f) and (j) exceeded this range,
while image (g) was below this range. It was found that this
‘usable’ range was even smaller when the least-squares ellipse
method was tested; hence the 73 method was chosen.

The CORR method performed in a manner comparable
to the LSEF method and achieved |(,| < 1. This method,
however, had large errors in estimating A& for a number of the
images because the |F'| images rarely has well-defined peaks
along the the major and minor axes. This problem negatively
affected the estimation of A as well.

Average computation time for each method (not including
the FFT and the preprocessing steps) in Matlab(®) on a Pentium
4 2.4 GHz computer is as follows: LSEF, 1.07 seconds; AM,
0.83 seconds and CORR, 4.40 seconds. An implementation
of each method in a low-level language such as C++ could
significantly reduce these times. Since real-time implementa-
tion is not necessary, all methods have acceptable computation
times.

V. CONCLUSIONS

Four computer vision methods that use a spatial-frequency
approach to determine average cell shape and orientation
in an image of a biological tissue have been proposed and
evaluated. Three of these methods — Least-Squares Ellipse
Fitting (LSEF), Correlation (CORR) and Area Moments (AM)
— successfully overcame significant variations in illumination,
cell pigmentation, cell shape and cell boundary visibility.

The AM method was most accurate in estimating every
composite cell parameter, averaging |(,| = 0.16, |(,| = 0.23
and [C4| = 0.74. The AM method achieved the goals of
|€a] < 1, |¢x| < 1 for all tested images. The 4] < 1 goal was
met when a range of 10-18 minor axis cycles per image was
enforced. The LSEF method performed similarly to the AM
method for estimating & and & but consistently underestimated
A. The LSEF method was also affected by outliers in the |F|
image due to its squared distance measure. The CORR met
the |(o| < 1 goal and yielded similar orientation results as
the other two methods. The CORR method performed well
estimating 4 and A only when the peaks in the power spectrum
were well defined. All methods had acceptable computation
times.
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Due to its consistently superior performance, it is recom-
mended that the AM method be used to estimate all the
composite cell parameters: &, £ and A.
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