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Abstract

There is a large and growing demand across many industries for underwater inspection
technologies that can reduce the cost of assessing hard to reach underwater assets. The
most widely used inspection method is single-camera video, and due to limited visibility
the underwater environment these videos tend to be long, close-up sequences that make it
difficult for the viewer to orient themselves and determine which part of the asset is being
viewed at a given time. If these videos could be converted to a photorealistic 3D model
of the asset, the asset could be inspected much more quickly and intuitively without the
need to review hours of video.

The topic of 3D reconstruction from video or image sequences is a well-studied problem
in computer vision. Without a calibrated camera, it generally proceeds in two stages: first,
a projective reconstruction is built from image features matched throughout the sequence.
This has been accomplished in the literature using global methods such as factorization, or
geometric methods that stitch together many two-view or three-view reconstructions into a
complete model. Projective reconstruction is considered a solved problem in the literature,
and this work implements existing methods to generate projective reconstructions. Because
the projective reconstruction is not in a metric space, it is not suitable for measurement
of visualization. The second stage of reconstruction is autocalibration, which leverages
the assumption that the images were taken with physical CCD cameras to transform the
projective reconstruction to a metric space. This has been accomplished in the literature by
solving for the elements of the absolute dual quadric Ω∗, or by direct nonlinear optimization
of a cost function that penalizes deviation of the camera intrinsics from possible physical
values. Autocalibration is still an active research area, and there is as yet no solution that
works robustly in all situations; this work implements a novel autocalibration method that
produces good results for underwater video sequences.

This thesis presents a 3D reconstruction software pipeline that is capable of generating
point cloud data from uncalibrated underwater video. This research project was undertaken
as a partnership with 2G Robotics, and the pipeline described in this thesis will become
the 3D reconstruction engine for a software product that can generate photo-realistic 3D
models from underwater video. The pipeline proceeds in three stages: video tracking,
projective reconstruction, and autocalibration.

Video tracking serves two functions: tracking recognizable feature points through many
frames of the video to produce image correspondences, as well as selecting well-spaced
keyframes with a wide enough baseline to be used in the reconstruction while rejecting
the bulk of the video frames which are too closely spaced. Video tracking is accomplished
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using Lucas-Kanade optical flow as implemented in the OpenCV toolkit. This simple and
widely used method is well-suited to underwater video, which is taken by carefully piloted
and slow-moving underwater vehicles.

Projective reconstruction is the process of simultaneously calculating the motion of the
cameras and the 3D location of observed points in the scene. This is accomplished using
a geometric three-view technique based on the trifocal tensor, T . Results are presented
showing that the projective reconstruction algorithm detailed here compares favourably to
state-of-the-art methods.

Autocalibration is the process of transforming a projective reconstruction, which is not
suitable for visualization or measurement, into a metric space where it can be used. This
is the most challenging part of the 3D reconstruction pipeline, and this thesis presents a
novel autocalibration algorithm. Results are shown for two existing cost function-based
methods in the literature which failed when applied to underwater video, as well as the
proposed hybrid method. The hybrid method combines the best parts of its two parent
methods, and produces good results on underwater video.

Final results are shown for the 3D reconstruction pipeline operating on short under-
water video sequences to produce visually accurate 3D point clouds of the scene, suitable
for photorealistic rendering. Although further work remains to extend and improve the
pipeline for operation on longer sequences, this thesis presents a proof-of-concept method
for 3D reconstruction from uncalibrated underwater video.
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Chapter 1

Introduction

There is a large and growing demand across many industries for underwater inspection
technologies [1]. Whether the assets in question are offshore oil rigs owned by energy com-
panies, undersea power or data cables owned by utilities, or large pipe networks owned
by municipalities, the problem is the same: critical assets are in need of assessment and
maintenance but inspection is difficult and expensive due to their underwater location.
Currently, much of the work in the industry consists of flying a remotely operated under-
water vehicle equipped with a camera to take video of these assets in order to determine
their state and whether maintenance is required. These videos can be many hours in
length, and must be reviewed by a specialist at significant cost to assess the state of the
asset.

This research project was undertaken in participation with 2G Robotics Inc., a company
focused on underwater inspection. The goal of this project is to implement computer
software that can convert pre-existing single-camera videos of an asset, with unknown or
varying camera parameters (auto-focus or zooming is allowed), to a photo-realistic 3D
model of the asset. With such a model, the client could be able to rotate, zoom, and
generally inspect the asset much more quickly and intuitively without the need to review
hours of video. There is demand for such software, and the resulting library could be
licensed to inspection companies or offered under the Software-as-Service model.

This thesis represents the first stage in the development of a photo-realistic 3D recon-
struction software product. A robust structure-from-motion pipeline that can produce 3D
point cloud data from uncalibrated single-camera video is described. Further development
will allow this point cloud to be meshed and overlaid with images taken from the video, to
produce a photo-realistic model.

1



This thesis assumes that the reader is somewhat familiar with the perspective camera
model including intrinsics and extrinsics, as well as the projective, affine, and metric ge-
ometries and the differences between them. For an excellent treatment of these concepts,
as well as multi-view projective geometry and 3D reconstruction in general, the interested
reader is directed to [2].

1.1 Problem Definition

The problem solved by the research described in this thesis is to build a 3D model from
underwater video data. More precisely, the problem is to recover all camera parameters and
3D structure points using only image features extracted from the video. No assumptions
are made about the scene, and only minimal assumptions are made about the camera -
namely, that it represents a physical CCD camera with square pixels.

Using video data to reconstruct a rigid 3D scene (structure) and path of the video
camera (motion) is a well studied problem, referred to as Structure from Motion (SfM) in
the literature [2]. There are many methods in the literature that address this problem,
each making use of different assumptions [3, 4, 5]. Some of the most robust and successful,
such as Google’s Street View, make use of both calibrated cameras and strong assumptions
about the scene — in Street View’s case, that it will mostly be an urban environment of
parallel lines and planes. The goal of this research is to use uncalibrated video of unknown
underwater assets; such strong assumptions cannot be made. Uncalibrated SfM methods
approach this problem in three stages:

1. Video Tracking — Identify and follow features in the image that correspond to 3D
points to obtain a set of image observations {unm}.

2. Projective Reconstruction — Use {unm} to calculate the motion of all cameras
{Pm} and the location of all structure points {Xn}. This reconstruction is not yet
suitable for visualization or measurement.

3. Autocalibration — Using basic assumptions about the physical properties of the
cameras, upgrade the reconstruction to a metric space that is suitable for visualization
and measurement: {P̃m} and {X̃n}.
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1.2 Thesis Contribution

This thesis describes the development of a software pipeline that can generate 3D point
cloud data from uncalibrated underwater video. The video tracking and projective recon-
struction aspects of the pipeline are not particularly novel: they are re-implementations
based directly on published literature [6, 7, 3]. Although valuable and necessary for a
software product, the first two parts of the pipeline are considered solved problems.

Autocalibration without any prior knowledge of the camera, however, is still an active
research area [8, 9, 10]. Several different algorithms from the literature were implemented,
but none gave satisfactory results on video data. The main contribution of this thesis is
the hybrid autocalibration method described in Chapter 7.3. By adopting the best parts
of two autocalibration algorithms that failed to produce metric reconstructions suitable for
visualization, an improved method that produces acceptable metric 3D point cloud data
from underwater video sequences has been developed.

1.3 Thesis Outline

The 3D reconstruction pipeline described in this thesis is illustrated in Figure 1.1.

Chapter 2 describes the video tracking algorithm, which produces image observations
{unm} from raw video footage.

Chapter 3 provides the conceptual background for, and a high-level summary of, exist-
ing projective reconstruction methods found in the literature. Chapter 4 details the algo-
rithm implemented during this work to produce a projective reconstruction {{Pm}, {Xn}}.
Chapter 5 presents the results of the projective reconstruction algorithm.

Chapter 6 provides the conceptual background for, and a high-level summary of, exist-
ing autocalibration methods found in the literature. Chapter 7 details two of these existing
autocalibration algorithms which were implemented during this work to produce a metric
reconstruction {{P̃m}, {X̃n}}, then explains the motivation for and details of the proposed
hybrid method. Chapter 8 compares the performance of the three autocalibration methods,
and presents results for the reconstruction pipeline on synthetic and real datasets.

Chapter 9 provides some final thoughts on the pipeline, and Chapter 10 details plans
for future improvements.
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Figure 1.1: 3D Reconstruction Pipeline Flow Chart: The pipeline described in this
thesis is divided into three stages: Video tracking, described in Chapter 2, produces a
set of feature correspondences from the raw video. Projective reconstruction, described in
Chapter 4, uses the correspondences to solve for a 3D reconstruction consisting of camera
matrices and structure points. The projective reconstruction is not suitable for visual-
ization; Autocalibration, described in Chapter 7, transforms the projective reconstruction
into a metric space and completes the reconstruction process.
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Chapter 2

Video Tracking

The first step to 3D reconstruction from video is to extract good features in the image
that can be identified throughout the video — edges, corners, or other distinct points that
can be identified by their location in the image, unm. These features must then be tracked
through the video until they disappear, creating a set of 2D observations representing many
3D points viewed from several different angles. This dataset is referred to as feature tracks
or correspondences, and many such observations are necessary to build a 3D reconstruction
— typically thousands of points in dozens of views.

Underwater video is challenging to process because limited visibility and silty condi-
tions can lead to images with few or blurred features, making feature extraction difficult.
However, underwater video has one positive aspect that greatly aids feature tracking:
underwater vehicles are always piloted slowly and carefully, leading to very smooth and
slow-moving video sequences. This characteristic lends itself to a tracking method called
Lucas-Kanade optical flow, which assumes each feature will appear in approximately the
same place in the next image frame [11]. Although ideal for tracking, the slow-moving ve-
hicle can cause problems during 3D reconstruction due to the small camera displacement
between frames. If the baseline between cameras is too small, there is not enough depth
information present to build an accurate reconstruction [2]. For this reason, the video
tracker also identifies keyframes, a small subset of the video frames that will be used for
reconstruction.

Although more sophisticated, accurate, and robust tracking methods exist, such as
SIFT and SURF, Lucas-Kanade optical flow was chosen for its ease of implementation. It
performed well for all videos tested, providing a reliable set of correspondences suitable for
use in the robust 3D reconstruction algorithm described in Chapter 4.
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Keyframe 1 Keyframe 2

Figure 2.1: Video Keyframes During Tracking: Two keyframes generated by the video
tracker, and the points tracked. Green points were tracked successfully from Keyframe 1 to
Keyframe 2, while red points were not and are plotted where tracking was lost. Keyframe
2 also includes additional green points detected and tracked into the following keyframe,
evident in the bottom right corner.

2.1 Methodology and Implementation

The video tracker consists of three main components: the feature detector, the feature
tracker, and the keyframe selector. A sample of the results from the video tracking process
are shown in Figure 2.1.

2.1.1 Feature Detection

The feature points used are Shi and Tomasi’s “good features to track”, also called minimum-
eigenvalue corners [12]. Similar to Harris corners [13], the feature detector identifies points
where there is a strong gradient in both image directions. Minimum eigenvalue corners
perform better than Harris corners in tracking applications [14]. The feature detector has
an implementation in the OpenCV C++ toolkit, and is used to obtain sub-pixel feature
points in each keyframe of the video. For a more detailed description of the algorithm, the
interested reader is referred to [14].
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2.1.2 Feature Tracking

Once features have been identified in the current image, they are located in the next video
frame (the target image) using the the pyramidal Lucas-Kanade tracking algorithm [15].
The algorithm leverages three assumptions:

1. Brightness constancy — The lighting intensity of the image will not vary signifi-
cantly between video frames.

2. Small movements — The camera will move only slightly between video frames, so
the target image can be modeled as a small translation of the current image.

3. Spatial consistency — Image features will look nearly the same in the target image
as they do in the current image.

Note that these assumptions relate to qualities of the video sequence, and do not pertain
to the 3D scene itself. No assumptions are made about the structure of the video’s subject,
and any 3D shape can be reconstructed.

The algorithm tracks each feature in the current image by taking a small patch around
the feature and searching a small window (15 pixels square) in the target image, centered
on the feature’s current location, to see how well each point in the window matches the
patch. For computational efficiency and because movements are assumed to be small, the
search window is kept quite small — 10–15 pixels is used in this work. The best match
is chosen as long as the correlation is above a threshold, otherwise the tracking fails for
that feature. The correlation threshold is a tunable parameter, and the appropriate value
depends on the input sequence - videos of objects with strong texture benefit from a lower
threshold to increase the number of matched points, while dim or blurry sequences must
use a higher one to avoid excessive mismatches. To allow for larger motions, the algorithm
also makes use of “gaussian pyramids” of both current and target images, consisting of
the full-resolution image at the base and a series of downsampled, lower-resolution images
rising to the tip. The search is first conducted at the coarsest resolution, and the result
is progressively refined at higher resolutions. This requires much less computation than
using a large search area in the full-resolution image.

The Lucas-Kanade tracker has an implementation in the OpenCV C++ toolkit [16],
and is used to track feature points through the video. For a more detailed description of
the algorithm, the interested reader is referred to [14].
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2.1.3 Keyframe Selection

The tracker algorithm requires very small camera motion between video frames to function
properly, and underwater video meets this requirement nicely. 3D Reconstruction algo-
rithms, however, require depth information that can only be inferred from large camera
motions between frames. This, coupled with the fact that underwater inspection videos
can be hours long and contain hundreds of thousands of frames, makes building a 3D re-
construction using every single video frame intractable. As such, the tracker incorporates
a keyframe selector that discards most of the video frames, retaining only those where
the camera has moved enough for the new vantage point to provide useful information.
Camera motion cannot be inferred directly from image measurements — indeed, this is
the problem solved by 3D reconstruction — but the average motion of image features can
be used as a rough measure of motion. It is also necessary to ensure that enough features
have been tracked between frames to allow for robust reconstruction. A new keyframe
is therefore selected whenever either the average feature motion rises above a threshold,
or the total number of features drops below a threshold. In this work an average motion
threshold of 30 pixels was used, but this value can be changed freely — a lower threshold
will increase the number and density of keyframes, and a higher one will produce fewer
keyframes. A minimum of 50 corresponding features is used in this work, as it was found
experimentally that projective reconstruction becomes unreliable with fewer features.
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Chapter 3

Projective Reconstruction —
Background

Projective reconstruction is the process of calculating 3D structure and motion from image
data. Using only the correspondences generated by the video tracker unm, it is possible
to generate a 3D reconstruction of the imaged scene Xn, and the camera matrices Pm.
This reconstruction is mathematically self-consistent in its projective geometry, but it is
not in a metric space and so is not suitable for measurement or visualization purposes
[2]. A projective reconstruction is the best that can be done without knowledge of, or
strong assumptions about, the camera parameters — to deal with uncalibrated video, such
assumptions must be avoided. Projective reconstruction is therefore a necessary first step
for determining unknown camera parameters via autocalibration, the subject of Chapter
6.

3.1 Fundamentals

Projective reconstructions consist of a set of corresponding image features {unm}, cam-
era matrices {Pm}, and structure points {Xn} [17]. These quantities are related by the
perspective camera equation [2]:

unm ' PmXn (3.1)

This equation is illustrated in Figure 3.1. A projective reconstruction is correct if every
structure point Xn projected through each camera Pm exactly matches each observation
unm. In general, image noise will cause some error between an observed feature unm and
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Figure 3.1: The Perspective Camera: This diagram illustrates (3.1), the perspective
camera equation. Every 3D point, Xn, projects through each camera’s projection matrix
Pm onto that camera’s image plane to form an image observation, unm.

the projected location of its reconstructed point, ûnm. This reprojection error, measured
in the image plane in units of pixels, is the quality metric for a projective reconstruction:
the lower the reprojection error, the better the reconstruction. Projective reconstructions
are not unique, and can be altered by a 4x4 projective transformation H without affecting
reprojection error:

unm = (PmH−1) (Hxn) (3.2)

A projective reconstruction, then, is really only one member of a family of projectively
equivalent reconstructions. This is called projective ambiguity, and it implies that conve-
nient projective frames can be freely chosen without impacting reprojection error. A useful
choice is to map a reference camera (usually the first) to the canonical form [37]:

PrefHcan = [I|0]

Hcan =

[
Pref

c(Pref )T

]−1
(3.3)

where c(), the projective camera center, is computed as follows:

c(P) = (c1, c2, c3, c4)
T with ci = (−1)idet(P(i)) (3.4)

with P(i) defined as the 3x3 matrix obtained by removing the ith column of P. Having
a canonical reference camera is convenient because it greatly simplifies computations such
as F and T estimation, covered in Chapter 3.2.2 and 3.2.3.
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Another important transformation is the metric upgrade H∗, the topic of Chapter 6.
Only a small subset of valid projective reconstructions are also metric, where concepts of
distance and parallelism have meaning. In a metric frame, the camera matrix P can be
decomposed into its intrinsic and extrinsic properties:

P̃ = K̃(R̃ | −R̃c̃) (3.5)

where c̃ is the camera center’s position, R̃ is a rotation matrix encoding the camera’s
orientation, and

K̃ =

 fu s pu
0 fv pv
0 0 1


is the camera intrinsics matrix. The camera’s focal length, fu and fv, and the principal
point location, (pu, pv), are all measured in pixels aligned with the image plane’s axes.
Skew, s, is a parameter representing the angle between the axes of the image plane; for
cameras with rectangular pixels, s = 0. For cameras with square pixels, fu = fv These
basic assumptions, true for nearly all CCD cameras, are the basis of Autocalibration, the
subject of Chapter 6.

A note on normalization: image observations {unm} are usually scaled and translated
to a normalized, unitless co-ordinate system before beginning projective reconstruction so
that, within each image, the mean of the observations is 0 and the average distance from
the mean is

√
2 [18]. This normalization improves the numerical conditioning of the recon-

struction process, but affects each camera differently and changes the pixel aspect ratio by
scaling each image axis differently. In this work, a similar normalization is applied to the
camera matrices, producing nearly the same improvement in numerical properties while
acting identically on each camera and preserving pixel aspect ratio. The normalization is:

Pm ←

1

2

 √w2 + h2 0 w

0
√
w2 + h2 h

0 0 1

−1 Pm

||Pm||2
(3.6)

where w and h are the width and height of the image, respectively.

3.2 Existing Methods

The goal of projective reconstruction is to produce a consistent set of structure points and
camera matrices using only image features. There are several well-tested methods in the
literature for accomplishing this task, and the most promising were evaluated for their
ability to deal with noisy and outlier-filled underwater video datasets.
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3.2.1 Factorization

First proposed by Tomasi & Kanade [19], factorization reduces projective reconstruction
to a rank-constrained matrix estimation problem. The key idea is that all image obser-
vations can be stacked into an observation matrix, and the desired structure and camera
matrices should provide the nearest least-squares rank-4 approximation to the observation
matrix[20].  λ00u

0
0 · · · λn0u

n
0

...
. . .

...
λ0mu0

m · · · λnmunm

 =

 P0
...

Pm

 [ X0 · · · Xn
]

(3.7)

The estimation of projective depths, λnm, is essential to this process as it is equivalent to
recovering the depth information lost during projection[21]. Modern factorization algo-
rithms take an iterative linear approach to estimation: first structure points, then camera
matrices, and finally projective depths are estimated in sequence while holding the other
variables constant[22].

It might appear from (3.7) that factorization is inherently an off-line process, requiring
all data to be known before it can begin, and this is the case for the core algorithm. How-
ever, some clever extensions have been made to allow on-line operation, adding additional
image features as they become available[5].

Factorization distributes error evenly across all observations, avoiding initialization
bias and error accumulation. Missing data can be dealt with easily, as the matrix-based
factorization can be reduced to a least-squares minimization involving only the visible
features[22]. However, because it is essentially a least-squares solution, large outliers or
mis-associated data are not handled well by this algorithm. Testing has shown that even a
small number of outliers can significantly degrade results. Factorization implementations
in the literature that have been successfully applied to real data do not generally explain
in detail how features are matched [22], and the number of matched features is usually
quite low - only 14 in the case of [5]. It is likely that matching in these works has been
performed manually, or using standard stereo registration techniques that simultaneously
estimate F as described in Chapter 3.2.2 to reject outliers.

3.2.2 Two-View Epipolar Geometry: The Fundamental Matrix

As shown in Figure 3.2, epipolar geometry describes the relationship between correspond-
ing feature points in two views. Epipolar geometry has a long history in the field of 3D
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Figure 3.2: Two-View Geometry: Given F and u, u′ is restricted to a line in the second
image; the precise location depends on the depth of the 3D structure point in the first
view. Image modified from [23].

reconstruction, and is most often employed using two-camera calibrated stereo vision sys-
tems. Epipolar geometry is by far the most common method used for 3D reconstruction
due to widely available implementations in standard toolkits [24].

The fundamental matrix, F ∈ R3x3, encapsulates the epipolar geometry in its seven de-
grees of freedom and a solution for F can be obtained from seven corresponding features[25].
Given F and u, u′ is restricted to a line in the second image; the precise location depends
on the depth of the 3D structure point in the first view. This epipolar constraint, expressed
mathematically as u′TFu = 0, allows for detection of outlying data that does not fit the
viewing geometry, and allows for guided feature matching to detect additional consistent
correspondences that the video tracker did not identify.

The robust calculation of F from image correspondences is a well-studied problem,
and modern methods use a robust statistical approach to automatically estimate an F
that most closely fits consistent correspondences from a data set, while simultaneously
identifying outliers[26]. While robust to outliers and mis-associated data, F cannot be
calculated accurately for some degenerate camera configurations that turn out to be fairly
common in practice[27]. For more detail on F and epipolar geometry, the interested reader
is directed to [2].
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Figure 3.3: Three-View Geometry: Given the trifocal tensor T , the location of a feature
point in the first image is restricted to a line in the second image, and a correspondence
in the first two images is restricted to a point in the third.

Because F can only describe two views, video sequences are processed by choosing the
first pair as a projective frame and merging subsequent pairs into the reconstruction as they
arrive. The merging process estimates a transformation to the base frame using shared
structure or a shared camera matrix[4]. While lending itself to on-line implementation, this
sequential approach is prone to error accumulation when processing long video sequences.
The merging transform is an estimate, and each estimate is appended to the last one.
Although the transformation error between any adjacent two-view reconstructions is small,
the accumulated drift can become significant by the end of the sequence.

3.2.3 Three-View Geometry: The Trifocal Tensor

Chapter 3.2.2 and Figure 3.2 describe the projective geometry of two views; this chapter
and Figure 3.3 describe the relationship between corresponding feature points and lines in
three views. The trifocal tensor T ∈ R3x3x3 encapsulates the geometry of this image triplet
in its 18 degrees of freedom, and a solution for T can be obtained from six corresponding
features[28]. Given T and u, u′ is restricted to a line in the second image, and given u and
u′ the location of u′′ in the third image is fully constrained. These geometric constraints are
stronger than those of the epipolar geometry. T can also be used to transfer corresponding
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lines from one image to another within a triplet, allowing their use as image features in
addition to points. In general T can be computed more efficiently and robustly than F
[29].

Modern algorithms for estimating T use a minimal six-point solution as the kernel in
a robust statistical framework, and use guided matching to find additional line and point
features in the images that were not detected by the video tracker [30]. While remaining
at least as robust to outliers and mis-associated data as algorithms based on F, T is not
as strongly affected by degenerate camera configurations[3]. While sequential algorithms
using T as a building block are subject to the same baseline and drift problems, the third
view helps to mitigate them: a third non-degenerate view can only improve the baseline
and helps to mitigate error accumulation as well, since each reconstruction can share two
camera matrices with adjacent reconstructions instead of only one.
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Chapter 4

Projective Reconstruction —
Methodology

Three existing methods were found in the literature review of Chapter 3.2: factorization,
two-view geometry, and three-view geometry. Factorization was found to be unreliable
for tracked video data, and three-view geometry was selected as the stronger of the two
geometric methods.

Because projective reconstruction by factorization can be formulated as a global least-
squares estimation, it shares similar drawbacks. Factorization has difficulty handling
datasets containing outliers caused by incorrect or mismatched feature correspondences
— that is to say, it has difficulty handling real tracking data from video sequences. This
hypothesis was tested using an implementation of the factorization algorithm described in
[22]. Factorization performed well in testing on synthetic datasets, including those with
high levels of Gaussian noise and missing data, but failed to converge when used on track-
ing data from video sequences containing a small percentage of outliers. The factorization
approach was therefore abandoned as untenable for robust reconstruction of underwater
video.

Of the two-view and three-view geometric approaches that remain, two-view epipolar
and three-view trifocal geometry, the trifocal tensor-based algorithm was chosen as the
most promising due to its stronger constraints and increased flexibility during the merging
step. The reconstruction algorithm used consists of two steps: robust computation of T
for each triplet of keyframes, and merging structure points and camera matrices from all
T s together into a complete reconstruction.
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4.1 Computing the Trifocal Tensor

Robust computation of the trifocal tensor was accomplished by using a minimal six-point
three-view solution for structure and motion, and thus T , as the kernel in a robust M-
estimator Sampling And Consensus (MSAC) estimation framework. MSAC is a variant of
the well-known RANdom Sampling And Consensus (RANSAC) family of robust statistical
methods used to identify solutions in outlier-filled datasets [31]; it is described in detail
in Chapter 4.1.3. Once a robust solution has been found for six points in three views, all
observed points in the image triplet can be triangulated, and the reprojection error of all
points is used as a metric for the triplet’s accuracy. The best solution from the MSAC
process is then further refined using a nonlinear bundle adjustment.

4.1.1 A Six-Point Solution for T : Computing a Trifocal Triplet

If six distinct 3D points are observed by three camera matrices, it is possible to solve
directly for all three camera matrices and six structure points. Six points are the minimum
required to compute the solution, and the use of a minimal solution is important in any
RANSAC-based computation. As Chapter 4.1.3 will make clear, a smaller sample size
means fewer iterations are required to ensure a correct solution. The solution method
used in this work was first suggested by Quan[32], includes improvements suggested by
Schaffalitzky[6], and follows the implementation of Mierle[8]. Its foundation is to fix most
degrees of freedom by setting the co-ordinates of the first five structure points to form a
projective basis. With this simplification, (3.1) can be rewritten as:

u1...6
m = PmX1...6 u1 u6

v1 · · · v6
w1 w6

 = Pm


1 0 0 0 1 x6
0 1 0 0 1 y6
0 0 1 0 1 z6
0 0 0 1 1 t6

 (4.1)

Setting the structure for the first five observations constrains each camera matrix to a
one-parameter family of solutions, or “pencil”, such that uim = [ µmAm + νmBm]Xi and
only the ratio α = µm/νm is important. This ratio is shared between all three cameras, and
the geometric constraint that rays through u6

m must all converge at the unknown point
X6 allows α to be obtained as the solution to a cubic equation. There may be one or
three such solutions, but at least one will exist. Given α, the co-ordinates of X6 can be
calculated, and given X6 the precise values of µm and νm can be calculated and all three
camera matrices obtained.
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At this point three camera matrices and six 3D structure points have been obtained
which are exactly consistent with three-view geometry. T itself has not been obtained as
a part of this procedure, but if desired it can be trivially calculated from the three camera
matrices. This solution procedure is referred to as the minimal solution — minimal because
it contains only the six points required to solve. An overview of the minimal solution
algorithm is given in Algorithm 4.1. For further detail, the interested reader is directed to
[8], which contains an excellent implementation-oriented description of this algorithm.

Algorithm 4.1 Minimal six point solution for T : This procedure calculates structure
points and camera matrices

Require: u1...6
m , images of six points in three views

for m = 1 to 3 do
solve for Am and Bm, where unm = [ µmAm + νmBm]Xn

end for
obtain α as the one or three solutions to a cubic formed from Am and Bm

numsol← number of solutions for α
for i = 1 to numsol do

calculate {X1...6}i from αi
for m = 1 to 3 do

solve for µmi and νmi using {X1...6}i
calculate {Pm}i

end for
end for
return numsol solutions, each consisting of: { P1...3, X1...6 }

4.1.2 Triangulation: Adding Additional Structure

The minimal solution described above produces an exact solution for six points in three
views. However, over 100 corresponding image features are generally tracked through three
video keyframes. Once the camera matrices are obtained using 6 points, any image feature
observed in two or more views can have its 3D structure determined by triangulation.

If the feature were noise-free, this could be accomplished by finding the intersection of
the two back-projection rays, extending from the camera’s origin to the image observation,
as shown by the red lines in Figure 4.1. Due to image noise, however, these rays will not
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generally intersect. Before triangulating, corrected observations û must be found whose
back-projection rays do intersect, while remaining as close to the original observations u as
possible — this is equivalent to selecting a 3D structure point which minimizes reprojection
error.

Figure 4.1: Triangulation in three views: Under ideal conditions, the rays from the
camera origins to the image observations would intersect at the 3D structure point, as
shown in red. Under real conditions with noisy measurements, the rays are skewed as
shown in blue. Optimal triangulation finds observations û and û′′ which do intersect at a
point, while remaining as close as possible to u and u′′. The procedure is optimal in the
sense that the reprojection error ||u − û||2 + ||u′′ − û′′||2 is minimized. The reprojection
error from the middle image, ||u′ − û′||2 can be used as a sanity check: if it is not on the
same order as the other two images, triangulation has not produced an acceptable result
and the point must be discarded.

The triangulation method implemented in this work is optimal in terms of minimizing
reprojection error[33]. Triangulation uses the observations u and u′′ and the fundamental
matrix F13 between views 1 and 3 to solve a 6th-order polynomial, producing the optimal
corrected observations û and û′′, whose intersection can be trivially found. This triangu-
lation method is the ”gold standard” algorithm for triangulation, and for further details
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the interested reader is directed to [2]. û′ is not explicitly calculated during triangulation,
but is included when the total reprojection error for the triplet is calculated using (3.1).

4.1.3 MSAC: A Robust Solution Framework

After triangulating all points, the total reprojection error is an essential metric for the
accuracy of a trifocal triplet. Video tracking data often contains a significant number of
outlying points, caused by tracking errors — these are not merely noisy measurements, but
erroneous ones which do not represent a single 3D point imaged by three cameras. The
minimal solution for T will only produce acceptable results if all six points are inliers. This
presents a problem: without knowing which points are outliers, which six points should be
selected for the minimal solution? This is a well-studied problem, and a robust statistical
estimator from the RANSAC family is the right tool to solve it [31, 30, 8].

The basic idea of RANSAC is to take a random minimal sample from the dataset, find
the solution, and then count the number of data points that fit the solution within some
error threshold. By repeating this procedure many times it is guaranteed that a sample
containing only inliers will eventually be selected, and the solution calculated from this
sample will fit most other inliers. The number of iterations required to assure at least one
sample has been selected containing only inliers can be calculated based on the percentage
of inliers in the data set. RANSAC uses a threshold to classify points with respect to a
solution: either a point falls within the error threshold and is counted as an inlier, or it does
not and is an outlier. After the required number of iterations, the solution which generated
the highest number of inliers is selected. The error threshold should be small relative to
the image size, and is usually on the order of several pixels — a 1.0 pixel threshold was
used in this work. The solution is not overly sensitive to this parameter unless it is set so
low as to exclude legitimate points. True outliers to the dataset will produce reprojection
errors at least an order of magnitude greater than the inliers.

It should be noted that the RANSAC approach does introduce a stochastic element
to the projective reconstruction process — because the solution is chosen from a set of
random samples, the solver will not produce the same solution when run multiple times
on the same data set. However, it should always produce a reasonable solution that has
strong support in the dataset, fitting most of the observed points while simultaneously
identifying the others as outliers to be discarded.

The RANSAC process can be viewed as an optimization with a binary cost function:
either a point contributes nothing to the cost function or it contributes 1. The RANSAC
variant used in this work is called MSAC [8], and it modifies the RANSAC cost function:
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inliers add their error to the cost function while outliers add the error threshold, and
the sample with the lowest cost function is selected. The improvement is illustrated by
imagining two samples that produce a solution with the same number of inliers, but one
having twice the total reprojection error of the other. Using MSAC, the sample with lower
reprojection error is chosen where RANSAC would not distinguish between the two. The
MSAC procedure is detailed in Algorithm 4.2.

Algorithm 4.2 MSAC: a robust solution for T

Require: unm for a trifocal triplet
Require: ε, a reprojection error threshold

best sol ← NULL
best E ← MAXVAL
for it = 1 to max it do

take a random sample of six correspondences from unm
perform the minimal reconstruction of Algorithm 4.1
cost ← 0
for pt = 1 to n do

Triangulate pt as described in Chapter 4.1.2
E ← reprojection error of pt
if E < ε then

cost ← cost +E
else

cost ← cost +ε
end if

end for
if E < best E then

best sol ← this solution
end if

end for
return best sol: { P1, P2, P3, Xn }

4.1.4 Projective Bundle Adjustment

The MSAC procedure robustly obtains an approximate solution for T that has a high level
of support in the data. However, this solution was calculated using only six points; the
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final step is to optimize T for all inliers. This is accomplished using bundle adjustment, a
nonlinear gradient descent-based optimization process that slightly adjusts all parameters
of the structure points and camera matrices in order to reduce the overall reprojection
error [34]. The adjustments should be relatively small given the high-confidence solution
produced by MSAC — in this work it was rare for any single parameter to be adjusted
by more than 1-2% during bundle adjustment. When these small adjustments are made
to thousands of points in dozens of views, however, the overall effect is quite dramatic:
bundle adjustment almost always reduces reprojection error by a factor of two or better,
and usually by an order of magnitude or more.

Bundle adjustment is applied to every triplet after the MSAC solution procedure, and
again on the existing reconstruction after the addition of every new triplet, as described in
Chapter 4.2.3.

Bundle adjustment is a standard and widely-used procedure in Structure from Motion,
and was implemented using the SBA open source C++ toolkit[35]. The interested reader
is referred to [35] for a more detailed description of the SBA algorithm, and to [34] for an
excellent overview of bundle adjustment in general.

4.2 Merging Triplets into Multiview Reconstructions

The estimation procedure outlined above produces a projective reconstruction for three
camera views. Many such triplets must be combined in order to obtain a reconstruction
of an entire video sequence. But each reconstruction is in a different projective frame —
they must be transformed into the same space in order to be combined.

Finding the merging homography requires that triplets share cameras, structure, or
both. There is also the issue of selecting which triplets to use in the reconstruction.
Even with the keyframe selection performed by the video tracker, some triplets will have a
baseline that is too short to produce an accurate reconstruction, and attempting to include
such a triplet will produce poor results. Similarly, attempting to create extremely wide-
baseline triplets implies that fewer correspondences are available to calculate T due to
occlusions and sections of the initial scene no longer being visible — this will reduce the
accuracy of T and produce poor results.

The solution implemented in this work is to define a measure for the quality of a triplet
that includes both baseline and tracked features, and proceed to hierarchically merge only
the best-quality triplets to form the final projective reconstruction.
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4.2.1 Finding the Merging Homography

As (3.2) suggests, there are many free parameters in a projective reconstruction. To merge
two triplets, a merging homography H ∈ R4x4 must be found that maps common structure
points into the same projective co-ordinate frame. In keeping with projective geometry,
the scale of this matrix is irrelevant; it has 15 degrees of freedom. To constrain these free
parameters, the two triplets to be merged must share some parameters - cameras, structure,
or both. With shared structure X and camera P in one triplet with corresponding X′ and
P′ in the second, the goal is to solve for H such that:

P = P′H−1

X = HX′

There are three distinct cases to consider:

Case I: Shared Structure Only
Each structure point in projective 3-space provides three constraints on H. At least five
shared points are therefore sufficient to solve for H.

Case II: One-View Overlap
In this case the triplets to be merged share an image; usually the final image in the first
triplet is the initial image in the second triplet. A projective camera matrix has 11 degrees
of freedom, requiring four additional constraints to solve for H. A common camera matrix
and at least two common structure points are therefore sufficient to solve for H.

Case III: Two-View Overlap
Two shared camera matrices provide 22 constraints, more than the 15 degrees of freedom
in H. Two shared camera matrices are therefore sufficient to solve for H.

For further details of these merging methods, the interested reader is referred to [3]. In
this work, triplets are constructed with one view overlap; that is, if a sequence contains 7
keyframes, triplets will be built from keyframes 1-2-3, 3-4-5, and 5-6-7 and then merged
together using their common camera matrix and shared structure. This decision is driven
mainly by the one-view overlap method’s suitability for the hierarchical framework de-
scribed in Chapter 4.2.3.

4.2.2 A Quality Measure for T

The sheer number of frames in a video sequence begs the question: which ones should be
used to generate triplets and form the reconstruction? Attempting to calculate T from
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three adjacent frames in the video is bound to fail, as the camera will not have moved
enough between camera views to accurately capture 3D information. This is the baseline
problem, and the video tracker takes the first step in addressing it by selecting keyframes
based on pixel motion: only after features have moved “enough” is a frame even considered
as a candidate for reconstruction. But this image-space metric is not sufficient; pure camera
rotation will produce image-space motion and cause the tracker to select a keyframe even
though the baseline is zero. If the first three keyframes have low baseline, then these frames
should be skipped and the first triplet built from frames 1-3-5 or 1-5-9 instead of 1-2-3. But
which should it be: 1-3-5, or 1-5-9, or some other selection of frames? Clearly, a quality
measure must be developed for T to inform this decision and avoid building low-baseline
triplets.

In theory the best triplet to use as the basis for reconstruction would have the widest
possible baseline, and therefore be built from the first, middle, and last frame of the
sequence — but this is impossible. In most real video sequences, the final frame of the
video contains an entirely different scene than the first: there are no corresponding image
features with which to calculate T . In practice, the number of tracked features drops below
that needed to robustly compute T long before the scene from the first image is completely
out of view. As the camera moves, distant features can be occluded by nearer objects in
the scene, the changing viewing angle can cause a feature to appear different enough for
the tracker to reject it, and illumination changes can do the same for many features at
once.

There is a fundamental trade-off here: using more widely-spaced video keyframes in-
creases the accuracy of T by widening the baseline, but also decreases accuracy by lowering
the number of features tracked. Keyframes should be chosen that lie in a quality “sweet
spot”: a baseline wide enough for accurate reconstruction, but still with enough tracked
features to ensure the same. The measure of T quality used to define this trade-off was
proposed by [7]:

Q = bαp (4.2)

where b is the abstract baseline, simply the number of keyframes spanned by T , and α
is a tunable parameter that adjusts how “greedy” the metric is for wide tensors. Values
of 0.5 < α < 1.0 are recommended [7], with larger values resulting in the selection of
wider tensors. The parameter p is a measure of how much support there is in the data
for the tensor in question actually having a wide enough baseline for 3D reconstruction.
p is calculated as the number of features consistent with T divided by the number of
features that can be transferred from the first keyframe to the third using a 3x3 image-space
homography. If the baseline is very short, nearly all the features will be consistent with the
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image-space homography; if is is long enough to generate an accurate 3D reconstruction
very few will.

There is one further detail to the quality metric: (4.2) is used only if the number of
features tracked is above a threshold — as in Chapter 2.1.3, a minimum of 50 features is
used. If the triplet contains fewer tracked features, robust calculation of T is questionable
and the quality is set to 0. Although this quality measure is somewhat ad-hoc it has
proved very effective as a decision metric when comparing two triplets, in this work and
as reported by [7].

4.2.3 A Hierarchical Approach to Projective Reconstruction

All the tools required to compute T for image triplets, evaluate their quality, and merge the
best together to form a reconstruction have been described above. What is now required is a
framework to automatically perform these operations on an arbitrary video sequence. The
algorithm implemented in this work is a simplified version of the computational framework
described in [7]. The key idea is that a sequence of triplets with one-view overlap can be
viewed as a hierarchy of triplets, with those in the second level or higher comprised of
two triplets from the level below. The algorithm begins reconstructing this hierarchy from
the first triplet, always searching for the widest triplet that improves quality, as shown in
Figure 4.2. If the higher-level triplet has a higher quality than both of the lower-level ones,
the process continues in this vein, continuing to widen the baseline. If the higher-level
triplet has a lower quality than either of its children, it is discarded and the widest triplet
found is appended to the current reconstruction. In this way, only high-quality triplets are
used to build the projective reconstruction.
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The algorithm begins by building the next
level-1 triplet and calculating its quality:
in this case, Q = 25.

The next level-1 triplet is built, and then
the parent level-2 triplet is built. With
Q = 43 its quality is higher than either
child triplet, so it is accepted.

The algorithm continues searching for a
wider-baseline triplet, first building the
next level-1 triplet.

Two parent triplets are built, a level-2 and
a level-3. In both cases their quality is
higher then their children, so they are ac-
cepted.

The search continues. In this case, a level-2
triplet is calculated whose quality is lower
than one of its children: this triplet is re-
jected.

The algorithm has identified the widest-
baseline triplet that does not sacrifice qual-
ity: the level-3 triplet with Q = 65. It
is merged into the existing reconstruction,
and the algorithm repeats.

Figure 4.2: A hierarchical reconstruction algorithm: The algorithm proceeds through
the sequence of video frames, building wider and wider tensors until the quality is no longer
improved. The highest-quality tensor is then added to the existing reconstruction, and the
process is repeated.
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Chapter 5

Projective Reconstruction — Testing

The projective reconstruction method has been tested on a variety of synthetic and then
real image sequences. For a projective reconstruction, the only relevant error metric is
reprojection error; all results are judged using this metric.

5.1 Testing on Synthetic Data

Synthetic image sequences were created to test the algorithm under ideal conditions. A
cubic volume of regularly spaced points and a series of virtual cameras were created. The
cameras were placed randomly near the surface of a sphere around the points, and point
towards their center. All points were then projected by each camera matrix to create
the image observations, with zero-mean Gaussian noise added to each observation in the
image space. The virtual images had size 1024x768 pixels. The number of points, number
of camera views, and magnitude of the noise were all variable. A sample synthetic data
set with 125 points in 11 views is shown in Figure 5.1.

The average reprojection error is plotted against the standard deviation of the added
noise in Figure 5.2. The algorithm performed as expected, with higher reprojection error
as noise increases. It should be noted that tracked image features usually have error in the
0.5-1.0 pixel range, where the algorithm performed very well. Ten-pixel tracking error was
never seen in this work for successfully tracked image features.

The average reprojection error is plotted against the number of views in the synthetic
sequence in Figure 5.3; four noise levels are considered: 0.5, 1.0, 1.5 and 2.0 pixels. It is clear
that the algorithm can suppress error accumulation very well. The notable drops in error
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Figure 5.1: The Synthetic Dataset: A randomly generated synthetic grid of 125 points,
shown in red, and 11 camera views shown in blue. Each camera’s image plane is displayed
and a line shows the direction the camera points, with its length proportional to the
camera’s focal length.

for all four sequences in views 9, 17, and 25 are caused by the hierarchical algorithm using
only one top-level triplet for the reconstruction. As the reconstruction progresses from
each of these points additional triplets must be merged together, and error is introduced
in the merging step. It should be noted that these synthetic datasets do not share several
important properties with image sequences taken from video: all synthetic points are visible
in all views, and since the synthetic cameras are randomly positioned, keyframe number
does not actually serve as a proxy for baseline. This motivates further testing on the image
sequences for which this algorithm was designed.

5.2 Testing on Standard Datasets

The 3D reconstruction literature suffers from a shortage of standard datasets[8]. Most
of those that exist are available only as raw images without extracted features. Because
this work relies on video tracking it does not include tools to generate correspondences
from widely-spaced still images, and raw image data cannot be used to generate recon-
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structions. However, Oxford’s Visual Geometry Group has made three datasets available,
complete with tracked features [36]. The “Dinosaur”, “Model House”, and “Corridor” se-
quences have thus been widely (though not universally) used in the literature [3, 7]. One
such publication[3] uses a similar method to this work, and the results are compared in
Table 5.1. Three sub-sequences of the “Dinosaur” sequence are presented, as well as the
whole sequence. Though it appears that this work outperforms [3] considerably, the al-
gorithms are different enough that reprojection error alone cannot express the difference
in reconstruction quality. Due to an additional guided matching step present in [3], many
more points are contained in their reconstructions compared to those of this work. This
results in the proposed algorithm producing lower reprojection errors for the smaller subse-
quences, because only the points that most closely fit the reconstruction are included. The
proposed algorithm produces a higher reprojection error for the full “Dinosaur” sequence
compared to [3] because fewer points are common between sub-sequences; this leads to
fewer constraints and higher error during the merging step.

The projective reconstruction algorithm presented here is in the same class as state-of-

Figure 5.2: Synthetic Data: Reprojection error vs noise: Projective reconstruction
performance under increasing noise for synthetic datasets of the type shown in Figure 5.1,
containing 125 points in 3 views. The reprojection error plotted is the mean for all points,
averaged over 100 trials.
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Figure 5.3: Synthetic Data: Reprojection error vs views: Projective reconstruction
performance as the number of views increases. Four data series are plotted, each from a
synthetic dataset of the type shown in Figure 5.1, and each with a different noise level:
0.5, 1.0, 1.5 and 2.0 pixels respectively. The reprojection error plotted is the mean for all
points, averaged over 100 trials.
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the-art algorithms. It is not perfect, and there are several features known in the literature
that would improve its performance; these are discussed in Chapter 10. In its current
state, the proposed algorithm produces results on underwater video sequences that are
“good enough” to allow autocalibration to proceed.

Sequence linc method of [3] This work

Dinosaur 0-6 0.198 0.059

Dinosaur 6-12 0.197 0.099

Dinosaur 12-18 0.197 0.111

Dinosaur 0-18 0.161 0.760

Corridor 0-6 0.228 0.068

Table 5.1: Average reprojection error in pixels for image sequences published in [3], com-
pared to the automatic hierarchical algorithm of this work. The proposed algorithm pro-
duces lower reprojection errors for short 6-frame sequences, but higher error for the long
18-frame sequence.

5.3 Underwater Video Data: The Need for Autocali-

bration

The projective reconstruction algorithm also runs successfully on underwater video data.
Rather than presenting another table of reprojection errors, graphical results are deferred
until Chapter 8. As a metric for the quality of a reconstruction, reprojection error is
useful but limited. To understand why, one need only look at Figure 5.4: projective
reconstructions can be distorted beyond all recognition without affecting reprojection error.
In order to present graphic results from real video sequences, autocalibration is a necessary
step.
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Figure 5.4: The Limits of Reprojection Error: Can you see the dinosaur? Despite its
appearance, this reconstruction of the “Dinosaur” sequence has extremely low reprojection
error. This sequence has already been processed by the first stage of an autocalibration
algorithm; without this processing the dinosaur would not be recognizable at all, however
the reprojection error would still be equally low. Clearly, reprojection error alone cannot
measure the quality of a 3D reconstruction.
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Chapter 6

Autocalibration — Background

This chapter describes the process of autocalibration, the recovery of camera parameters
using only image data. Conceptually, this process is akin to flattening a fun house mirror.
A projective reconstruction produces an image that is correct, but gives no clue as to the
shape of the lens. As the results of Chapter 5 show, a purely projective reconstruction is
not useful; camera calibration is necessary before the results of a projective reconstruction
are usable for visualization or measurement. Autocalibration recovers the metric camera
parameters automatically, and transforms a projective reconstruction into a usable metric
reconstruction.

6.1 Fundamentals

The goal of autocalibration is to find the transformation H∗ that maps the projective
reconstruction to a metric space. This is equivalent to finding the plane at infinity l̂∞ =
[l1, l2, l3, 1] as well as the intrinsics for all cameras, {K̃m}, as in (3.5). As (3.2) implies, H∗

is an invertible transformation matrix and it is sometimes more computationally convenient
to solve for (H∗)−1. Transforming a projective reconstruction to a metric space requires
both H∗ and (H∗)−1 in any case; once either has been found the other is calculated using
SVD. SVD is chosen because it provides more accurate inversion for near-singular matrices.

Constraints for solving the autocalibration problem derive from prior knowledge that
K̃ represents a physical camera. This requirement for modern CCD cameras can be sum-
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marized in three prior conditions:

rectangular pixels (zero skew) s = 0
square pixels (unit pixel aspect ratio) fu = fv = f

principal point at image center pu = pv = 0
(6.1)

Using the assumptions of (6.1), and further assuming that one of the cameras in the
reconstruction has been made canonical by (3.3), the camera intrinsics of this canonical
camera can therefore be written as:

K̃can =

 f 0 0
0 f 0
0 0 1


Focal length and the location of the plane at infinity have a much greater impact on pro-
jective distortion than the other parameters of K̃ [37], so an appropriate parameterization
of (H∗)−1 is [2]:

(H∗)−1 =

[
K̃−1can 0

l̂∞

]
=


1/f 0 0 0
0 1/f 0 0
0 0 1 0
l1 l2 l3 1

 (6.2)

This form is more straightforward than solving for H∗, and some autocalibration algorithms[9,
7] optimize these four parameters directly using non-linear gradient descent.

Some autocalibration methods[38, 39] make use of a fundamental identity of projective
geometry:

ω∗m = KmKT
m ∝ PmΩ∗Pm

T (6.3)

where the dual image of the absolute conic, ω∗ ∈ R3x3, encodes the camera calibration
parameters of K̃ and the absolute dual quadric, Ω∗ ∈ R4x4, encodes this information as
well as the location of l̂∞ in the projective reconstruction. Some important properties of Ω∗

are that it is symmetric, positive definite, has rank 3, and as with all projective quantities
only the ratio of its elements is important. Taken together, these properties mean that Ω∗

has only 8 free parameters in general. When the assumptions of (6.1) are made, (6.3) can
be further simplified to the form: f 2 0 0

0 f 2 0
0 0 1

 ∝ Pm


b1 0 0 b2
0 b1 0 b3
0 0 1 b4
b2 b3 b4 b5

Pm
T (6.4)
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where all of bi can be expressed in terms of f and the three parameters of l̂∞. Thus, in
this form, Ω∗ has the same four parameters as the parametrization of (6.2).

Once Ω∗ is known, (H∗) can be found via the decomposition

Ω∗ = H∗ Ĩ H∗T (6.5)

where Ĩ = diag(1, 1, 1, 0).

6.2 Existing Methods

A number of different methods for estimating H∗ exist in the literature, and they fall
mainly into two categories: those based on the absolute conic that solve for H∗ using (6.3)
[40, 41, 38, 39], and those that use iterative nonlinear optimization of the four parameters
in (6.2) [37, 10, 9].

6.2.1 Solutions Based on ω∗ and Ω∗

Early efforts in autocalibration focused on the manipulation of (6.3) based on the assump-
tions in (6.1) to produce constraints in the elements of ω∗ and/or Ω∗.

The Kruppa Equations

The Kruppa equations are related to the dual image of the absolute conic, ω∗, and are
two-view constraints. Given F between two views, the Kruppa equations provide two
independent quadratic constraints in the elements of ω∗ [2]. Widely viewed as the first
autocalibration method [40], they require a minimum of three cameras having identical
camera intrinsics, with F known between views 1-2, 1-3, and 2-3, to solve for the five
parameters of K via ω∗. The Kruppa equations provide weaker constraints than newer
methods, and are not recommended for use in modern autocalibration software[2]. Details
of this method are given in [2].

Linear constraints on Ω∗

The form of (6.4) allows three linear equations in the elements of Ω∗ to be obtained from
each camera in a projective reconstruction, only two of which are linearly independant.
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Three or more views are therefore required to obtain a least-squares solution for the five
elements of K[38]. This method is straightforward and non-iterative, but is very sensitive
to the accuracy of the camera matrices[2]. In addition, the positive-definiteness and rank-
3 properties of Ω∗ are not enforced: the solution generated by this method does not
necessarily result in a valid Ω∗[39]. Details of this method are given in [38].

Quadratic solution for Ω∗

To address the shortcomings of the linear method described above, it is possible to use
the linear solution as the initialization to an iterative optimization. The method proposed
in [39] uses Sequential Quadratic Programming (SQP), a second-order gradient descent
technique, to improve the estimate of Ω∗. The cost function for optimization is the sum
of squared deviations from (6.4). Constraints are added to the problem to enforce nor-
malization of Ω∗ and ω∗ (ensuring that the proportionality of (6.3) can be used as an
equality), and the rank-3 property of Ω∗: det(Ω∗) = 0. The positive-definiteness of Ω∗

can also be enforced at each iteration via eigendecomposition, zeroing the smallest eigen-
value, and re-composing Ω∗ with only three non-zero eigenvalues. Although this solution
is much improved over the linear method, it is not perfect. Discussion with the author of
[39] confirmed that the optimization will only converge if the linear method produces an
estimate of each parameter that is accurate within approximately a factor of two. Further,
enforcing the positive-definiteness of Ω∗ at each iteration can cause further convergence
issues; the revised solution may violate the rank-3 and normalization constraints of the
SQP problem. Details of this method are given in [39].

6.2.2 The Direct Approach

More recent work on autocalibration takes a much more direct approach to estimating
(H∗)−1: obtain a rough initial guess of the parameters in (6.2), apply the transformation
to see how close the resulting camera matrices are to the prior assumptions in (6.1), and
then refine the parameters using non-linear optimization of a robust cost function. Several
different initialization schemes have been tried in a Levenberg-Marquardt solver [37, 9],
and a branch-and-bound solver has been developed that does not need initialization [10].
This work adopts the direct approach, and these methods will be described in more detail
in Chapter 7.
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Chapter 7

Autocalibration — Methodology

The linear and quadratic Ω∗-based autocalibration methods, discussed in Chapter 6.2.1
and 6.2.1, were implemented early in this work. Although the SQP method showed some
success with synthetic data and the well-conditioned research data sets of Chapter 5.2,
it failed completely when tested on underwater video sequences. This failure can be at-
tributed to both initialization difficulties and convergence issues. The linear method used
as initialization to the SQP optimization is not guaranteed to produce a valid solution, let
alone one within a factor of two of the true solution as required by the SQP method. The
SQP method itself displayed convergence problems when positive-definiteness of Ω∗ was
enforced at each iteration, and otherwise would often generate a solution for Ω∗ that was
not positive-definite, and therefore invalid. It is due to these deficiencies that Ω∗-based
autocalibration methods are no longer considered state of the art, and results from these
methods are not presented here.

This work performs autocalibration using a more recent approach: direct optimiza-
tion of a cost function based on the parameterization of (6.2). Given the four parame-
ters [f, l1, l2, l3] and a prior for K̃, (6.1), the cost function used to evaluate potential
reconstructions is outlined in Algorithm 7.1. This cost function is optimized using the
Levenberg-Marquardt method[35]. Because the transform-decompose process is highly
nonlinear, there are two key challenges to this local gradient descent approach: the fitness
measure C({Km}) must be highly robust, and the initial guess must be sufficiently close
to assure convergence.

Three methods for autocalibration are compared in this thesis in order to illustrate the
importance of both initialization and a robust fitness measure:

1. Method (I) - Nister’s Method[37] — fragile initialization, robust cost measure
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Algorithm 7.1 A Direct Cost Function for Autocalibration: The procedure for
evaluating a proposed metric upgrade transform H∗ based on the intrinsics of the resulting
cameras. This generalized cost function is used by methods (I), (II) and (III) with varying
fitness measures C({Km}).

Require: {Pm}
Require: (H∗)−1 in (6.2)

fitness ⇐ 0
for i = 0 to m do

P∗m ⇐ Pm(H∗)−1

obtain K∗m from (3.5)
fitness + = C({Km}) for some fitness measure

end for
return fitness

2. Method (II) - Gherardi’s Method[9] — robust initialization, fragile cost measure

3. Method (III) - The Proposed Hybrid Method — adopts the best of both

All results were produced using original implementations; code for the methods introduced
by other researchers was requested, but unavailable. For all methods, the fitness measure
for a good metric reconstruction should be small: the minimum fitness value for a perfect
metric reconstruction is 0, and the maximum value for the fitness function is unbounded.
The formulation of the fitness measure should penalize any deviation from prior expecta-
tions, and a large fitness value indicates a reconstruction in which the decomposed camera
matrices do not have properties expected of physical cameras.

7.1 Method (I) — Nister’s Method

Method (I)[37] attempts to solve the initialization problem by preconditioning the projec-
tive reconstruction to ensure that it is a quasi-affine reconstruction (QUARC) with respect
to the camera centers. The QUARC concept was first developed by Hartley[41], and if a
reconstruction is quasi-affine then it is guaranteed that the reconstruction lies entirely on
one side of l̂∞. This is particularly useful for camera calibration because decomposition of
(3.5) is applicable only to finite cameras, and should local perturbation attempt to move
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l̂∞ across a camera center any cost function will behave erratically as the decomposition
fails. The method of [37] defines a twist test for two cameras to determine whether l̂∞ lies
between them, and uses this to define a signature for l∞: ζ(l∞,P1...m). The signature ζ
is a vector of length m whose entries are either 1 or −1 depending on the results of the
twist test. To obtain a QUARC, it is sufficient to map to infinity a plane l∗ that has the
same signature as l̂∞, and is as far as possible away from all camera centers. This can be
expressed as a linear program [43]:

max δ

s.t. l∗ c(P)i)
||c(P)i)||2 ζ(l∞,P1...m)i − δ ≥ 0 ∀i

−1 ≤ l∗j ≤ 1, j = 1...4

where ζ(l∞,P1...m)m is the mth element of the signature, and the bounds on l∗i guarantee
a unique solution. Transforming the projective reconstruction to QUARC is then accom-
plished by mapping l∗ to infinity using (3.2), with

HQUARC =

[
I3x3 0

l∗1 l∗2 l∗3 l∗4

]
(7.1)

A theoretical framework has been developed in [37] showing that transforming the projec-
tive space to QUARC is equivalent to placing the naive initialization of (6.2), [f, l1, l2, l3] =
[1, 0, 0, 0] in the correct basin of the cost function, using the fitness measure

CI({Km}) =
∑
m

(fu − fv)2 + s2 + p2u + p2v
(fu + fv)2

(7.2)

The penalization for deviation from (6.1) is evident. Division by the factor (fu + fv)
2,

which is proportional to focal length, has a normalizing effect; a given deviation of aspect
ratio or principal point is more plausible at long focal lengths than short ones. (7.2) also
strongly penalizes the cost function should f approach 0, where the decomposition of P
is undefined. Without this term f could approach 0 during optimization, where the cost
function is expected to produce erratic results and optimization is likely to fail. Method
(I) can be summarized as QUARC preconditioning followed by nonlinear optimization of
focal length and l∞ location. For further details, the reader is directed to[37].

7.2 Method (II) — Gherardi’s Method

Method (II) [9] uses the fitness measure:

CII({Km}) =
∑
m

[ ωs|s|+ ωar|fu − fv|+ ωp(|pu|+ |pv|) ] (7.3)
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where ωs = 20, ωar = 2, and ωp = 1 are appropriate weights for the terms based on prior
expectations — modern CCDS have very nearly zero skew, while unit aspect ratio is less
certain and principal point location much less so[44].

The initialization of (H∗)−1 is accomplished using an exhaustive search over reasonable
focal lengths. A closed-form solution is given for the location of the plane at infinity given
any two cameras Pα = [I|0], Pβ = [Qβ|qβ] and their intrinsics, K̃α, K̃β. Given that the
cameras are normalized by (3.6), focal length will be on the order of 1 — less for wide-
angle lenses and more for telephoto lenses. For most consumer cameras, a sample space of
0.3 ≤ f ≤ 3 is reasonable [9]. Making use of (6.1), all parameters of K̃ except focal length
are set to 0 during the initialization phase. Method (II) samples the space of focal lengths
using Algorithm 7.2. The values of [f, l1, l2, l3] that resulted in the best fitness are used
to initialize the nonlinear optimization of Algorithm 7.1.

Algorithm 7.2 Exhaustive Search Initialization for Autocalibration: The algo-
rithm used by Method (I) and (III) to perform an exhaustive search for the plane at
infinity over reasonable values of focal length.

Require: {Pm}

Transform {Pm} so P1 = [I|0] by (3.3)
Pα ⇐ P1

for f = 0.3 to 3.0 with logarithmic spacing do
for i = 2 to m do

Pβ ⇐ Pi

form K̃α and K̃β from f
solve for l∗∞
P∗m ⇐ Pm(H∗)−1

obtain K∗m from (3.5)
fitness = CII({Km})

end for
end for
return [f, l1, l2, l3] that resulted in the best fitness
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7.3 Method (III) — The Proposed Hybrid Method

Method (III) is a combination of the initialization strategy of Method (II) with the fitness
measure from Method (I). The hybrid fitness measure is:

CIII({Km}) =
∑
m

ωsks
2 + ωar(fu − fv)2 + ωpup

2
u + ωpvp

2
v

(fu + fv)2
(7.4)

This measure clearly resembles (7.2), but has incorporated the parameter weights from
(7.3) in order to increase the use of prior knowledge. The most important similarity with
(7.2) is the denominator, which is proportional to focal length and penalizes very small
values of f . The importance of this feature, and the motivation for developing this hybrid
method, are illustrated in Chapter 8.
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Chapter 8

Autocalibration — Testing

The autocalibration methods were tested on a variety of datasets. The input projective
reconstructions were generated using the algorithm described in Chapter 4. Because the
goal of this research project is photorealistic reconstruction for intuitive inspection rather
than high accuracy, the metric used to evaluate the autocalibration algorithms is purely
visual: if the reconstruction looks like a reasonable rendition of the scene, then it is ac-
ceptable. A numerical 3D error for the reconstruction is unavailable for underwater video
in any case, as there is no ground truth available for the underwater sequences.

8.1 Results from Standard Datasets

The three autocalibration methods have been compared for two image sequences that have
appeared elsewhere in the 3D reconstruction literature[3]: the “Model House” sequence,
illustrated in Figure 8.1, and the “Dinosaur” sequence, illustrated in Figure 8.2. Both
sequences were taken using a stationary camera and the subject on a turntable, with
approximately 10 ◦ spacing between images.

Method (I) failed due to being initialized in the wrong basin, as shown in Figure 8.5.
There is another strong basin in the −l2 direction, and when the optimization is initialized
with [f, l1, l2, l3] = [1, 0, −2, 0] instead of [1, 0, 0, 0], the result is identical to
that of Method (I). Very convincing results were reported for this method using many
image sequences[37], which we have been unable to reproduce. It is possible that our
QUARC preconditioning is not being carried out in precisely the same way, or that some
detail of normalization has been missed. Even if this is the case, the failure to implement

42



(a) Image from the (b) Top view of
“Model House” sequence reconstructed points

(c) Front view (d) Side view

Figure 8.1: The “Model House” sequence, reconstructed using Method (III)

the QUARC method after careful review of the literature and consultation with the author
indicate that this method is sensitive to small details of the input projective reconstruction;
QUARC preconditioning is neither simple, nor robust.

Method (II) failed due to focal length collapse. The exhaustive search picks f = 0.3,
which has a cost similar to but slightly lower than those in the neighbourhood of f = 3.
The cost function makes no distinction between these cases, though a physical camera with
a short focal length is expected to have much smaller deviations from unit aspect ratio and
principal point location than one with a long focal length. Because the cost function has
no mechanism to penalize extremely low focal lengths, the optimization takes it into the
f u 0 region, where the decomposition of P is ill-defined and cost function values cannot
be trusted.

To understand the failure of the first two methods it is helpful to look at the behaviour
of the cost function in the solution neighbourhood, which has been plotted in Figures
8.5, 8.6 and 8.7. These figures illustrate the four-dimensional space formed by the four
parameters being optimized. The six graphs are of the same area in this space, and in each
two of the parameters are varied while the other two are held constant. In these plots,
it may sometimes appear that the optimized result is worse than the initialization. This
is because for each pane the two constant parameters are held at the initialization value
rather than the solution — the optimized solution is plotted in the initialization space, not
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(a) Image from the (b) Top view of
“Dinosaur” sequence reconstructed points

(c) Front view (d) Side view

Figure 8.2: The “Dinosaur” sequence, reconstructed using Method (III)

its own. Plots of the solution space confirm graphically that the optimization converges to
a local minimum. They are omitted here because the solution space of the two methods
that failed to converge to a sensible solution is not particularly informative — it is the
initialization space that explains their failure.

Method (III) clearly outperforms the other two, as shown in Figures 8.3 and 8.4, produc-
ing results with very little projective distortion that would serve well as an initialization
to metric bundle adjustment. As shown in 8.7, the optimization of Method (III)’s cost
function is initialized within an unambiguous basin. The only other basin is in the +l2
direction, and has a higher cost function value. The optimization step is fairly large in the
+f direction due to the true solution lying above the range 0.3 ≤ f ≤ 3. Although the
convergence from f = 3 is acceptable, an extended sample space of 0.3 ≤ f ≤ 10 could
easily be used.

There are clearly some errors in the reconstruction of Method (III): the cameras should
form a perfect circle in Figure 8.4, and the dinosaur has a double tail as illustrated in
Figure 8.8. These errors are not due to the autocalibration process, but are artifacts
of the merging step of the projective reconstruction engine described in Chapter 4. As
each triplet is merged into the existing reconstruction, error accumulates and the camera
“drifts” from its true path. The double tail is also a symptom of this phenomenon: the
tail is viewed from two sides, one near the beginning of the sequence and one near the
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end. The points near the end are triangulated using the cameras in which they are first
seen; these cameras have drifted and their location is incorrect, causing the points to be
triangulated in the wrong location. The projective reconstruction engine is “good enough”
rather than state of the art, and several improvements are discussed in Chapter 10 that
will reduce error accumulation and improve reconstruction quality. Despite the imperfect
projective reconstruction, the proposed Method (III) produces high-quality results with
virtually none of the projective distortion evident in Methods (I) and (II).
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Side view of the reconstructed model house

Method (I) Method (II) Method (III)

Top view of the reconstructed model house

Method (I) Method (II) Method (III)

Figure 8.3: Autocalibration results for The “Model House” sequence: A compar-
ison of the three metric reconstruction methods for the “Model House” sequence, shown
in Figure 8.1. Methods (I) and (II) exhibit severe projective distortion, but the separate
planes of the floor, wall, and roof of the house can be identified with some difficulty. By
contrast, the proposed Method (III) produces a result with only slight projective distortion,
illustrated by the slightly less than 90 ◦ angle between the floor and the wall.
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Side view of the reconstructed dinosaur

Method (I) Method (II) Method (III)

Top view of the reconstructed dinosaur

Method (I) Method (II) Method (III)

Figure 8.4: Autocalibration results for The “Dinosaur” sequence: A comparison
of the three metric reconstruction methods for the “Dinosaur” sequence, shown in Figure
8.2. The plane at infinity still intersects the reconstruction after applying Method (I). The
extreme proximity of the cameras to the scene in the side view of Method (II) indicates
focal length collapse. Method (III) produces acceptable results: the Dinosaur sequence is
clearly recognizable
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Figure 8.5: Solution neighbourhood of CI({Km}) plotted against its parameters:
The value of CI({Km}) is plotted for the “Dinosaur” sequence. The white circle shows the
naive initialization in the QUARC frame, and the red cross shows the optimized result.
Note the other prominent basin in the cost function in the −l2 direction; this basin contains
the true solution for l∞.
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Figure 8.6: Solution neighbourhood of CII({Km}) plotted against its parameters:
The value of CII({Km}) is plotted for the “Dinosaur” sequence. The white circle shows
the initialization found by exhaustive search, and the red cross shows the optimized result.
Note the large values compared to the other two methods. This basin is a numerical artifact
generated by focal length collapse.
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Figure 8.7: Solution neighbourhood of CIII({Km}) plotted against its parameters:
The value of CIII({Km}) is plotted for the “Dinosaur” sequence. The white circle shows the
initialization found by exhaustive search, and the red cross shows the optimized result. This
plot shows Method (III) working well: there is only one strong basin in this neighbourhood,
and it has a very low minimum. The optimized solution produces good results, as shown
in Figure 8.4.
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(a) Reconstruction of the (b) Image from the
“Dinosaur” sequence by Method (III) “Dinosaur” sequence

Figure 8.8: Closeup of the Dinosaur: reconstructed using Method (III). Note the
doubled tail on the dinosaur.
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8.2 Results from Underwater Video

Autocalibration Method (III) produces good results by combining the successful parts of
its parent methods. It is the only method that performed acceptably well on video se-
quences, and all video results presented here were autocalibrated using Method (III). The
results can be difficult to interpret on a 2D page, and Figures 8.9 and 8.10 may not ad-
equately represent the results on their own. To augment the reader’s understanding of
the 3D reconstruction results, the underwater videos themselves and video of the recon-
structions rotating in a 3D environment can be viewed online at the accompanying website:

http://www.eng.uwaterloo.ca/˜nrcavan/MASc UW Recon.html

8.2.1 Silty Shipwreck

The “Silty Shipwreck” sequence consists of 480 frames, with a resolution of 704x476 pixels.
The sequence is challenging due to the high level of silt in the video; moving silt particles
are often strong features in the image, and are tracked reliably. However, because they
are not stationary 3D points in a rigid scene, they must be discarded as outliers during
projective reconstruction.

Metric reconstruction results from the “Silty Shipwreck” sequence, generated by Method
(III), are presented in Figure 8.9. The video tracker identified 23 keyframes, and the re-
construction consists of three trifocal triplets built from keyframes 1-9-19, 19-20-21, and
21-22-23, containing 627 structure points. Clearly, some projective distortion remains de-
spite the autocalibration process. This is due to the small baseline of the video itself: rather
than circling around the scene, the ROV observed it from a relatively stationary viewpoint
compared to the depth of the scene. The scene is thus allowed to “stretch” away from the
cameras without penalty, since no side view of the scene can give additional constraints.
This also explains the distribution of keyframes selected for the reconstruction: the first
19 keyframes exhibit very little motion, and only a single triplet is built from them.

8.2.2 Ship’s Bow

The “Ship’s Bow” sequence consists of 155 frames, with a resolution of 640x480 pixels.
This sequence has no silt, but instead contains several fish that pose the same problem
of non-rigid structure. This sequence is also somewhat more blurry than the “Silty Ship-
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The “Silty Shipwreck” Reconstruction Top View

Reconstruction Side View Reconstruction Front View

Figure 8.9: 3D Reconstruction of the “Silty Shipwreck” sequence: The mussel-
covered mass, shown in blue, and the fallen mast, shown in red, are clearly recognizable
despite some remaining projective distortion. It can be difficult to interpret this 3D point
cloud using only 2D views. For a better understanding of the 3D structure of the recon-
struction, please visit the accompanying website to view a video of the reconstruction.
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wreck” sequence and has lower contrast, making feature tracking more difficult. A higher
correlation threshold was used to prevent mismatched points, as discussed in Chapter 2.1.2.

Metric reconstruction results from the “Ship’s Bow” sequence, generated by Method
(III), are presented in Figure 8.10. The video tracker identified 13 keyframes, and the
reconstruction consists of two trifocal triplets built from keyframes 1-5-9 and 9-11-13,
containing 291 structure points. There is no visible projective distortion remaining after
autocalibration.
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The “Ship’s Bow” Reconstruction Top View

Reconstruction Side View Reconstruction Front View

Figure 8.10: 3D Reconstruction of the “Ship’s Bow” sequence: The railings, shown
in red, and mast, shown in blue, are discernible above the deck; there is no visible projec-
tive distortion. It can be difficult to interpret this 3D point cloud using only 2D views.
For a better understanding of the 3D structure of the reconstruction, please visit the ac-
companying website to view a video of the reconstruction.
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Chapter 9

Conclusion

A software pipeline has been developed that can produce a 3D point cloud from uncali-
brated video data. Results from the pipeline’s three stages have been presented:

The video tracker, using the Lucas-Kanade optical flow algorithm described in Chapter
2, is able to reliably produce image feature correspondences for slow-moving underwater
video.

The projective reconstruction algorithm uses the T -based reconstruction algorithm de-
scribed in Chapter 4.1.1 as the engine for the robust solver described in Chapter 4.1.3.
This generally works quite well, but the solver will occasionally fail to produce accept-
able results, particularly on long video sequences. The failure is intermittent: run on the
same data set, the projective reconstruction algorithm will work most of the time but fail
completely in approximately 5% of trials. This is possible due to the random component
of the MSAC algorithm, which can produce different results given the same input. The
failure occurs in a single triplet, but because each triplet is appended to the reconstruction
through a shared camera, one bad link in the “chain” causes the whole reconstruction
process described in Chapter 4.2.3 to fail. The failure is easy to detect: reprojection error
remains low until the bad triplet is reached, and then immediately rises by several orders
of magnitude. For this reason, failed reconstructions were simply omitted from the test re-
sults, and the algorithm re-run until it succeeded. The result of a successful reconstruction
is a set of camera matrices and structure points whose reprojection error is comparable to
state-of-the-art methods, as shown in Table 5.1.

Three autocalibration methods were compared in Chapter 7, with the proposed hybrid
method adopting the best parts of two existing methods that failed to produce acceptable
results. This novel autocalibration method uses an exhaustive search initialization over
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reasonable camera focal lengths, described in Chapter 7.2, to obtain initial values for the
four parameters that most strongly influence projective distortion: [f, l1, l2, l3], the
camera’s focal length and the location of the plane at infinity. The initialization is then
optimized using a nonlinear gradient descent of the cost function outlined in Algorithm 7.1,
using the proposed hybrid fitness measure (7.4). The quality of the results is somewhat
dependant on the sequence. While the results shown in Figure 8.9 are good enough for
visualization, there is still projective distortion visible — the reconstruction is not fully
metric. The distortion is difficult to remove due to the relatively small motion of the video
camera. The small baseline allows the scene to “stretch” away from the cameras without
being strongly penalized by the autocalibration algorithm, which only enforces that each
camera be plausibly physical with near-zero skew and a unit aspect ratio. The cameras
in Figure 8.9 should all have the same intrinsic parameters, but instead they differ from
one another while each still remains plausible. The autocalibration algorithm intentionally
does not enforce these additional constraints in order to allow the reconstruction of videos
that include auto-focusing cameras or zoom lenses. For this sequence, however, no focus or
zooming occurred and including the additional constraints that all cameras have common
intrinsics would help prevent the “stretching” phenomenon.

This 3D reconstruction pipeline is capable of producing acceptable results for short
underwater video sequences, as shown in Figures 8.9 and 8.10. The current state of the
pipeline is a functional proof-of-concept, and several obvious improvements have been
documented in the literature and can be applied to enhance the pipeline’s accuracy and
robustness. These improvements will allow the handling of longer and more challenging
underwater video sequences.
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Chapter 10

Future Work

Several improvements have

10.1 Projective Reconstruction Improvements

The root of the projective solver’s instability, described in chapter 9, is the variability of
the MSAC results. Three improvements have been documented in the literature to deal
with this:

1. Implement a guided matching step [3] — Currently, the projective reconstruc-
tion algorithm can reject image features from the tracker as outliers, but cannot add
new ones. After the MSAC solution, however, the three-dimensional constraints of
T provide a more powerful matching criteria than the tracker’s two-dimensional as-
sumptions. By detecting and including as many image correspondences as possible
that fit the triplet’s estimated geometry, a much denser point cloud can be obtained
while simultaneously making optimization much more robust.

2. Implement a constrained bundle adjustment for T [30] — The bundle ad-
justment procedure described in Chapter 4.1.4 adjusts all parameters of all camera
matrices. This is desirable when bundle adjusting a large reconstruction, but in a sin-
gle triplet the geometric constraints imposed by T mean we can — and should[30] —
adjust only 18 parameters, corresponding to the degrees of freedom in T , instead of
the 36 parameters of all three camera matrices. This improvement will make bundle
adjustment of individual triplets both faster and more accurate.
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3. Integrate guided matching with constrained bundle adjustment [3] — By
running the two steps described above iteratively until convergence, their benefits
can be maximized. First, all image features consistent with the MSAC solution for T
are added by guided matching. Then, the estimate for T is refined using all points,
and any outliers are rejected. Subsequently, more points are added through guided
matching using the new and improved T , and this process is repeated until the total
number of points stabilizes.

Taken together, these three improvements can ensure a deterministic outcome when
estimating T for a given image triplet [3], and should solve the sporadic failures the current
implementation produces.

10.2 Autocalibration Improvements

The best way to remove any remaining projective distortion after autocalibration is by post-
processing the reconstruction with a metric bundle adjustment[34]. Unlike the general
projective scheme described in Chapter 4.1.4, metric bundle adjustment parameterizes
cameras not by the 12 elements of their camera matrix, but by the intrinsic and extrinsic
parameters embedded in that matrix according to (3.5). Any subset of the cameras can
be flagged as having common intrinsics, and bundle adjustment will enforce this during
optimization. Post-processing the results of this 3D reconstruction using metric bundle
adjustment may not completely remove the distortion from difficult sequences, but it is a
well-tested technique that can only help.
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