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Abstract—Being able to monitor a large area is essential
for intelligent warehouse automation. Complete depth map of a
plant floor allows Automated Guided Vehicles (AGV) to navigate
the environment and safely interact with nearby people and
equipment, eliminating the need for installation of guide tracks
and range sensors on individual robots.

A single camera does not have sufficient field of view or
resolution to monitor a large scene, and a camera mounted on
a moving platform introduces delays and blind spots that could
put people at risk in busy areas. Multi-camera arrays are needed
in order to reconstruct the scene from simultaneous captures.
Existing iterative closest point (ICP) based algorithms fail to
produce meaningful results due to ICP attempting to minimize
Euclidean distance between non-matching pairs.

This paper describes a method for accurate and compu-
tationally efficient simultaneous scene reconstruction and auto-
calibration using depth maps captured with multiple downward
looking overhead cameras. The proposed method extends upon
standard ICP algorithm by incorporating constraints imposed
by the camera setup. The common field of view constraint
imposed on the ICP algorithm matches a subset of points that
are simultaneously in two camera’s field of view. The planar
constraint restricts the search space for closest points between 2
point clouds to be on a projected planar surface.

To simulate a typical warehouse environment, depth maps
captured from two overhead Microsoft Kinect cameras were
used to evaluate the effectiveness of the proposed algorithm. The
results indicate the proposed algorithm successfully reconstructed
the scene and produced auto-calibrated extrinsic camera matrix,
where as standard ICP algorithm did not generate meaningful
results.

I. INTRODUCTION

With autonomous robots gaining increasing popularity for
use in warehouse and factory automation, various technolo-
gies are used to ensure the robots can safely navigate the
environment. Visual cues or magnetic tracks are typically
placed onto the floor allowing robots to traverse along a
known trajectory. Changes in the warehouse / factory layout
would result in costly reconfiguration of the visual cues
or magnetic tracks, and dynamic environments with moving
obstacles forces AGVs to be equipped with expensive sensors
for obstacle avoidance. A comprehensive discussion of current
use and challenges associated with AGVs are discussed by
Schulze et al. [1]

With overhead depth camera arrays, depth information
of the entire factory floor can be simultaneously captured,
and the resulting reconstructed depth map can be used for
path planning and obstacle avoidance, eliminating the need
for guided tracks and distance sensors on individual robots.
Such sensor array provide flexibility and robustness compared
to traditional solutions. In practice, camera arrays are rarely
mounted to their nominal locations, often with large positional
and small angular errors. This results in a need to auto-calibrate
the cameras while reconstructing a complete depth map of the
whole floor.

In previous work, Microsoft Research uses projector-Kinect
camera (ProCam) pairs to automatically calibrate extrinsic
matrix for all units [2]. This method requires a grey-code
projector to be installed with every depth camera, adding cost
and complexity. Yang et al. proposed an off-line ICP auto-
calibration method to align multiple Kinects under the assump-
tion the depth cameras are looking at the same object from
different angles [3]. Blais and Levine investigated using reverse
calibration and very fast simulated reannealing optimzation to
align point clouds of the same object [4].

The ICP algorithm proposed by Besl [5] monotonically
converges to the nearest local minimum for registration and
alignment, has proven to be very popular in industry due to
its effectiveness and simplicity. A K-D tree implementation is
proposed by Chen [6] to improve computation speed. Other
variants proposed for ICP concerning different steps of the
algorithm [7], [8], [9], [10] largely focuses on enhancing
registration accuracy of a 3D object of interest by outlier
rejection, matching techniques, and transformation estimation.

These methods all assume there is majority overlap be-
tween point clouds, which is not true in the case of depth
camera arrays, where there maybe as little as 25% overlap
between cameras’ field of view (FOV). The standard ICP
performs poorly in these situations and often converges to the
wrong solution due to the algorithm’s attempt to minimize the
global Euclidean distance error of non-matching pairs.

A novel constrained ICP (cICP) algorithm is proposed
to simultaneously align depth maps as well as calibrate the
camera extrinsic matrix. Overhead camera arrays are located
far apart from each other but have roughly the same downward
looking camera angle, and cICP takes into consideration these
characteristics to form the common FOV and planar con-



straints. cICP is shown to effectively auto-calibrate extrinsic
matrices from depth map pairs and reconstructs a large scene
for use in autonomous navigation and object avoidance.

The remainder of the paper is organized as follows. First
an overview of the methodology is presented in Section II.
Experimental results are presented and discussed in Section
III. Finally conclusion and future work are discussed in Section
IV.

II. METHODOLOGY

The proposed method assumes the approximate positions
and orientations of each depth cameras are known beforehand.
Using the approximate extrinsic parameters, captured depth
maps are converted into a point cloud and the subset of points
in the common FOV between 2 cameras are used in the
matching step. The filtered points are projected onto a planar
surface and points are matched based on minimal Euclidean
distance on that surface. Finally ICP is performed to align the
point clouds, and the resulting rotation matrix and translation
vector are used to refine the actual pose of the cameras, as
well as reconstruct the scene from different depth maps.

A. Common field of view constraint

It is crucial to enforce that only pixels in the common
field of view are used for matching. This drastically reduces
number of false matches, allowing cICP to reach the correct
convergence. In addition, it decreases computation time by
significantly reducing number of points to be matched. There-
fore in the cICP a common FOV constraint is implemented as
follows,

Let vn = {x, y, z} represent a captured depth pixel, where
x,y represent the 2D location of the pixel in the depth map, and
z represents the distance of the pixel to the first camera. The
transformation from depth map into a point cloud captured by
camera i Pi = {p1, ..., pn} is

pn =

[
fx 0 cx
0 fy cy
0 0 1

]−1

vn

where fx, fy, cx, cy are the x,y focal lengths in pixels and
principal points of the camera.

Using user provided nominal camera pose as initial param-
eters, Pi is transformed into its respective world coordinate
representation Wi via the transformation

wn =

 Ri ti

0 0 0 1


pn

1


where Ri and ti are the rotation matrix and translation vector
of camera i with respect to a world coordinate frame.

Once the depth maps from different cameras are trans-
formed to point clouds in a common world coordinate frame,
the point cloud from camera i is inverted into the coordinate

frame of another camera j with rotation matrix Rj and trans-
lation vector tj , undergoing the following transformation:

p
′

n =

 Rj tj

0 0 0 1


−1 wn

1


The points are then mapped onto a 2D coordinate frame

based on the intrinsic data of camera j,

v
′

n =

[
fx 0 cx
0 fy cy
0 0 1

]
p

′

n

pn ∈ Pi belongs to a subset P
′

i if its corresponding v
′

n is
within the pixel range of camera j and is the closest point to
camera j for its location in the depth map.

Fig. 1: Overview of constrained ICP process.



B. Planar constraint

During installation gravity aids in the alignment of ori-
entation of depth cameras. This allows depth camera arrays
installed on factory ceilings to have sufficiently similar camera
angles. Using this property, Pi and Pj are projected onto a 2D
plane perpendicular to the average of the camera angle, which
for overhead camera installations is directly perpendicular to
the floor, thus the projected points are the (x,y) values of the
original 3D point if the z-axis is perpendicular to the floor.

C. cICP

Let an represent a point in subset P
′

i and bn represent a
point in subset P

′

j , an is considered the closest neighbour to bn
if an and bn’s positions on the projected plane is the closest to
each other. In practical implementation, a grid-based matching
scheme is used to match closest points rather than a 2D kd-
tree implementation since it is much faster computationally
and offers similar performance.

Let an and bn be the matched pair found from previous
step, and m the total number of pairs found, the ICP algorithm
attempt to minimize the objective function

[Ro, to] = argmin

m∑
n=1

||Roan − to − bn||2

where Ro and to are the optimal rotation matrix and translation
vector that minimizes the Euclidean distance between matched
pairs.

The optimal rotation matrix is found by singular value
decomposition (SVD) of matrix N, where

N =

n∑
i=1

(an − a)(bn − b)T

and a, b are the centroid of point cloud Pi and Pj respectively.

Taking the SVD of N,

N = UΣV T

where U and V are orthogonal matrices and Σ is a diagonal
matrix, the optimal rotation matrix and optimal translation
vector should be

Ro = V UT , to = Roa− b

Once optimal rotation matrix Ro is found, the rotation matrix
of Ri and ti is updated with

Ri,new = RoRi, ti,new = ti + to

The procedure is repeated iteratively until the change in
translation or rotation matrix is below a set threshold.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To quantitatively and qualitatively evaluate the proposed
method, we performed a series of experiments using set of
depth maps that simulate warehouse environments. A rigid
mount is manufactured to hold 2 Kinect cameras parallel

to each other, 63.5cm apart, and 155cm above ground. The
Kinect cameras are disassembled in order to access mounting
holes on the camera itself, which ensures the cameras are
aligned accurately. Figure 2 shows a rendering of the mounting
structure, and Figure 3 shows the mount placement of the
Kinect cameras.

The depth images are captured simultaneously by both
cameras. Test set 1 shown in Figure 4 has small amount of
boxes in overlap region. The overlapping region of test set 2
shown in Figure 5 has more features and contains many boxes
in overlap region. Test set 3 features a chair which takes up
the majority of the common field of view shown in Figure 6.

Fig. 2: Rendering of Multi-Camera Mount used in Experiment

(a) View of Kinect Mount Set Up (b) Close of up Kinect Mount

Fig. 3: Kinect Mount for Proposed Experiment



Fig. 4: Depth Image Pairs for Test Set 1

Fig. 5: Depth Image Pairs for Test Set 2

Fig. 6: Depth Image Pairs for Test Set 3

The ground truth extrinsic parameters for camera 1 is

R1 =

[−1 0 0
0 1 0
0 0 −1

]
, t1 =

[
0
0

1550

]

and camera 2

R2 =

[−1 0 0
0 1 0
0 0 −1

]
, t2 =

[
0

635
1550

]

where the positive Z axis points upward from the ground
and unit is in mm.

B. Results

Camera 1 is used as point of reference and origin, thus the
initial parameter given for camera 1 is the same as ground
truth, and only auto-calibration of camera 2 is done with
respect to camera 1. Camera 2 is given an initial parameter
of t = [tx ty tz] and r = [rx ry rz ρ] where t is the
initial translation matrix, and r the initial axis angle rotation
representation of the rotation matrix and ρ is in degrees.

The extrinsic matrix for camera 2 is initialized with
t = [0 535 1550] and r = [0 1 0 180] which rep-
resents 100mm of error between estimated (535mm) and
actual (635mm) camera position, which is typical in real life
scenarios.

(a) Mean Euclidean Error for cICP

(b) Mean Euclidean Error for ICP

Fig. 7: Mean Euclidean Distance Error

Figure 7 shows convergence results for the 3 test sets using
cICP and ICP for 75 iterations. Due to constraining the ICP
algorithm to only match points in the common field of view,
cICP has significantly lower average Euclidean error, as well
as converge to the correct results faster for all test sets.

Figure 8, 9, 10 shows reconstructed scene using cICP and
ICP algorithm. Red points are point clouds generated from
camera 1, and green points are generated from camera 2. It is
clear that ICP produced erroneous results while the proposed
method converged to the correct solution. The deviation from
ground truth may be explained by interference between Kinect
cameras causing noise in the overlapping region, error intro-
duced in the cICP algorithm due to projection onto a 2D plane,
mechanical assembly error, as well as use of factory default
camera intrinsic matrix.

cICP with grid matching takes approximately 100ms to run
on an Intel Core 2 Duo with no hardware acceleration using
pair of 640x480 depth maps, which is a significant improve-
ment over kd-tree algorithms that takes on average 4 seconds
align the same point clouds. The significant improvement in
speed can be attributed to the fact that less points are used in
matching as well as grid matching the points on a 2D plane.
The near real time run time allows the algorithm to be run
continuously, which maybe helpful in correcting disturbances
to camera pose during system operation.

The extrinsic (homography) R1, R2, R3 matrix generated



(a) Ground Truth (b) Initial Condition

(c) cICP (d) ICP

Fig. 8: Test Set 1 Scene Reconstruction using cICP and ICP.
Red points are from camera 1, green points are from camera
2

(a) Ground Truth (b) Initial Condition

(c) cICP (d) ICP

Fig. 9: Test Set 2 Scene Reconstruction using cICP and ICP.

by cICP for test set 1, 2, 3 are

R1 =

−0.9997 −0.0069 0.0195 6.10703
0.006 0.9999 −0.0004 640.717
0.0195 −0.0006 −0.9998 1563.99

0 0 0 1



(a) Ground Truth (b) Initial Condition

(c) cICP (d) ICP

Fig. 10: Test Set 3 Scene Reconstruction using cICP and ICP

R2 =

−0.9996 −0.0264 0.0017 −13.0115
−0.0264 0.9996 −0.0045 629.569
−0.0016 −0.0045 −0.9999 1557.68

0 0 0 1



R3 =

−0.9981 0.0302 0.0518 −16.7696
0.0283 0.9989 −0.0367 641.31
−0.0529 −0.0352 −0.9979 1536.98

0 0 0 1


Table I shows position and orientation error using auto-

calibrated camera pose from cICP and ICP. Position error
is the Euclidean distance between calculated camera location
compared to ground truth camera location, and orientation
error is the difference between calculated camera look-at vector
compared to ground truth camera look-at vector.

TABLE I: Auto-calibration Results using cICP and ICP

Image Set cICP ICP
∆position ∆orientation ∆position ∆orientation

1 16.3mm 0o 551.6mm 154.89o

2 16.1mm 1.14o 383.69mm 134.29o

3 22.1mm 1.40o 68.86mm 158.10o

The auto-calibrated homography using cICP is sufficiently
close to ground truth, and the deviation from ground truth
may be explained by interference between Kinect cameras
causing noise in the overlapping region, error introduced in the
cICP algorithm due to projection onto a 2D plane, mechanical
assembly error, as well as use of factory default camera
intrinsic matrix.

Table II show different initialization parameters and final
convergence results. ICP in all cases did not generate mean-
ingful results.

It is shown that the proposed method returned reasonable
extrinsic matrices for different image sets and initial parame-
ters. It is also shown that the proposed method is sensitive to



TABLE II: Results of cICP using Different Initialization Pa-
rameters

Image Set Initial Conditions Errors
tx ty tz ρ ∆position (mm) ∆orientation

1 0 635 1550 180 14.0 1.2o

2 0 635 1550 180 14.4 0.4o

3 0 635 1550 180 16.4 0.5o

1 0 600 1550 180 15.4 1.1o

2 0 600 1550 180 14.9 0.4o

3 0 600 1550 180 21.0 0.6o

1 0 550 1550 180 15.9 1.1o

2 0 550 1550 180 17.5 0.6o

3 0 550 1550 180 21.1 0.5o

1 0 635 1550 177.1 59.5 1.3o

2 0 635 1550 177.1 26.0 0.4o

3 0 635 1550 177.1 28.4 0.3o

1 0 635 1550 174.3 84.7 3.8o

2 0 635 1550 174.3 37.5 0.4o

3 0 635 1550 174.3 22.2 0.2o

1 0 635 1550 168.5 60.3 10.0o

2 0 635 1550 168.5 223.6 7.3o

3 0 635 1550 168.5 25.4 0.1o

initial camera orientation, especially for depth map pairs that
contain small amount of features in the overlap region.

It is also empirically determined that the amount of trans-
lation error that can be tolerated depends on the objects
in the overlapping region. In general the more distinct an
object’s height profile and smaller the size, the closer the
initial translation parameters needs to be to the ground truth
for convergence.

IV. CONCLUSION

cICP is able to reconstruct a scene and automatically
calibrate the extrinsic matrix of 2 overhead depth camera array.
cICP outperforms standard ICP algorithm which generates
no real solutions. The method constrains points used in the
matching step to be in the overlapping field of view, which re-
duces amount of non-matching pairs and increases calibration
accuracy. Furthermore the planar constraint matches closest
points based on their projected coordinates on a 2D plane,
which significantly reduces computation time and allow the
algorithm to run in real-time. The proposed method may be
useful in applications such as scene reconstruction of large
areas for robotics and automation.

Future works involve investigating into the effectiveness
of cICP in multi-view scene reconstruction with more than 2
overhead depth cameras at different positions. Inspired by [11],
[12] cICP maybe further optimized by considering optimizing
the extrinsic matrices of all depth cameras to achieve a global
minimum Euclidean error between all depth map pairs.

In addition, a possible change to the cICP is to further
refine the common points based on surface normal of a point
as introduced by Maier-Hein et al. [13]. If a point from camera
i has surface normal roughly perpendicular to the viewing
direction of the camera j, it is rejected even though it may
be in common field of view of both camera i and j. This is
due to the fact depth cameras does not reliably detect distances
to surfaces that are roughly parallel to the viewing direction.

Additionally, since the Kinect camera provides both colour
and depth information, colour can be used as an additional

constraint during matching to provide more robust and accurate
reconstruction.
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