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André Carrington1, Paul Fieguth2, Helen Chen3

Abstract—In classification with Support Vector Machines, only
Mercer kernels, i.e. valid kernels, such as the Gaussian RBF
kernel, are widely accepted and thus suitable for clinical data.
Practitioners would also like to use the sigmoid kernel, a non-
Mercer kernel, but its range of validity is difficult to determine,
and even within range its validity is in dispute. Despite these
shortcomings the sigmoid kernel is used by some, and two kernels
in the literature attempt to emulate and improve upon it.

We propose the first Mercer sigmoid kernel, that is therefore
trustworthy for the classification of clinical data. We show the
similarity between the Mercer sigmoid kernel and the sigmoid
kernel and, in the process, identify a normalization technique
that improves the classification accuracy of the latter.

The Mercer sigmoid kernel achieves the best accuracy on three
clinical data sets, detecting melanoma in skin lesions better than
the most popular kernels, and it ties the Gaussian RBF kernel
in accuracy when three non-clinical data sets are included. It
consistently classifies some points correctly that the Gaussian
RBF kernel does not (and vice versa), thereby offering additional
information that Multiple Kernel Learning or ensembles may be
able to exploit for better classification performance.

I. INTRODUCTION

The strong performance of Support Vector Machines (SVM)
and kernel methods make them a mainstay as one of the
state-of-the-art techniques for classification [1, 3], including
applications to clinical research, diagnosis and prognosis
[9, 17, 22]. One of the key issues in specifying an SVM
solution is choosing the right kernel for the data and task, since
a wrong choice can have a detrimental and possibly profound
impact on classification accuracy [1, 3, 5].

The sigmoid kernel was once quite popular for use with
SVMs [19] and it continues to be used in a clinical context as
indicated by ScienceDirect and Google Scholar with 30 and
1,510 hits respectively (2011 through 2014). The interest in
sigmoids or S-curves stems from their success in classification
with neural networks and logistic regression; their specific
properties of linearity, saturation and dichotomy; and their
nature as the cumulative distribution of a Gaussian. However,
the sigmoid kernel is problematic because it is difficult to
choose parameters that ensure that it is conditionally positive
definite (c.p.d) [19]. Some literature asserts that a c.p.d.
kernel is valid [4, 20], while other literature omits c.p.d. from
consideration [3, 8, 21]. Therefore, as a non-Mercer kernel,
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Fig. 1. The sigmoid and Mercer sigmoid kernels are similar in their output
k (x,z) for one-dimensional inputs x and z, for a range of parameter values
(r small, b = 0, per (1), (8)). This similarity behaviour extends to many
dimensions when the former is normalized.

the sigmoid kernel is not necessarily a trustworthy choice for
clinical applications.

As part of a clinical classification challenge related to skin
lesions, we created a valid Mercer sigmoid (MSig) kernel, that
is similar to a sigmoid kernel (Fig. 1) since it shares the same
underlying sigmoid function.

In Section II we provide background and discuss related
work. In Section III we define the MSig kernel and discuss
its properties along with the sigmoid kernel and normalization.
Section IV proves that the proposed kernel is a Mercer kernel,
while Sections V and II show the experiment and associated
results. Finally, Section VII provides conclusions.

II. BACKGROUND AND RELATED WORK

A sigmoid (function) or S-curve is a class or family of
functions that includes the logistic function, the hyperbolic
tangent, the arctangent, the error function, the generalised lo-
gistic function, etc. Formally, a sigmoid function is a function
that is defined for all real inputs, x ∈ R; is bounded in its
range or outputs, f (x) ∈ (p, q) for finite p,q ∈ R; and has a
positive first derivative at all points [13].

Whereas a sigmoid is a function of one input, a kernel
is a function of two inputs that may be used as a measure
of similarity between the inputs. In SVM classification, for
example, a kernel compares an unclassified sample of data
with a support vector (a weighted sample that has been
classified). Formally, a kernel is a function

k (x,z) = 〈φ(x),φ(z)〉

that for all of its inputs x,z ∈ X , has a mapping φ from X
to an inner product (feature) space F [21]. Kernels commonly
found in SVM literature include the Gaussian RBF kernel, the
linear kernel, the polynomial kernel and the sigmoid kernel
[1, 6].

The sigmoid kernel [3, 19] is based on the hyperbolic
tangent:
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kS (x,z) = tanh
(
a ·xT z+ r

)
a > 0, r < 0 (1)

= tanh

(
a ·

p

∑
i=1
{xizi}+ r

)
(2)

with a horizontal scaling parameter a, and a central vertical
bias r that changes the height of the kernel’s output for inputs
near the origin.

An important characteristic of kernels is whether or not
they are Mercer kernels or, equivalently, positive semi-definite,
since this ensures that certain assumptions hold for equations
such as the SVM soft-margin objective function in dual form
(3) and its associated constraints (4):

W (α) =−
`

∑
i=1

αi +
1
2

`

∑
i, j=1

αiα jyiy jk (xi,x j) (3)

subject to 0≤ αi ≤ γ, i = 1, ..., ` (4)
`

∑
i=1

αiyi = 0

The sigmoid kernel is not positive semi-definite, but it does
meet a weaker condition as a conditionally positive definite
(c.p.d) kernel for a > 0 and 0 < r ≤ r̂ for sufficiently small r̂,
dependent on the dataset [19], however the actual value of r̂
is difficult to determine. It has been argued that solving the
SVM objective function (3) with a c.p.d. kernel is equivalent
to solving it with an associated positive semi-definite (p.s.d.)
kernel and that c.p.d. kernels are valid for use with SVMs
[4, 20] — but this does not resolve the issue of determining
r̂, and the prevailing literature omits c.p.d. from consideration
[3, 8, 21].

Two kernels have been created by other authors [7, 14]
to emulate the sigmoid kernel and mitigate its limitations,
however neither of them is Mercer.

III. DESCRIPTION AND ANALYSIS

We begin with a kernel defined in inner-product form:

k (x, z), 〈Φ(x) , Φ(z)〉 x,z,Φ ∈ Rp, k ∈ R (5)

where Φ(x) =
[

φ (x1) φ (x2) ... φ (xp)
]T (6)

We can choose a hyperbolic form for φ ,

φ (x) =
1
√

p
tanh

(
x−d

b

)
x ∈ R (7)

leading to the proposed Mercer sigmoid (MSig) kernel

kM (x, z),
1
p

p

∑
i=1

tanh
(

xi−d
b

)
· tanh

(
zi−d

b

)
(8)

where there is a horizontal scaling parameter b, and a
horizontal shift parameter d. The kernel is normalized by p,
the dimensionality of x and z, for ease of interpretation and
comparison.

A. Similarity

The most fundamental question, then, is the degree of
similarity between the MSig and sigmoid kernels, to gain
insight into the MSig behaviour and determine whether it can
replace the function of the sigmoid kernel.

If we consider the sigmoid kernel (2) in one-dimension,
with a = 1, r = 0, then

kS (x,z) = tanh(xz)

Similarly the MSig kernel (8) in one-dimension with a =
1, b = 1, d = 0 corresponds to

kM (x,z) = tanh(x) tanh(z)

The normalized root mean squared deviation (NRMSD) be-
tween the two kernels kS, kM is 3.24% for x,z ∈ (−1,+1);
that is, the two kernels are arguably similar.

We can also compare the sigmoid kernel (2) with the MSig
kernel (8) in general, provided that we use a similar horizontal
scale a≈ 1

b2 , and the same horizontal shift (i.e. let d = 0), and
provided that the dot products in the two kernels are both
normalized by dimensionality (or both not) for comparison.

The dot product in the MSig kernel is already normalized
by 1

p , but the dot product in the sigmoid kernel is not

kS (x,z) = tanh
(
a ·xT z+ r

)
so we scale the inputs,

kS

(
x
√

p
,

z
√

p

)
= tanh

(
a
p
·xT z+ r

)
to normalize the dot product by the same amount 1

p and call
this a normalized sigmoid kernel (SigN).

This normalization does not just enable comparison, it
should yield a better result because the values of input data
should influence how the tanh function behaves, not the
dimensionality of the input. Without normalization, the dot
product as an input to the tanh function will grow as the input
dimensionality of x and z grows, causing saturation in the tanh
output increasingly because of dimensionality rather than the
values of the input data. Our results confirm that the SigN
kernel has improved accuracy relative to the sigmoid kernel,
on average (Table IV) and in four out of six data sets.

We then find that the MSig and SigN kernels are similar
with NRMSD≤ 10.073% (Fig. 2) for sufficiently small r as
required for the Sig and SigN kernels to be c.p.d. (we selected
−0.1 ≤ r < 0). Without normalization, the NRMSD between
MSig and Sig increases with dimensionality, and it is higher
than the normalized comparison for all p > 1 (Fig. 2).

Our normalization technique appears to be novel as we did
not find it in the literature [1, 3, 15, 21]. It may be considered
for any kernel of the form k

(
xT z
)
, i.e. the class of zonal

kernels, not just a sigmoid kernel.
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Fig. 2. The Normalized Root Mean Squared Deviation (NRMSD) between
the sigmoid kernel (Sig) and the Mercer sigmoid kernel, and between the
normalized sigmoid kernel (SigN) and the Mercer sigmoid kernel, for different
values of b, and for r =−0.1, i.e. the value of r with the highest NRMSD.

B. Linearity and Dichotomy
A function or kernel saturates if it produces a bounded

output range, for inputs that are unbounded [10]. The sigmoid
and MSig kernels saturate with horizontal asymptotes k =±1
at the outermost corner of each quadrant (or orthant), for one
dimensional (or n-dimensional) inputs (Fig. 1). For inputs near
the origin the sigmoid and MSig kernels act linearly, while
other inputs are dichotomized to an output value of −1 or
+1.

If the sigmoid or MSig kernel fits the data such that the
region of saturation mitigates the effect of outliers or large
values in SVM classification/optimization then the signal-to-
noise ratio (SNR) of true data is improved. For this purpose,
applying dichotomization (tanh) within each dimension, as in
the MSig kernel (8), is preferred to applying it once overall,
as in the sigmoid kernel (2).

Dichotomization within each dimension suits binary data
and nominal data that are converted to binary data; and our
clinical data sets have heterogeneous data types that include
binary and nominal data.

C. Covariance
Genton analyzed machine learning kernels from a statistics

perspective and remarked that kernels are covariances [12],
presumably because Mercer kernels must be a dot product
(implictly or explicitly) of basis functions in x and z. We
examine the sigmoid and MSig kernels from this perspective.

The dot product in the sigmoid kernel (2), but not the kernel
itself, is a sum of covariances xizi for each dimension i of the
input space; whereas for the MSig kernel, if we let

x′i = φ (xi) from (7)

TABLE I
HYPERPARAMETERS FOR THE KERNELS (2) (8) AND SVM WERE

GENERATED FROM A UNIFORM DISTRIBUTION WITH LOWER AND UPPER
LIMITS DERIVED FROM LITERATURE [1, 19] AND EXPERIENCE. WE

DENOTE ε = 10−15 AND log AS THE BASE 10 LOGARITHM.

Kernel SVM
Poly RBF Sig MSig

Limit d logσ a r b d logC kkt

Lower 2 -1 ε -5 1√
a

-2 -1 0
Upper 7 3 10 -ε +2 3 1

then the kernel can be re-written as

kM (x, z) =
p

∑
i=1

x′iz
′
i from (7),(8)

which is a sum of covariances x′iz
′
i, where x′i and z′i are

the axes for each dimension i of the feature space. For every
Mercer kernel there exist such feature space axes x′i and z′i,
implicitly or explicitly. Finally, we note that the two sums of
covariances, are traces of the cross-covariance of x with z, and
x′ with z′, respectively.

IV. MERCER COMPLIANCE

Per Lanckriet et al, a “kernel is a function k, such that
k(x,z) = 〈Φ(x),Φ(z)〉 for all x, z ∈X , where Φ is a mapping
from X to an (inner product) feature space F . A kernel
matrix is a square matrix K ∈ Rn×n such that Ki j = k (xi, x j)
for some x1, ...,xn ∈X and some kernel function k.” [18, 21].

A. The Mercer sigmoid kernel (8) satisfies k(x,z) =
〈Φ(x),Φ(z)〉, per (5-8), with a kernel matrix K ∈ Rp×p for
p-dimensional inputs.

B. The Mercer sigmoid kernel (8) has φ as a mapping from
the input data space Rp to an (inner product) feature space
Rp, per (5-8).

C. Rp is a Euclidean space and therefore an inner product
space.

From A, B and C we conclude that the Mercer sigmoid
kernel is a valid kernel. We then use the assertion from
Lanckriet et al, that all valid kernel matrices are positive semi-
definite [18], to conclude that the Mercer sigmoid kernel is
positive semi-definite. Finally, Genton explains that a kernel
being positive semi-definite, is a necessary and sufficient
condition for it to be a Mercer kernel [12]. Therefore, the
Mercer sigmoid kernel is a Mercer kernel.

V. EXPERIMENTAL DATA AND METHOD

This paper is written in the context of melanoma research
using a skin lesion data set that consists of sixty sequential
cases from Dr. Eric Ehrsam’s dermatology blog [11]. We
also tested our proposed kernels with two other clinical data
sets from the machine learning repository at the University
of California at Irvine [16], the Statlog Heart data set and
the Pima Indians Diabetes data set; and with three non-
clinical data sets, the Mushrooms data set (using a subset of
400 points), the Ionosphere data set and the Sediment data
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TABLE II
CLINICAL DATA CLASSIFICATION ACCURACY WITH AT LEAST 50%
SENSITIVITY AND 50% SPECIFICITY. THE TOP RESULT PER ROW IS

HIGHLIGHTED IN BOLD FONT.

Accuracy by Kernel (*Non-Mercer)
Data Set Lin Pol RBF Sig* SigN* MSig

Skin Lesion 81.0 - 88.7 86.7 87.7 89.3
Heart 84.4 77.6 84.6 84.1 84.6 85.3
Diabetes 79.3 80.9 80.9 82.4 82.0 81.6
Average 81.6 - 84.7 84.4 84.8 85.4
Difference -3.8 -4.2 -0.7 -1.0 -0.6 0

TABLE III
NON-CLINICAL DATA CLASSIFICATION ACCURACY WITH AT LEAST 50%

SENSITIVITY AND 50% SPECIFICITY. THE TOP RESULT PER ROW IS
HIGHLIGHTED IN BOLD FONT.

Accuracy by Kernel (*Non-Mercer)
Data Set Lin Pol RBF Sig* SigN* MSig

Mushrooms 99.5 98.5 98.5 98.0 99.5 100
Ionosphere 86.3 90.3 94.9 88.0 91.4 92.0
Sediment - - 84.7 83.7 83.2 84.1
Average - - 92.7 89.9 91.4 92.0
Difference -3.8 -2.3 0 -2.8 -1.3 -0.7

set. These data sets range from a few features (< 10) to
many features (> 100) and include both heterogeneous and
homogeneous data types.

We use 10-fold cross-validation for the skin lesion and
Statlog Heart data sets; while other data sets are split into
disjoint training and validation sets in a 1:2 or 2:3 ratio. The
data sets are centered and normalized such that the two-sided
third standard deviation becomes ±1 following guidance in
the literature [1]. There are eight hyperparameters which are
generated as random variables [2] with a uniform distribution
(Table I) as opposed to grid search. In all iterations or folds we
test with sixty sets of hyperparameters. Our implementation
also calculates class-specific soft-margin parameters C+ and
C− from C to achieve a balanced success rate with imbalanced
data [1].

Popular kernels are selected for comparison with Mercer
sigmoid (MSig) kernel: the linear (Lin), polynomial (Pol),
Gaussian RBF (RBF) and sigmoid (Sig) kernels [6]. We also
produce results for the normalized sigmoid (SigN) kernel. Our
implementation solves the SVM using Quadratic Programming
(QP) unless it takes too many iterations to solve, in which case
it switches to Sequential Minimal Optimization (SMO). SMO
is used as the default for the MSig kernel.

VI. RESULTS

We report the results of our classification experiments on
clinical data (Table II) and non-clinical data (Table III) and
together (Table II), in terms of the highest classification
accuracy with at least 50% sensitivity and specificity. While
the experiment has many iterations (60 or 300); and the overall
experiment was run several times with consistent results,
further runs are required to evaluate the statistical significance
the best results from one experimental run to another.

TABLE IV
A COMBINED SUMMARY OF CLINICAL AND NON-CLINICAL RESULTS

Accuracy by Kernel (*Non-Mercer)
Data Set Lin Pol RBF Sig* SigN* MSig

Average - - 88.7 87.2 88.1 88.7
Rank 5 4 1 3 2 1

The Mercer sigmoid kernel, on average, performs better
than the sigmoid kernel and the Gaussian RBF kernel. It also
consistently classifies some points correctly that the Gaussian
RBF kernel does not (3.8% of points, on average).

We note that the Mercer sigmoid kernel’s better performance
on clinical data versus non-clinical data appears is correlated
with the heterogeneity of the data. That is, the Mercer sigmoid
kernel outperforms the Gaussian RBF kernel on all three
clinical data sets and one non-clinical data set (Mushrooms)
where multiple data types are present: real numbers, counts,
binary values and categorical/nominal values. Whereas the
other two data sets consist only of real numbers.

The Mercer sigmoid kernel uses less support vectors (SV)
than the Gaussian RBF kernel with the six data sets: 197
versus 229 SV for the best results; and 200 versus 236 SV on
average; while the sigmoid kernel uses 138 SV on average. The
Mercer sigmoid also had the smallest average execution time
of 291ms which is not surprising given that we use SMO to
solve the SVM, whereas the Gaussian RBF kernel took 551ms
on average using QP.

VII. CONCLUSIONS

A Mercer sigmoid kernel that is similar to the (normalized)
sigmoid kernel (when the shift parameter d = 0), is now
available for classification in clinical applications, free of the
limitations and concerns that encumber the sigmoid kernel and
thereby fulfilling interests expressed in the literature, although
it has not been investigated in other contexts such as with
genomic data or with big data.

The Mercer sigmoid kernel outperforms other kernels tested
in our SVM classification experiments with three clinical data
sets and it has the best performance tied with Gaussian RBF
kernel across all six clinical and non-clinical data sets. While
it achieves the same best accuracy overall it consistently clas-
sifies some points correctly that the Gaussian RBF kernel does
not thereby providing additional information that Multiple
Kernel Learning or ensembles may be able to exploit for better
classification accuracy.
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