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Abstract

A study focusing on the classification of surficial materials in the Umiujalik Lake area using multisource data including
polarimetric SAR data, Landsat optical data, and DEM has been conducted. The purpose of this study is to explore
improving classification performance by comparing different feature combinations and different classifiers. First, four
classification methods were compared on different combinations of features of intensity and texture. Second, the effects
of dimension reduction algorithms for classification were investigated. Finally, six different dimension reduction methods
were used to see if they can improve or remain classification performance by using fewer dimensions. Results show that
adding texture features can help improve classification accuracy; the best classification accuracy is achieved by rotation
forest classification method using the combination of intensity and texture features; the classification performance remains

stable using fewer features.

1. Introduction

The Geological Survey of Canada of Natural Resources
Canada has launched a program named Geomapping for
Energy and Minerals (GEM). This program aims at pro-
viding detailed geospatial information to assist the north-
ern resource development in the Canadian Arctic and to
minimize the cost of field work (Shelat et al., [2012)). The
current study follows from that of [Shelat et al.| (2012) that
addressed the need for more accurate bedrock and surficial
geology maps of the northeast Thelon River region.

Optical data can measure primarily the reflective prop-
erties of the surficial materials in visible, near infrared,
and mid-infrared bands. Synthetic aperture radar (SAR)
images have several advantages for surficial material map-
ping. SAR data can measure the geometrical structure,
surface roughness, and moisture content of the target. Dif-
ferent combinations of incidence angle, polarization, and
frequency have been used in several previous studies (Bagh-
dadi et all |2006; |Srivastava et al., 2009). Short wave-
length visible bands in optical data sets are often used for
distinguishing deep and shallow water, and it has been
demonstrated that the cross-polarization SAR data have
good capability of recognizing both shallow areas and wa-
ter areas with high sediment loads (Shelat et al., 2012)).

In the pattern recognition and data mining fields, there
is no classification approach that guarantees the best re-
sults for all types of data. The appropriate classifier should
be selected based on the properties of data such as data
distribution, number of features, and linear /nonlinear sep-
arability. This study presented an assessment of the use of
RADARSAT-2 polarimetric data, Landsat multi-spectral
images, and a DEM for the classification of surface types.
The study first analyzed data characteristics using visual-
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ization techniques, and then compared the performance of
different classifiers using different combinations of features.

2. Background

2.1. Classifier comparisons in remote sensing

There are numerous papers applying different classifi-
cation techniques to remote sensing data sets. [Foody and
Mathur| (2004) evaluated the performance of the support
vector machine (SVM) classifier by comparing with other
classification methods such as discriminant analysis, de-
cision tree, and multilayer perceptron neural network for
imagery acquired by an airborne thematic mapper (ATM).
The most accurate classification was derived from the SVM
approach, and, with the largest training set, the SVM clas-
sification was significantly more accurate than the other
classifiers. [Pal| (2005) compared the performance of SVM
and the random forest (RF) method using Landsat En-
hanced Thematic Mapper Plus (ETM+) imagery of an
area in the UK with seven different land covers. The
results show that SVM and RF have similar performance
in terms of classification accuracy and training time. |Gis-
lason et al. (2006]) compared the accuracy of RF to other
ensemble methods including bagging and boosting using
multisource data including Landsat Multispectral Scan-
ner (MSS), elevation, slope, and aspect data. The au-
thors found that RF is comparable to bagging and boost-
ing in terms of classification accuracy, but RF is much
faster in training and does not overfit the data. |Zou et al.
(2010) proposed two strategies to select features extracted
from polarimetric SAR data by various decomposition al-
gorithms including manual selection and a simple criterion,
and used extremely randomized clustering forests (ER-
CFs), a random forest algorithm for classification. Results
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show that the ERCFs achieve competitive performance

while requiring less time for training and testing.
Generally speaking, SVM and RF are two state-of-the-

art classification techniques in recent years. They have

been successfully applied for remote sensing data and achieved

comparable classification accuracy in most of data sets. In
our paper, we compared both methods with an ensemble
classification technique, i.e., the rotation forest algorithm
(RoF) (Rodriguez et all [2006) which has been demon-
strated to be better than random forests and other ensem-
ble classifiers for classification of hyperspectral imagery
(Xia et all 2013). Also, we not only used intensity, but
also texture as well as the integration of both of them as
features.

2.2. Dimension Reduction Methods

Dimension reduction techniques are usually required
when the number of dimensions is high. In remote sens-
ing, these techniques are mainly applied for hyperspec-
tral imagery (Chen and Qian| [2008; |Jimenez and Land-
grebe), [1999; Plaza et al., |2009)). Apart from these, there
is also literature using dimension reduction methods for
SAR imagery. [Zou et al.| (2010]) used a heuristic automatic
feature combination technique to select PolSAR features.
It iteratively selects features with highest score measured
by a selection metric. [Haddadi et al| (2011]) proposed a
feature selection method using a combination of a genetic
algorithm and an artificial neural network to select features
extracted from polarimetric SAR data by various decom-
position algorithms. Tu et al.|(2012)) chose fourteen groups
of polarimetric signatures to construct a high-dimensional
polarimetric feature space, and used a method based on
Laplacian eigenmaps for dimension reduction. We studied
the effects of dimension reduction methods on the concate-
nated features for different classifiers in our paper.

3. Data

3.1. Study Area

The study area is the same as in |[Shelat et al.| (2012).
The area is located in Kivalliq Region of Nunavut north
of the Thelon River. The geographic boundary for the
study area is between 65°22" and 65°41’ North and 97°31’
and 98°07" West. The north and north-eastern part of
the study area is mainly covered by numerous medium-to-
large lakes and ponds with relief close to 160 m, and the
largest lake is the Umiujalik Lake. The southern part of
the study area is mainly covered by glacial till interspersed
with bedrock and boulder exposures with maximum relief
of 240m. The study is located within the Keewatin ice
divide of the Laurentide ice sheet. Glacial material, includ-
ing drumlinoid ridges, eskers, Rogen moraines, hummocky
terrains, crag and tail structures, and striated surfaces
(Thomas, [1981)), are deposited along northerly trending
drainage systems to the Umiujalik Lake area. Thus, the

surficial materials in the study area include silty and grav-
elly sand (till), ice contact and fluvial deposits (sand and
gravel), silt and clay, till veneer, and exposed bedrock
surfaces.

3.2. Data

Three RADARSAT-2 single look complex (SLC) fine
quad (FQ) polarimetric SAR imageries have been acquired
for this study area during August and September of 2009.
A detailed description can be found elsewhere (LaRocque
et al.l 2012} [Shelat et al., [2012). The FQ image sets
with medium incidence angle (FQ12) achieved best over-
all classification accuracy of 48.7% (Shelat et al.; |2012]).
Thus, here we also focused our testing on the FQ12 image
acquired on August 28, 2009. This polarimetric image has
an incidence angle of 31.37° to 33.04° from near range
to far range. The swath width is 25km. The range and
azimuth pixel spacing are 4.73m and 4.97m, respectively.
The nominal resolution is 10m in the near range and 9.5m
in the far range. The local acquisition time is 13 : 09.

Landsat-7 Enhanced Thematic Mapper were acquired
in North American Datum 83 (NAD83) Universal Trans-
verse Mercator (UTM) Zone 14 orthorectified format over
a three-year time period starting in July, 2001 (LaRocque
et al., |2012). The six optical bands including TM1-5 and
TMY7 in 30m spatial resolution were used.

A 1 : 50000 digital elevation model (DEM) was also
used in this study to orthorectify the RADARSAT images
in the preprocessing. The DEM data used was extracted
from Canadian Digital Elevation Data (CDED). It has
9.5m spatial resolution in the x direction and 23.2m in
the y direction. The elevation information was also used
as a feature in the classification step.

8.2.1. Supporting data for validation

The training areas and validation data used in this
study were obtained from (LaRocque et all [2012; |She-
lat et al. |2012)). They derived these data from photo-
interpretation of both aerial panchromatic photographs
and Landsat-7 ETM images, for which we note there may
be some deviance from those products and the require-
ments for this study with respect to actual land cover. In
the validation, training data were excluded. A total of nine
surficial material classes are used for the study, namely:
(i) “bedrock (BK)”, (ii) “boulders (BR)”, (iii) “organic
deposits (OD)”, (iv) “sand and gravel (SG)”, (v) “till and
vegetation (TV)”, (vi) "thick till (TK)”, (vii) “thin till
(TN)”, (viii) “deep water (DW)”, and (viii) “shallow wa-
ter (SW)”. The map of training areas (Fig. [1]) consists
of disjoint homogeneous training areas, each of which is
assigned to one of the nine thematic classes. More details
about the training areas can be referred to the previous
papers (LaRocque et all [2012; [Shelat et all [2012). In
the validation, training data were excluded to ensure the
validation was performed using mutually exclusive, inde-
pendent data to provide a more reliable estimate of clas-
sification accuracy for the study area.
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Figure 1: Training areas overlaid on optical data shown on the Landsat-7 TM 3, TM 2, and TM 1 RGB true color-composite image.



4. Research Questions and Methodology

4.1. Research Questions

Our primary objective of this study is to achieve best
accuracy for surficial material classification. We focus our
attention on the following three research questions:

e Question a) For different combinations of RADARSAT-

2 magnitude bands, Landsat-7 bands, DEM, and
their texture features, which one has the best sepa-
rability? Especially, we investigated if the classifica-
tion accuracy can improve by concatenating texture
features to feature sets.

e Question b) Which classifier on which group of fea-
tures has the best classification accuracy? We com-
pared the following four classification methods: max-
imum likelihood classifier, support vector machines,
random forests, and rotation forests.

e Question ¢) Can dimension reduction methods help
improve classification accuracy? We tested on com-
binations of different dimension reduction techniques
and different classifiers.

4.2. Methodology and Analysis

4.2.1. Feature Extraction

The features used in this research include both inten-
sity and texture features. Intensity features include the
magnitude of the four polarizations of SAR data (HH,
HV, VH, and VV), the six optical bands of Landsat data,
and the height of the DEM data. For texture features,
we used gray-level covariance matrix (GLCM) (Haralick
et al., [1973). The probabilities provide a second-order
method for generating texture features which capture the
correlations of pairwise pixels in the spatial window of
interest (Clausi, [2002)). The probability measure is defined
as

Pr(z) ={Ci; | (6,0)} (1)

where C}; is the co-occurrence probability between grey
levels ¢ and j, ¢ is the interpixel distance and 6 is the
orientation. Cj; is defined as:

Ci; = _ Piq (2)
ij:l Py
where P;; is the number of occurrences of grey levels ¢ and
j, and G is the quantized number of grey levels. Common
GLCM statistics include uniformity, entropy, dissimilarity,
contrast, inverse difference, inverse different moment, and
correlation (Clausil 2002]).

4.2.2. Data Visualization

The goal of data visualization is to have a visual in-
terpretation of the data characteristics (e.g., distribution,
separability, etc.) by projecting the data into two di-
mensions or three dimensions. In this paper, linear dis-
criminative analysis (LDA) (Hastie et al., 2009) was used
for visualization of data. LDA is a well-known dimen-
sion reduction method in pattern recognition that aims to
maximize the intra-class variance and minimize the inter-
class variance simultaneously. For a two-class problem, the
objective function of LDA is

S WTssW 3)
Sw  WTSyWw

where W is the transformation matrix to calculate, Sp is
the intra-class covariance matrix, and Sy is the inter-class
covariance matrix.

LDA can be used for visualization of high-dimensional
data when the number is reduced to two or three. Com-
pared to principal component analysis (PCA), LDA uses
training data to define both intra-class and inter-class co-
variance matrices, so it can better reflect the class sepa-
rability of the data and is more relevant to classification
performance.

J(W) =

4.2.8. Classification

Classification of land cover types has been studied for
decades in the remote sensing field. Previously a widely-
used classification method was the maximum likelihood
classifier (MLC) (Mather and Tso| [2003), in which the
predicted label of a sample is the one that maximizes
the posterior probability. However, for MLC, the num-
ber of training samples required increases exponentially as
the number of feature dimensions increases. In addition,
the inverse matrix of the covariance matrix becomes ill-
conditioned when two features in a class are highly corre-
lated.

Another popular classification method, support vector
machines (SVM), can overcome the above limitations of
MLC. The basic idea of SVM is straightforward: to maxi-
mize the margin between “support vectors” that separate
different classes. In statistical learning theory, the upper
bound of the expected risk can be minimized when the
margin is maximized by the separating hyperplane (Vap-
nik}, {1998)). The most important reason that makes SVM
popular is the “kernel trick” whereby the original data can
be implicitly mapped to high-dimensional or even infinite
feature space. The data which is not linearly separable in
the original space can be separated by a hyperplane after
it is mapped to the new space. The main disadvantage of
SVM is that it cannot be directly generalized to a multi-
class problem. Also, its performance decreases when there
are irrelevant features (Weston et al.l |2000). In practi-
cal applications, performing feature selection before using
SVM might offer improvements.



Recently, random forests (RF) have been introduced in
the remote sensing field(Pall, 2005) (Gislason et al., [2006]).
RF is an ensemble method that uses decision trees as base
classifiers. The idea of ensemble methods is to combine
multiple weak classifiers into one strong classifier. The
predictions by weak classifiers usually have high variance,
which can be reduced significantly by majority voting or
averaging of the results of the weak classifiers. The key of
an effective ensemble method is to lower the correlation of
the results by each classifier while keeping the results un-
biased. Compared to bagging (or bootstrap aggregating),
random forests use a random feature subspace method
which can make the results in each classifier more diverse.
RF is robust for high-dimensional data even when the data
are noisy. Also, RF can be inherently used for multi-class
classification problems. The main disadvantage of RF is,
unlike MLC and SVM, it does not have a statistical or
geometric meaning, and the results are thereby difficult to
interpret.

The rotation forest (RoF) algorithm (Rodriguez et al.,
2006) is another type of ensemble methods. The base
classifier can be any weak classifier that has low bias and
high variance. Bootstrap sampling is transformed by a
rotation matrix R; before using the weak classifier in
order to increase diversity.

W @ (My)
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where pcg}j), e ,pcgf" ) are coefficients of the principal com-

ponents obtained from training samples. By introducing
the rotation matrix, both accuracy and individual accu-
racy can be improved.

4.2.4. Dimension Reduction for Classification

Dimension reduction methods include feature trans-
formation and feature selection methods. Feature trans-
formation means performing linear or non-linear trans-
formation on the feature space to generate new features,
sometimes in lower dimension space. For redundant data,
feature transformation methods are helpful because the
intrinsic dimensionality of the data is typically less than
the number of original features. For noisy data, feature
transformation methods have the risk of mixing irrelevant
features with strong features when creating new features.

In remote sensing, PCA is a popular dimension re-
duction method (Farrell and Mersereau, [2005) due to its
simplicity and robustness. However, PCA is sensitive to
scaling because it is based on global variance, and the
variance is not directly related to classification. LDA uses
label information of training data and is itself a classifi-
cation method, but the number of dimensions has to be
smaller than the number of classes due to the rank of

the intra-class covariance matrix. A recently developed
dimension method called “local Fisher discriminant anal-
ysis (LFDA)” (Sugiyamal [2007) can overcome this lim-
itation by reformulating the objective function of LDA.
This method has been successfully applied to hyperspec-
tral data (Li et al.,|2012).

Feature selection attempts to remove redundant or ir-
relevant features that might reduce classification perfor-
mance. Feature selection methods can be grouped into
wrapper methods, filter methods, and embedded meth-
ods (Guyon and Elisseeff, 2003). For SVM, the recursive
feature elimination (RFE) algorithm (Guyon and Elisse-
effl [2003)) is often used for feature selection. RFE is a
wrapper method that selects or eliminates features based
on a predictive model. RFE uses the SVM model by
eliminating the features with the smallest weights itera-
tively. However, RFE which can remove irrelevant features
is incapable of removing redundant features because the
weights of redundant features are almost the same (Xie
et al., 2006]). Another popular wrapper method is forward
selection (FW) (Guyon and Elisseeft] 2003). It is a greedy
algorithm in which features that improve the classification
accuracy most are selected in each iteration until the clas-
sification accuracy is no longer improved. FW can avoid
redundant features to be selected, but the classification
should be performed as many times as the number of
features in each iteration. So FW is not as efficient as
RFE when the feature dimension is very high.

Compared to MLC and SVM, RF is robust to both
redundant features and irrelevant features (Pal,|2005). RF
is also an embedded method by itself because the feature
importance generated in the learning step can be used for
feature selection. A common method of performing feature
selection for random forests is RFE (Chehata et al., |2009))
which is similar to RFE using SVM. RoF has similar prop-
erties to RF. Also, RoF performs feature transformation
without dimension reduction implicitly using the rotation
matrix. However, there is no known study with respect to
how dimension reduction affects the classification perfor-
mance by RoF.

5. Tests and Analysis

5.1. Data Preparation

For this study, half of the homogeneous training area
samples were randomly selected to be training samples and
the other half used as test samples. This ensures that a
pixel and its neighbors belong to the same training or test
samples; otherwise, there would be correlation between
texture features of training and test samples and thus the
classification accuracy would probably be over-estimated.
The number of training and test samples for each class is
shown in Table[Il All feature values were normalized to
between 0 and 1. GLCM texture features were extracted
from all Landsat bands, RADARSAT-2 polarizations, and
DEM. The window size of GLCM was set to 15 x 15, and



Table 1: Number of training and test samples in each class (BK-bedrock; BR~boulders; OD-organic deposits; SG-sand and gravel; TV-till

and vegetation; TK-thick till; TN-thin till; DW-deep water; SW-shallow water)

Land cover class codes BK | BR | OD | SG | TV | TK | TN | DW | SW
Number of training samples | 212 | 339 | 383 | 388 | 968 | 632 | 292 | 701 | 1044
Number of test samples 216 | 341 | 386 | 392 | 983 | 624 | 294 | 829 | 1297

the number of gray levels was set to 64. Both parame-
ters were optimized by grid search. The offset was set
to [0,1] for simplicity. The intensity and texture features
were concatenated together. Statistics including contrast,
correlation, and entropy were used as texture features.
Texture statistics were calculated for each pixel in each
intensity image.

5.2. Data Visualization Results

We performed LDA on the training data. The n x 2
transformation matrix was obtained by minimizing .
The transformation matrix was then applied to the test
data to obtain two-dimensional points. The visualiza-
tion using different combinations of features is shown in
Fig. @] For ease of viewing, a subset of 1000 samples
were randomly selected from the test samples to plot. We
can see that the visualization result is consistent with
the class separability result in [Shelat et al.| (2012). In
Fig. 2| (a), water classes (“deep water” and “shallow wa-
ter”), vegetation classes (“thick till”, “thin till”, “till and
vegetation”, and “organic deposits”), and non-vegetation
classes (“bedrock”, “boulders”, and “sand and gravel”)
range approximately from the left side to the right side.
However, the separability within those classes is low. For
the non-vegetation classes, samples are fully mixed in the
two-dimension plot.

In Fig. [2| (b), we can see the gap between three clus-
ters (water classes, vegetation classes, and non-vegetation
classes) is wider when using the Landsat data. Also, there
is an evident gap between shallow water and deep water.
In the right part of the plot, the samples are roughly more
vegetated from top to bottom. For the non-vegetation
cluster in the top-right side of the plot, boulder samples are
approximately on top of the other non-vegetation classes,
but the other two classes are still mixed together. For the
vegetation cluster in the bottom-right, the sub-classes are
less separable than (a).

The improvement of class separability is not signifi-
cant when combining RADARSAT magnitude bands and
Landsat bands with DEM, or combining both intensity
and texture features, as shown in Fig. 2fc) and (d). How-
ever, data information is typically removed when mapping
multi-dimensional feature sets into only two-dimension space
for visualization, which might affect the class separability.
Nevertheless, we also need to investigate classification per-
formance to evaluate the class separability of the features.

5.8. Classification

For SVM, the LibSVM library (Chang and Lin, [2011))
was used for testing. Grid search was performed to find the

optimal set of parameters (C and ) for each combination
of features. Radial basis function (RBF) kernel was used
for testing. RF, RoF, and MLC were all implemented in
Matlab. The standard decision tree function was used in
RF and RoF. The number of trees in RF was set to 500.
The number of variables to select for each decision split
was set to the square root of the number of variables. For
RoF, the the number of trees was set 100, and LDA was
used as the feature transformation method to obtain the
rotation matrix. The number of features in the subspace
was three, and eight classes were eliminated for each boot-
strap data to achieve the largest diversity.

The classification results of four classifiers are shown
in Table For Landsat intensity bands, MLC is com-
parable to SVM, RF, and RoF. The classification accu-
racy increases by including GLCM texture features. For
RADARSAT-2 imagery, the accuracy can increase by 10.4%
for all the classifiers after including GLCM texture. The
incorporation of DEM can also increase the overall classi-
fication accuracy, for example, from 85.5% to 89.6% using
the random forest classifier, indicating that the height
information can be a good feature for discriminating some
land cover types. When combining both intensity and
texture features, however, the performance of MLC drops
greatly because of the curse of dimensionality. Classifica-
tion accuracy by SVM also drops mildly potentially be-
cause irrelevant bands are included. In contrast, the over-
all accuracy by both RF and RoF increase with increasing
features. The highest classification accuracy among all
combinations of features is obtained by RoF (94.4%) while
using the combination of RADARSAT quad-pol scenes,
Landsat bands, the DEM, and the corresponding GLCM
texture statistics. It has higher classification accuracy
than SVM and RF by 1.4% and 2.1% respectively. When
the number dimensions are larger than 10, the RoF algo-
rithm outperforms the second best classifier in five out
of six tests using different feature combinations, which
indicates its constantly good capability of classifying high-
dimensional data. Among these tests, RoF on the com-
bination of Landsat-7 bands and their GLCM features
achieves the classification accuracy 84.7%, 5.0% higher
than the next best classifier, i.e., the SVM classifier.

The final classification maps by RoF are shown in Fig.
Generally speaking, the labels become smoother when
texture features are used. Smooth labeling is often con-
sidered as an improvement by overcoming the within-class
variation with the aid of spatial information, while over-
smoothing might tend to lose details, especially land covers
that are innately scattered. Comparing two classification
maps in Fig. the most significant difference between
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Figure 2: Projection of multi-dimensional feature sets into 2-dimensions using LDA using (a). RADARSAT-2 magnitude data; (b) Landsat-7
data; (c¢) Combination of RADARSAT-2 manitude, Landsat-7, and DEM data; (d) Combination of RADARSAT-2 manitude, Landsat-7,

DEM data, and their corresponding texture features.




Table 2: Overall accuracy and corresponding Kappa.

“GLCM” means GLCM features (entropy, contrast, and correlation) for the

corresponding intensity bands. The number of dimensions of each combination is in the parentheses.

Feature Combinations MLC SVM RF RoF

RADARSAT-2 bands (RAD) (4) 69.1% (0.64) | 72.8% (0.68) | 73.4% (0.69) 70.2% (0.65)
Landsat-7 bands (LAN) (6) 76.7% (0.73) | 77.7% (0.74) | 74.9% (0.70) 73.2% (0.68)
RAD + LAN (10) 86.2% (0.84) | 88.4% (0.86) | 85.5% (0.83) | 88.7% (0.87)
RAD + LAN + DEM (11) 86.5% (0.84) | 91.8% (0.90) 89.6% (0.88) | 92.2% (0.91)
RAD + GLCM (16) 74.7% (0.70) | 85.6% (0.83) | 82.7% (0.80) | 84.1% (0.81)
LAN + GLCM (24) 69.8% (0.65) | 79.7% (0.76) | 77.6% (0.74) | 84.7% (0.82)
RAD + LAN + GLCM (40) 66.4% (0.62) | 92.6% (0.91) | 91.2% (0.90) | 93.6% (0.93)
RAD + LAN + DEM + GLCM (44) | 55.6% (0.50) | 93.0% (0.92) | 92.3% (0.91) | 94.4% (0.93)

two maps is that the sand and gravel and organic deposits
classes which are fragmented in the left result turn into
larger homogeneous regions after texture features are used,
as shown inside the red circles. Even though the classifi-
cation accuracy using texture features (94.4 %) is higher
than that without using texture features (92.2%), it is not
appropriate to assert that the right result is better than
the left one. It is better to make additional validation on
those regions before determining the feature combination
for final classification.

5.4. Effects of Dimension Reduction Methods to Classifi-
cation Accuracy

We test three feature transformation methods (PCA,
LDA, and LFDA) and three feature selection methods:
one FW method using SVM and two RFE methods us-
ing SVM and RF respectively on the combination of 44
features including intensity and texture, using SVM, RF,
and MLC. The same data set as that in Section [£.3]is used
for testing. The overall classification accuracy (OA) by
different methods from 2 to 44 dimensions can be seen in

Fig. @

For MLC, feature transformation methods produce higher

classification results than using the full feature set. LDA is
better than PCA and LFDA. However, at two dimensions,
the classification accuracy of LDA is the highest for all the
DR methods. This shows evidence for using LDA instead
of other dimension reduction methods for visualization
in our research. Note that LDA can be no more than
eight dimensions because there are total of eight classes.
Moreover, feature selection methods such as FW and RF-
RFE constantly perform worse than feature transforma-
tion methods. The highest classification accuracy (87.5
%) is achieved by PCA at the dimension of 17.

For SVM, however, two feature selection methods, i.e.,
FW and RF-RFE, achieve higher classification accuracy
and stability than other dimension reduction methods.
Using the forward selection method, the overall accuracy
of using only six features (91.5%) is close to using all the
features (92.3%). If we wish to select features that can
outperform compared to using the whole feature set, RF-
RFE will be a good choice because the accuracy using
26 features (93.1%) is slightly better than using all the
features. However, when the dimension is reduced to a

small number, both RF-RFE and SVM-RFE will mistak-
enly remove useful features because they are not able to
detect redundant features. When the number of dimen-
sions grows to more than 28, the classification accuracy
by most of the dimension methods except LFDA has no
much difference.

Compared to SVM, RF and RoF have fewer fluctua-
tions in classification accuracy compared to RF and RoF
with increasing feature space dimensionality. Their perfor-
mances are stable when the dimension is reduced to more
than ten, no matter what dimension reduction method is
used. However, there is little increase using fewer dimen-
sions over using the original features. When the number
of reduced dimensions is less than ten, forward selection is
better than other dimension reduction methods for these
two classifiers. The overall classification accuracy achieves
92.63% by RoF when only six dimensions are used.

Comparing results of all the classifiers, RoF using RA-
DARSAT-2 polarizations, Landsat intensity, and the tex-
ture features of them can achieve the highest accuracy
(94.4%), and RoF tends to have higher classification rates
compared to other classifiers when increasing the number
of features. Also, the performances of RF and RoF are
both robust to different dimension reduction techniques.

6. Conclusions and Future Work

In this paper, the classification of surficial material in
the Umiujalik Lake in Nunavut using RADARSAT polari-
metric and Landsat images, and DEM data was explored.
We first investigated the separability of data using data
visualization techniques. Then we tested four classification
methods on different combinations of features. Finally, we
tested the effect of different dimension reduction methods
on classification accuracy.

Experiments showed that texture features can help im-
prove classification accuracy, especially for the RADARSAT-
2 polarimetric data. The highest classification accuracy
is achieved using rotation forests on the combination of
intensity and texture features of RADARSAT magnitude,
Landsat intensity bands, and DEM. Feature transforma-
tion methods (LDA, PCA, and LFDA) are capable of im-
proving the classification accuracy of MLC by reducing



Figure 3: Classification map by the rotation forest algorithm. The left result uses RADATSAT-2 magnitude, Landsat-7 intensity and DEM

bands (11 bands), and the right one uses both intensity and GLCM texture bands (44 bands).

the “curse of dimensionality”, but the classification accu-
racy is no higher than only using intensity and texture
bands. For the feature selection methods, FW-SVM has
very good performance for SVM classifier when we wish
to only use a small number of features. SVM using RF-
RFE, however, can achieve slightly higher accuracy than
other methods. Compared to MLC and SVM, RF and
RoF are less sensitive to different dimension reduction
methods, and the classification accuracy become stable
when the number of dimensions is more than ten. Future
work will be focus on incorporating spatial context, such
as using Markov random fields, to help further improve
classification accuracy.
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