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ABSTRACT

Local saliency models are a cornerstone in image processing
and computer vision, used in a wide variety of applications
ranging from keypoint detection and feature extraction, to
image matching and image representation. However, current
models exhibit difficulties in achieving consistent results un-
der varying, non-ideal illumination conditions. In this paper, a
novel texture-illumination guided energy response (TIGER)
model for illumination robust local saliency is proposed. In
the TIGER model, local saliency is quantified by a modified
Hessian energy response guided by a weighted aggregate of
texture and illumination aspects from the image. A stochastic
Bayesian disassociation approach via Monte Carlo sampling
is employed to decompose the image into its texture and il-
lumination aspects for the saliency computation. Experimen-
tal results demonstrate that higher correlation between local
saliency maps constructed from the same scene under differ-
ent illumination conditions can be achieved using the TIGER
model when compared to common local saliency approach,
i.e., Laplacian of Gaussian, Difference of Gaussians, and Hes-
sian saliency models.

Index Terms— Local saliency model, illumination ro-
bust, local features, Bayesian estimation, stochastic, texture,
illumination

1. INTRODUCTION

Local saliency detection in an image is a prominent research
topic and a cornerstone in the field of computer vision and im-
age processing due to its extensive use in many vision tasks.
Here, local saliency refers to small, localized areas of inter-
est that are distinct from its surrounding pixels. In contrast,
global saliency (also commonly referred to as visual saliency)
are larger areas of interest in the image that represent distinc-
tive objects in a scene.

Local saliency is often used to obtain more concise rep-
resentations of an image. By discarding the majority of less
representative image information, the computational require-
ments are lowered and the robustness is improved due to the
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Fig. 1: Example of local saliency maps via the proposed
TIGER model. Local salient regions and points (shown us-
ing a red heatmap overlay) are consistently identified for a
constant scene under different illumination conditions.

use of simple, redundant local information rather than limited
complex global information [1]. As such, local saliency has
become a fundamental part of many image processing and
computer vision applications such as object or face recog-
nition [2, 3], image matching [4], content based image re-
trieval [5], and feature keypoint detection [6, 7].

In particular, local saliency is especially vital to feature
detectors, which produce and match descriptors created based
on locally salient keypoints in subsequent frames [8, 9, 10,
11, 6,7, 12, 13]. Common local saliency models used for lo-
cal feature keypoint detection include Laplacian of Gaussian
(LoG) response, Difference of Gaussian (DoG) response, and
Hessian-based response models. In LoG and DoG response
models, which have been used in widely-used feature detec-
tion methods such as SIFT [6], the LoG or DoG operators
(DoG is often used to approximate LoG [14], as in SIFT [6])
are applied to the image, and the LoG and DoG response map
is then used to quantify the local saliency at a point in the im-
age. In Hessian-based response models [8, 9, 11, 13], which
has been used in widely-used feature detection methods such
as SURF [7] and the Harris-Laplace method [11], the Hessian
matrix is computed on the image, and scalar response met-
rics such as the determinant and the Laplacian of the Hessian
matrix are used to quantify the local saliency at a point in the
image. A very detailed experimental study performed in [10]
found that the Hessian Laplacian model resulted in the most
reliable selection of correct locally salient keypoints.

One important challenge in local saliency detection for
the purpose of local feature keypoint detection is in deal-
ing with varying illumination conditions, particularly ones
that are spatially-varying (see Fig. 1 for an example of the



same scene under different illumination conditions). In prac-
tical scenarios, varying illumination conditions can affect the
stability of local saliency computations, thus resulting in in-
consistent keypoint detection and leading to low keypoint re-
peatability. Hence, a local saliency model that is robust to
varying illumination conditions is highly desirable for image
processing and computer vision tasks such as local feature
keypoint detection.

In general, the problem of consistent local saliency de-
tection under varying illumination is not well explored. Some
methods have incorporated simple illumination compensation
techniques such as intensity scaling [15] and contrast stretch-
ing [16]. Mindru et al. [17] aim to use colour moment invari-
ants to account for illumination change on planar surfaces. A
drawback to these methods is that their performance greatly
depends on the scene. Other proposed methods use colour in-
formation to obtain better results [18, 19, 20]. Weijer et al.
proposed a photometric invariant feature detector by combin-
ing the colour tensor with a photometric invariant derivative
based on specular and diffuse models.

Motivated to address the problem of consistent local
saliency detection under varying illumination at the model
level, we propose a novel texture-illumination guided energy
response (TIGER) model for illumination robust local saliency.
Given an image of a scene, local saliency is quantified in the
TIGER model via a modified Hessian Laplacian energy re-
sponse function that is guided by a weighted aggregate of
texture and illumination aspects from the image. The location
of extracted locally salient areas of interest were shown to be
robust to extreme illumination variations, indicating potential
towards consistent local saliency if the TIGER model is used
for keypoint detection.

2. METHODS

The following section outlines the methodology of the pro-
posed TIGER model for the purpose of illumination robust
local saliency to facilitate for tasks such as locally salient key-
point detection. The TIGER model aims to achieve consis-
tent local saliency detection across various illumination con-
ditions of the same scene by incorporating texture and illumi-
nation aspects of an image in a weighted fashion when com-
puting the Hessian matrix to help mitigate the effects of il-
lumination changes on the resulting local saliency response.
The texture and illumination aspects of the image are approx-
imately decomposed using a stochastic Bayesian disassocia-
tion strategy. A local saliency map is then formed based on
the Laplacian of this modified Hessian.

2.1. TIGER Local Saliency Model

In Hessian-based approaches to local saliency quantification
for images, the Hessian matrix ®, is obtained for each pixel,

@, of an image I as follows:
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where A, and A, are gradients in the x and y directions, re-
spectively. The computed Hessian matrix ¢ is then used to
formulate a metric for local saliency (e.g., Hessian determi-
nant, Hessian Laplacian, etc.).

A big challenge to obtaining consistent locally salient ar-
eas of interest under varying illumination conditions using
this approach is that @ is very sensitive to illumination condi-
tions, particularly spatially-varying illumination conditions,
leading to inconsistent local saliency results. Therefore, in
order to produce illumination robust local saliency compu-
tations, we modify the Hessian matrix computation in the
TIGER model by guiding it with a weighted aggregate of
texture and illumination aspects from the image. This idea
is driven by the fact that not only does the texture aspect of
an image provide highly valuable information for quantifying
the distinctiveness of a local area of interest relative to sur-
rounding information, it also is less sensitive to the influence
of spatially-varying illumination changes. However, despite
being more sensitive to lighting variations, there is also some
valuable information in the way a scene is illuminated such
that using it as a weaker indicator for local saliency compared
to the texture aspect is still meaningful. As such, one can
control the level of guidance between texture and illumina-
tion aspects to find a balance between local saliency quality
and illumination robustness.

Let us model the image I as being an additive composition
of texture 7" and illumination L aspects:

6]

I=T+1L. (2)

Given T' and L, the modified Hessian matrix @, guided by
a weighted aggregate of these two aspects can be defined in
Eq. 3, where « and 3 are weights for 7" and L, respectively.
From this modified Hessian matrix @, the local saliency, s,
at ¢ can be computed as a modified Hessian energy response
defined by the determinant and trace of the Laplacian of the
Hessian matrix [21]:

L det(2:())
s(@) = trace(®-(q))

By repeating this process for each pixel within I, a local
saliency map can be produced.
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2.2. Bayesian Disassociation

To be able to compute the modified Hessian matrix ., we
must determine the texture (7") and illumination (L) aspects of
an image. Based on the model in Eq. 2 that relates 7', L, and
I in an additive manner, we aim to disassociate 7" and L using
a Bayesian dissociation approach, where we first compute an
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approximation of L (denoted here as L) and then approximate o
T as the residual between I and L (i.e., T = I — L). Let us AL = D ko a(Qk|q_)5(L — I(Qk)) (10)

formulate the problem of obtaining L given I as a Bayesian
least-squares minimization problem based on Eq. 2:

L = argmin E((L — L)*|I)
L
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where E(.) denotes the expectation. Taking the derivative of
Eq. 5, setting it equal to zero, and expanding yields the fol-
lowing equation:
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since
L= / Lp(L|T)d(L), (7

substituting Eq. 7 into Eq. 6 gives us the final expression:
L= / Lp(L|I)d(L). (8)

Note that the posterior probability, p(L|I), is required to com-
pute Eq. 8. However, it is difficult to obtain p(L|I) in an ana-
lytical manner. For this reason, a non-parametric approach is
used to obtain p(L|I) via a Monte Carlo sampling strategy.

2.3. Posterior Probability Estimation

To estimate p(L|I), a Monte Carlo sampling approach was
applied. We first aim to establish a set of pixels, €2, within
a region of interest, 74, surrounding the pixel of interest, g.
A uniform distribution, (g, 7), is used as an instrumental
distribution to sample pixels with equal probability. Upon
selecting a pixel, an acceptance probability, a(gx|7), is calcu-
lated based on regional similarity between the sample pixel,
qx, and the pixel of interest, g, as follows:

1 & 2
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where N,, and R represent regions of equal size surrounding
sample pixel g and g respectively, and IV represents the num-
ber of pixels within each region. The acceptance probability
determines the likelihood that ¢;, is added to the set 2. The
process of sampling pixels from 75 is repeated until M sam-
ple pixels are acquired. The posterior probability can then be
calculated as

Z

where § is the Dirac function and Z is used as a normalization
factor to ensure Y p(L|T) = 1.

3. RESULTS

3.1. Experimental Setup

To test the efficacy of the proposed TIGER model for ob-
taining consistent local saliency results against drastic illu-
mination conditions, images of a constant scene captured in
a windowless room using a Sony HDR-AS30V camera un-
der different lighting angles were used. A scene of assorted
objects was assembled in front of a solid background, and il-
lumination was provided by a spotlight. To alter illumination,
the spotlight was moved about the room as images were cap-
tured. In addition, selections from the Yale Face Database
B [22], the GTILT dataset [23], and the AMOS dataset [24]
were used. Each image set consisted of a single scene un-
der varying illumination, and a total of 49 images across 10
different scenes was used .

To better assess the performance of TIGER with respect
to commonly-used local saliency models employed by lo-
cal feature detection methods, TIGER was compared to the
Laplacian of Gaussian (LoG) [14], Difference of Gaussians
(DoG) [6], and the Hessian [9] approaches using the image
sets. All methods were evaluated using a correlation metric
calculated between local saliency maps of the same scene un-
der different lighting conditions. A high correlation score is
desirable, and implies a high level of consistency among the
saliency maps despite varying illumination. Based on empir-
ical testing, the « and S values for TIGER were determined
to be 0.6 and 0.4, respectively.

3.2. Experimental Results

For each image set, the proposed TIGER model and other
tested approaches were used to compute local saliency maps
of the same scene under different lighting conditions. The
methods were assessed visually for consistent salient region
identification across varying illumination. Figure 2 shows the
identified salient regions for each method for a single scene.
Looking at Figure 2, the local saliency maps produced us-
ing LoG [14] and DoG [6] show a tendency towards identi-
fying edges as salient rather than compact regions or corners.
While useful for applications such as segmentation, edges are
often insufficiently unique to be used as local features, e.g.,
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Fig. 2: Comparison of the Laplacian of Gaussian, Difference of Gaussians, Hessian, and TIGER models of the same scene
under four different illumination conditions. The scenes are shown with their corresponding saliency maps overlayed in red

heatmap, where a lighter colour indicates a higher local saliency.

keypoints, as such require additional processing to obtain key-
points [6]. It can also be observed that different illumination
conditions greatly affect the local saliency of identified edges.
For example, it can be seen that the results produced by DoG
and LoG show noticeably weaker edges for Condition 4.

The Hessian [9] and TIGER models generally identify
high-contrast corner points or compact regions as locally
salient, as can be seen in Figure 2 where the Hessian and
TIGER both highlight the text near the centre of the image.
While the Hessian approach clearly identifies local salient
areas of interest in well-lit images, the approach begins to
show its limitations in more drastic illumination conditions
(such as Condition 3 or 4 in Figure 2). Figure 2 also shows
that the local saliency maps produced by TIGER has the
most visually consistent set of locally salient areas of interest
across the different lighting conditions.

In addition to visual assessment, the tested local saliency
models were evaluated for each image set using a correlation
metric; that is, the correlation between local saliency maps
for a constant scene was calculated to quantitatively measure
the consistency of identified salient regions. The correlation
metric was then averaged across all the image sets to produce
an overall measure, as shown in Table 1. It can be observed
that while the overall correlation of each approach is relatively
low, TIGER has the most consistent local saliency maps (with
53.4%) given drastic illumination conditions.

Table 1: Overall saliency map correlation for LoG, DoG,
Hessian, and TIGER. TIGER achieved the highest overall
correlation, indicating the highest level of consistency across
identified locally salient regions for a constant scene.

| Local Saliency Model | Overall Correlation |

LoG [14] 43.4%
DoG [6] 38.5%
Hessian [9] 33.5%
TIGER 53.4%

4. CONCLUSION

In this paper, we presented a novel texture-illumination
guided energy response (TIGER) model for an illumina-
tion robust local saliency. TIGER was compared to other
commonly local saliency models using images with varying
lighting angles of 10 different scenes. A correlation metric
and visual assessment of the experimental results indicate that
TIGER provides more consistent local saliency results given
drastic lighting illumination conditions, and is a good candi-
date for use for illumination robust feature detection. Future
works include more comprehensive testing and extending
TIGER for use in global saliency scenarios [25].




(1]

(2]

[3]

[4]

[3]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

5. REFERENCES

Bill Triggs, “Detecting keypoints with stable position, orientation, and
scale under illumination changes,” in Computer Vision-ECCV 2004,
pp. 100-113. Springer, 2004.

Krystian Mikolajczyk, Bastian Leibe, and Bernt Schiele, “Multiple
object class detection with a generative model,” in Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference
on. IEEE, 2006, vol. 1, pp. 26-36.

Ajmal S Mian, Mohammed Bennamoun, and Robyn Owens, “Key-
point detection and local feature matching for textured 3d face recog-
nition,” International Journal of Computer Vision, vol. 79, no. 1, pp.
1-12, 2008.

Avi Kelman, Michal Sofka, and Charles V Stewart, “Keypoint descrip-
tors for matching across multiple image modalities and non-linear in-
tensity variations,” in Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1-7.

Pedro Martins, Paulo D Carvalho, and Carlo Gatta, “Context aware
keypoint extraction for robust image representation.,” in BMVC, 2012,
pp. 1-12.

David G Lowe, “Object recognition from local scale-invariant fea-
tures,” in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on. Ieee, 1999, vol. 2, pp. 1150-1157.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool,
“Speeded-up robust features (surf),” Computer vision and image un-
derstanding, vol. 110, no. 3, pp. 346-359, 2008.

Stephen M Smith and J Michael Brady, “Susana new approach to low
level image processing,” International journal of computer vision, vol.
23, no. 1, pp. 45-78, 1997.

Chris Harris and Mike Stephens, “A combined corner and edge de-
tector.,” in Alvey vision conference. Manchester, UK, 1988, vol. 15,
p. 50.

Krystian Mikolajczyk and Cordelia Schmid, “Indexing based on scale
invariant interest points,” in Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference on. IEEE, 2001,
vol. 1, pp. 525-531.

Krystian Mikolajczyk and Cordelia Schmid, “Scale & affine invariant
interest point detectors,” International journal of computer vision, vol.
60, no. 1, pp. 63-86, 2004.

Stefan Leutenegger, Margarita Chli, and Roland Yves Siegwart,
“Brisk: Binary robust invariant scalable keypoints,” in Computer Vi-
sion (ICCV), 2011 IEEE International Conference on. IEEE, 2011, pp.
2548-2555.

Edward Rosten, Reid Porter, and Tom Drummond, ‘Faster and better:
A machine learning approach to corner detection,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 32, no. 1, pp.
105-119, 2010.

Tony Lindeberg, “Feature detection with automatic scale selection,”
International journal of computer vision, vol. 30, no. 2, pp. 79-116,
1998.

Bogdan Georgescu and Peter Meer, “Point matching under large im-
age deformations and illumination changes,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 674—
688, 2004.

Murat Gevrekci and Bahadir K Gunturk, “Illumination robust inter-
est point detection,” Computer Vision and Image Understanding, vol.
113, no. 4, pp. 565-571, 2009.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Florica Mindru, Theo Moons, and Luc Van Gool, “Comparing inten-
sity transformations and their invariants in the context of color pattern
recognition,” in Computer VisionECCV 2002, pp. 448—460. Springer,
2002.

Joost Van De Weijer, Theo Gevers, and Arnold WM Smeulders, “Ro-
bust photometric invariant features from the color tensor,” Image Pro-
cessing, IEEE Transactions on, vol. 15, no. 1, pp. 118-127, 2006.

Ranjith Unnikrishnan and Martial Hebert, “Extracting scale and il-
luminant invariant regions through color,” Robotics Institute, p. 356,
2006.

Flore Faille, “Stable interest point detection under illumination
changes using colour invariants.,” in BMVC, 2005.

J Alison Noble, “Finding corners,” Image and Vision Computing, vol.
6, no. 2, pp. 121-128, 1988.

A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman, “From few to
many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intelligence, vol.
23, no. 6, pp. 643-660, 2001.

M. R. Bales, D. Forsthoefel, D. S. Wills, and L. M. Wills, “The Geor-
gia Tech Illumination Transition (GTILT) Dataset,” Mobile Vision
Embedded Systems Lab (MoVES), Georgia Institute of Technology,
http://www.ece.gatech.edu/research/labs/pica/GTILT.html, November
2012.

Nathan Jacobs, Nathaniel Roman, and Robert Pless, “Consistent Tem-
poral Variations in Many Outdoor Scenes,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), jun 2007.

Christian Scharfenberger, Alexander Wong, Khalil Fergani, John S
Zelek, and David A Clausi, “Statistical textural distinctiveness for
salient region detection in natural images,” in Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013,
pp. 979-986.



	 Introduction
	 Methods
	 TIGER Local Saliency Model
	 Bayesian Disassociation
	 Posterior Probability Estimation

	 Results
	 Experimental Setup
	 Experimental Results

	 Conclusion
	 References

