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Abstract. The wavelet transform has been employed as an efficient method in
image denoising via wavelet thresholding and shrinkage. The ridgelet transform
was recently introduced as an alternative to the wavelet representation of two
dimensional signals and image data. In this paper, a BayesShrink ridgelet de-
noising technique is proposed and its denoising performance is compared with
a previous VisuShrink ridgelet method. To derive the results, different wavelet
bases such as Daubechies, symlets and biorthogonal are used. Experimental re-
sults show that BayesShrink ridgelet denoising yields superior image quality
and higher SNR than VisuShrink.

1   Introduction

Data obtained from the real world in the form of signals do not exist without noise.
This noise might decrease to some negligible levels under ideal conditions such that
denoising is not necessary, but usually to recover the signal the corrupting noise must
be removed for practical purposes. For this reason noise elimination is a main concern
in computer vision and image processing. Noise undesirably corrupts the image by
perturbations which are not related to the scene under study and ambiguates the un-
derlying signal relative to its observed form.

The goal of denoising is to remove the noise and to retain the important signal
features as much as possible. To achieve this goal, traditional approaches use linear
processing such as Wiener filtering.  In the presence of additive noise, linear filters,
which consist of convolving the image with a constant matrix to obtain a linear com-
bination of neighborhood values, can produce a blurred and smoothed image with
poor feature localization and incomplete noise suppression. To overcome this short-
coming, nonlinear filters have been proposed. Much research has focused recently on
signal denoising using nonlinear techniques; of which one of the most important is
wavelet based denoising. The wavelet transform generally separates signal and noise;
as a result it can be used to remove the noise while preserving the signal characteris-
tics. Researchers have employed various approaches to nonlinear wavelet-based de-
noising: In one approach, wavelet thresholding, a hard threshold function keeps a
coefficient if it is larger than a threshold and sets it to zero otherwise; in another,
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wavelet shrinkage takes the coefficient and shrinks it toward zero by some threshold.
Both approaches are nonlinear and operate on one wavelet coefficient at a time.

Recently the Ridgelet and Curvelet transforms were developed to reduce the limi-
tations of wavelet-based image processing. The two-dimensional wavelet image
transform produces large coefficients along important edges even at fine scales.
Hence, edges of an image appear as large wavelet coefficients repeatedly at fine
scales, so to properly reconstruct the edges of the image many wavelet coefficients
are required. The estimation of so many coefficients makes wavelet denoising tech-
niques complex.

On the other hand, wavelet transforms can catch the point singularities of one-
dimensional (1-D) signals, thus they have a good performance for one-dimensional
smooth functions. To discover 1-D singularities in two-dimensional (2-D) signals, the
wavelet transform faces some difficulties. Images that contain 2-D smooth signals
have 1-D singularities across the edges which separate the smooth regions. Although
edges are generally smooth curves, as borders of two smooth regions they are discon-
tinues. Since the 2-D wavelet transform is the product of 1-D wavelets, it discovers
the singularities across the edges but it doesn’t recognize the smoothness along the
edges. To compensate for this weakness of the wavelet transform in higher dimen-
sions, ridgelet and curvelet transforms were recently introduced by Candes and
Donoho [1-4].

Different denoising methods have been proposed for signal denoising via wavelet.
On the other hand VisuShrink ridgelet thresholding has been recently introduced [5]
as an alternative to the wavelet denoising and performs better than wavelet for the
images with straight lines. In this paper BayesShrink ridgelet image denoising is pro-
posed and the results are compared with those of VisuShrink ridgelet method. The
following Section explains rigelet image denoising. In Section three ridgelet thresh-
olding techniques are described. The proposed method is presented in Section four. In
Section five the results of the proposed method and the previous VisuShrink tech-
nique are compared and the conclusions are presented in Section 6.

2   Ridgelet Image Denoising

The ridgelet transform was proposed as an alternative to the wavelet transform to
represent 2-D signals. Since a sparse representation of smooth functions and straight
edges is provided by the ridgelet transform, this new expansion can accurately repre-
sent both smooth functions and edges with a few nonzero coefficients and achieves a
lower mean square error (MSE) than the wavelet transform.

2.1   Ridgelet Transform

The ridgelet transform effectively represents line singularities of 2-D signals. It maps
the line singularities into point singularities in the Radon domain by employing the
embedded Radon transform. Therefore, the wavelet transform can efficiently be ap-



BayesShrink Ridgelets for Image Denoising        165

plied to discover the point singularities in this new domain. Having the ability to
approximate singularities along a line, several terms with common ridge lines can
effectively be superposed by the ridgelet transform. The bivariate ridgelet transform
in R2 is defined by:
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where ω is a univariate wavelet function on R R. α >0 , β and θ  are scale, location
and orientation parameters respectively. Along the ridgelet lines κ1 cosθ+κ2 sinθ,
ridgelets are constant and they are equal to the wavelets in the orthogonal direction.
ridgelet coefficients of a bivariate function Ι(κ) in R2 are given by:
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and is valid for integrable (and square integrable) functions. Like Fourier and wavelet
transforms, any arbitrary function can be represented by continuous superposition of
ridgelets.  Considering the 2-D ridgelet transform as a 1-D wavelet transform in the
Radon domain, the ridgelet coefficients of function Ι(κ) can be defined as:
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where Rt (θ,t) is the Radon transform of function Ι(κ) and is given based on the Dirac
distribution (δ ) as:
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2.2   Ridgelet Denoising Concept

To explain the ridgelet denoising procedure, assume I[i,j] to be the original M by M
image, where i and j = 1, 2,…, M, and S[i,j] = I[i,j] + n[i,j] is the image corrupted by
additive noise n[i,j] which is identically distributed and independent of I[i,j]. In the
first step of ridgelet denoising, the observed image S is transformed into the ridgelet
domain. Then the ridgelet coefficients are thresholded and finally the denoised coeffi-
cients are transformed back to reconstruct the image. Let RD and RR be the forward
ridgelet decomposition and inverse ridgelet reconstruction transforms. Assume T and
τ to be the thresholding operator and threshold respectively. The ridgelet thresholding
can be summarized as:

(i) IR = RD(I), (ii) IT = T(IR, τ), and (iii) τIRI R=ˆ
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The choice of the threshold and the method which is used to calculate the threshold,
determine how efficient the denoising technique would be. Although selecting a small
threshold may produce an output image close to the input, the recovered image may
still be noisy. On the other hand, a choice of a large threshold may yield a blurred
image by setting most of the wavelet coefficients to zero. Two different thresholding
techniques, VisuShrink and BayesShrink, are explained in the following Section.

3   Thresholding Techniques

The ridgelet denoising is used to recover the original signal from the noisy one by
removing the noise. In contrast with denoising methods that simply smooth the signal
by preserving the low frequency content and removing the high frequency compo-
nents, the frequency contents and characteristics of the signal would be preserved
during ridgelet denoising.

3.1   VisuShrink

VisuShrink, proposed by Donoho and Johnstone [6,9], uses the universal threshold
given by:

MU nt log2σ=                                                     (6)

where σn and M are the noise variance and the number of image pixels respectively.
Donoho and Jonstone have proved [6-8] that the maximum of any M independent and
identically distributed (iid) values with high probability is less than the universal
threshold Ut. As M is increased the probability will be closer to one, so with a high
probability pure noise signals are set to zero. Since the universal threshold is obtained
by considering the constraint that the noise is less than the threshold with high prob-
ability as M increases, it tends to be high for large values of M and as a result will
shrink many noisy ridgelet coefficients to zero and produce smoothed estimated im-
ages.

3.2   BayesShrink

As it was suggested for the subband wavelet coefficients by [10,11], the subband
ridgelet coefficients of a natural image can also be described by the Generalized
Gaussian Distribution (GGD) as:
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σI  is the standard deviation of subband ridgelet coefficients, γ is the shape parameter
and Γ is Gamma function. For most natural images the distribution of the ridgelet
coefficients in a subband can be described with a shape parameter γ in the range of
[0.5,1]. Considering such a distribution for the ridgelet coefficients and estimating γ
and σI for each subband, the soft threshold TS which minimizes the Bayesian Risk
[10,11], can be obtained by:
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where I^ is TS(J) , J|I is N(I,σ) and I is GGσI,γ . Then the optimal threshold TS

* is given
by:
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Numerical calculation is used to find TS

* since it does not have a closed form solution.
A proper estimation of the value TS

* is concluded by setting the threshold as [10,11]:

   
I

n
IT

σ
σσ
ˆ

ˆ
)ˆ(ˆ =                                                       (12)

4   Calculating the BayesShrink Threshold by the Proposed
Method

Subband dependent threshold is used to calculate BayesShrink ridgelet threshold. The
estimated threshold is given by (12) where σn and σI are noise and signal standard
deviations respectively. The 1-D ridgelet coefficients corresponding to different di-
rections are depicted in Fig. 1. In this figure each column corresponds to a specific
direction, hence the number of columns determines the number of directions and each
column contains subband detail coefficients for L different decomposition levels.

To estimate the noise variance σn

2 from the subband details, the median estimator is
used on the 1-D subband coefficients:

67450ˆ .Detailsmedian( )/n =σ                                (13)
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Signal standard deviation is calculated for each direction in each subband detail indi-
vidually. Thus having N directions and L subband, NxL different σI must be estimated
corresponding to NxL subband-directions coefficients. Note that in BayesShrink
wavelet denoising, σI is estimated on 2-D dyadic subbands [10,11]. Thus having L
decomposition levels, 3xL different σI   must be estimated to calculate the thresholds
for the different subbands. To estimate the signal standard deviation (σI), the observed
signal S is considered to be S = I + n and signal (I) and noise (n) are assumed to be
independent. Therefore,

222
nIS σσσ +=                                                    (14)

where σS

2   is the variance of the observed signal. So Iσ̂ is estimated by:
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Fig. 1.  Subband ridgelet coefficients: N directions (columns) and L levels which conclude NxL
subband-direction coefficients

5   Results

In this section the proposed ridgelet denoising technique is used to recover the noisy
images which are corrupted with additive white noise. BayesShrink and VisuShrink
ridgelet image denoising methods are implemented and based on different wavelet
bases the results are compared. Since the ridgelet transform performs better on images
with straight lines, the test image in the following experiments, as depicted in Fig. 2,
is an image with perfectly straight lines which has been used in [5]. Denoised images
depicted in Fig. 2(c1)-2(e1) and 2(c2)-2(e2) are derived using the BayesShrink and
VisuShrink thresholding methods respectively. The results are obtained based on
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three different wavelet bases including Daubechies, Symlets and Biorthogonal. As we
can observe according to the SNR measurements, the results obtained by BayesShrink
ridgelet method are better than those obtained by VisuShrink ridgelet method using
different wavelet bases. On the other hand based on image quality BayesShrink pro-
vides superior results than VisuShrink. Therefore, regardless of the wavelet bases
BayesShrink ridgelet provides better performance than VisuShrink ridgelet denoising.

  
(a)                                    (b)

    
                      (c1) SNR=13.25               (d1) SNR=13.3                (e1) SNR=13.16

    
                      (c2) SNR=11.56               (d2) SNR=11.65               (e2) SNR=12.04

Fig. 2.  (a) Original Image. (b) Noisy Image with SNR = 7.22. BayesShrink Ridgelet Denois-
ing: (c1) db4. (d1) sym8. (e1) bior3.9. VisuShrink Ridgelet Denoising:  (c2) db4. (d2) sym8.
(e2) bior3.9.

6   Conclusions

In this paper the ridgelet transform for image denoising was addressed. BayesShrink
ridgelet denoising was proposed. The proposed method was applied on test images
with perfectly straight lines. The denoising performance of the results was compared
with that of the VisuShrink ridgelet image denoising method. The experimental re-
sults by the proposed method showed the superiority of the image quality and its
higher SNR in comparison with VisuShrink ridgelet technique. Furthermore we ob-
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served that regardless of the selected wavelet basis, BayesShrink ridgelet performs
better than VisuShrink ridgelet denoising method. However, the choice of the wavelet
bases might affect the performance of both methods.

Future work is needed to improve the performance of this method. The Bayes-
Shrink curvelet denoising would also be compared with BayesShrink ridgelet de-
noisisng method. Moreover, the effect of the wavelet bases and the number of the
decomposition levels on the performance of the denoised images would be investi-
gated based on wavelet, ridgelet and curvelet methods.
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