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Abstract

Ice mapping is important for numerous applications such
as ship navigation and mining in the Arctic regions. The
need for ice mapping is increasing to support operations
in the Arctic regions. We propose an automatic SAR ice
concentration estimation method using convolutional neu-
ral network (CNN) followed by a stochastic fully connected
random field (SFCRF). CNN can generate the proper fea-
tures for robust ice concentration estimation. The low
boundary accuracy of CNN is overcome by introducing
SAR image structure information into the CNN output using
SFCRF. This method uses ice charts as training data to take
advantage of the abundant ice chart archives, which makes
it appealing for operational ice mapping purposes. It shows
robustness to melting conditions on our test dataset. The
overall precision of the ice concentration estimate is less
than 0.12 (12%) when validated on ice chart. This method
can be naturally extended for ice water classification. An
overall classification precision of 96% is achieved by using
a simple thresholding on the ice concentration estimates.

1. Introduction

There has been a growing need for accurate high res-
olution ice maps of the Arctic region in recent years due
to increasing human activities in the Arctic region, such as
shipping and mining [!4, 31]. Monitoring of the sea ice
state depends heavily on satellite sensors. Synthetic aper-
ture radar (SAR) is a type of active microwave sensor that
is widely used in sea ice mapping [31]. Compared to other
types of satellite imaging sensors such as optical and pas-
sive microwave sensors, SARs can collect relatively high
resolution data (a few meters to one hundred meters) of the
earth’s surface with or without sun illumination under al-
most all weather conditions [2]. This is essential for contin-
uous and operational ice monitoring because of the frequent
cloud coverage and the long periods with no sun illumina-

tion in the Arctic regions.

Due to the lack of robust SAR ice classification and ice
concentration estimation algorithms, SAR images are still
manually interpreted by ice analysts in ice analysis centers,
such as the Canadian Ice Service [4], for operational ice
mapping. The manually interpreted ice maps, which are
called “ice charts”, are composed of large polygons labeled
with ice concentration levels (the percentage of ice cover-
age in the polygon). Ice charts are currently the main data
source for operational uses in the Arctic regions.

There has been a constant effort toward automatically
ice/water classification and ice concentration estimation in
SAR images. Those algorithms normally consist of two
steps: feature extraction and classification/regression. Im-
age features such as local backscatter statistics [27, 26, 24,

, 16, 30, 11, 33], SAR backscatter features [12] and var-
ious texture features [23] have been used. Numerous clas-
sification/regression models have been used including lin-
ear and nonlinear regression [24], neural networks [17, 16],
Bayesian classifier [33] and support vector machine [23].
Incorporating spatial context information has also been ex-
plored by using image segmentation [30] and MRF models
[23].

The effectiveness of classification/regression algorithms
using handcrafted features is largely determined by the fea-
tures used [3]. Robust algorithms require features that can
capture the variability of the appearance of ice and water.
The difficulty for designing a robust SAR ice concentration
estimation algorithm mainly lies in three aspects:

1. Heavy speckle noise contamination of SAR images
due to the nature of coherent imaging system [9].

2. Incidence angle effect. The pixels with smaller in-
cidence angles (close to nadir) have larger signal re-
flectance. Water is more effected compared to ice by
the incidence angle effect. Due to the variation of in-
cidence angle, water can appears very dark or even
brighter than ice in SAR images.



3. The sensitivity of SAR signals to sea surface condi-
tions such as wind speed, moisture, surface roughness,
snow cover and salinity [5]. The appearances of ice
and water are very different under different surface
conditions (e.g., melting ice and water have similar
SAR image appearance).

The complex relationship between SAR signals, the
imaging geometry and underlying physical processes makes
it challenging to design features for robust ice concentration
estimation. A potential solution is to learn image features
for the task. This has motivated the use of a convolutional
neural network (CNN) as a regression model for ice concen-
tration estimation in this study. CNN has been demonstrated
to be able to achieve high performance on complicated im-
age recognition tasks [22, 7, 19, 15] due to its ability to
extract robust and abstract representations that are invariant
to local image transformations. This invariance also leads
to coarser grain of the results. Boundaries and small scale
structures are poorly captured which hinders its application
in pixel-wise image labeling.

Fully connected conditional random fields (FCRFs) have
been proposed to recover details of CNN outputs for seman-
tic labeling [6]. A similar approach is adopted in this work.
We build a stochastic fully connected conditional random
field (SFCRF) on the CNN output layer to incorporate im-
age structure information to recover detailed structures, es-
pecially boundaries. SFCREF is a kind of fully connected
CRF, but with randomly selected cliques based on similarity
measurement [28]. SFCRF has two major advantages com-
pared to FCRFs [18] in image classification applications:
it does not require the pairwise potential function to have
certain forms; it can be applied on large images (such as
satellite images) efficiently [28].

The training of CNN requires a large amount of training
samples to prevent overfitting due to its large number of pa-
rameters [19]. Ice charts are used as training samples in the
proposed model to take advantage of the abundant archive
ice chart available through the Canadian Ice Service. Ice
charts are currently produced in ice service centers on a
regular basis, so the proposed method can be potentially
adopted into operational centers.

There are three main advantages of the proposed method:
it is robust to a variety of surface conditions (e.g., during the
melting season); it can generate high precision ice concen-
tration with rich details as compared to ice charts; it can be
extended for accurate ice/water classification using simple
classification algorithm such as thresholding.

2. Methodology

The diagram of the proposed method is illustrated in Fig.
1. The CNN is trained using ice charts, which contain ice
concentration at intervals of 10%. The CNN takes dual-

band SAR images as input and output ice concentration
maps which are then refined by SFCRF. For the purpose of
ice water classification, one can apply simple thresholding
to the ice concentration maps from CNN-SFCRF.
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Figure 2: An illustration of SFCRF applied to ice concen-
tration estimate from CNN. The first image is the HH band
SAR image in which the dark areas are ice. The second im-
age is the ice concentration estimation from CNN. Image 3
to 5 are the refined ice concentration by SFCRF at iteration
1, 2 and 10 respectively.

2.1. Ice concentration estimation using convolu-
tional neural network

CNN is a type of neural network first proposed by LeCun
in 1988 [20] for digits recognition. A CNN is a stack of al-
ternating convolutional layers and pooling layers with one
or several fully connected layers on top. The convolutional
layers use convolution filters as weights to enforce weight
sharing and local connectivity. As a result, the number of
weights is decreased compared to fully connected neural
networks and spatial information is modeled. A pooling
layer is a sub-sampling layer, which is used after each con-
volutional layer to provide CNN the ability to extract ab-
stract features.

In this study, a three-layer CNN model is used: two
convolutional layers in the bottom and one fully connected
layer on top. ReLUs (rectified linear unit) are used for con-
volutional layers and linear units are used for the output
layer. The first convolutional layer contains 64 filters of
size 7 by 7. The second convolutional layer contains 128
filters of size 5 by 5. The fully connected layer has one unit
that generates the ice concentration estimate.

Randomly chosen SAR image patches of size 41 by 41
and the corresponding ice concentration indicated in the ice
chart are extracted as training samples. The SAR images
used are not always fully covered by the ice charts available,
so the number of training samples extracted from each SAR
image varies from around 10° to 10%.

Fig. 2 shows an example of estimated ice concentration
(column 2). The estimated ice concentration has a blurred
appearance. It can capture the existence of ice and water,
but boundaries and precise locations of ice are missing. This
missing information is recovered by SFCRF. Column 3-5 of
Fig. 2 will be described in the next section.
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Figure 1: Illustration of the proposed method

H

Figure 3: Illustration of SFCRF graph connections. Remote
connections (dashed lines) are build in a random manner
[28].

2.2. Ice concentration map refinement using
stochastic fully connected random field

CNN treats each patch individually in the classification
step, i.e., it does not apply spatial information. We incorpo-
rate the spatial information to refine the CNN’s result by us-
ing a conditional random field. Research has shown the ef-
fectiveness of conventional conditional random field models
in spatial structure modeling, however they use local con-
nectivity which enforces undesired smoothness in bound-
aries [29, 1]. Long range connectivity and fully connected
approaches address this problem [18]. Motivated by this
fact, to this end we incorporate a stochastically fully con-
nected conditional random field (SFCRF) to apply spatial
information while preserving the boundaries.

SFCRFs are fully connected random fields in which
cliques are defined stochastically [28]. SFCRF models the

conditional distribution P(Y'|X) in the form of:
PY|X) = ey
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where Y is the ice concentration map given the correspond-
ing SAR image X. Z(X) is the partition function, ¢, and
1, are the unary and pairwise potential function respec-
tively. 3 plays the role of regularizer to determine the im-
portance of the pairwise term (i.e., spatial information) in
the model. C; is the set of cliques for unit ¢ which defines
the connectivity of unit ¢ with its neighboring units. This
connectivity is defined by a stochastic function:
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Where, P;; measures the similarity between two nodes 7 and
7, Qi; measures the spatial closeness of these two nodes and
~ encodes the sparsity of the connection. (0, 1) is a ran-
dom number drawn from an uniform distribution between 0
and 1. Closer and more similar nodes are more likely to be
connected in the SFCRF. An illustration of SFCRF model
is shown in Fig. 3. The clique connectives in the model
are specified stochastically as (2), therefore, SFCRF is ca-
pable of modeling long range information efficiently while
considering the computational complexity of the model.
The unary potential in (1) is formulated as:
(5 — ")
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where yfo) is the ice concentration calculated by CNN and

o, controls the similarity measurement. The pairwise po-



tential is applied by enforcing the spatial similarity between
two neighboring nodes regarding to their labels:
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in which, P;; and Q;; are weight that enforce the similarity

and spatial closeness in to the pairwise potential. They are
defined as:
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To address the possible noise in the SAR image, the weights
are computed in a patch based approach where k iterates
through the patch around pixel 7 and j. The effect of weights
P;; and @);; are controlled by o, and o, respectively.

The final result of ice concentration map is computed
by applying a maximum a posteriori (MAP) based on the
conditional probability P(Y|X). To find the best solu-
tion which maximizes the conditional probability, the en-
ergy function Zz wu(ylv X) - B Zz Ejeci wp(yi’ Yj> X)
is minimized. A gradient descent approach is used to opti-
mize the energy function. Fig. 2 shows the effect of SFCRF
at each iteration where the ice concentration input is refined
by the proposed model.

3. Dataset

The dataset used to evaluate the proposed framework
includes 15 dual-polarized (HH and HV) ScanSAR wide
beam images of the Beaufort Sea acquired in 2010 and
2011, and their corresponding ice charts which are acquired
from the Canadian Ice Service (CIS). Each scene covers a
500 km by 500 km area with 50 m by 50 m nominal pixel
spacing. The SAR images are down sized by a factor of 1/8
(400 m nominal pixel spacing) to reduce the noise of the
SAR images. The dates of the images are given in Table
1. The images span the melt season and freeze-up in the
Beaufort Sea. A set of sample points generated from the
ice charts are used as labels in the training data in this ex-
periment. The effect of SFCRF on ice boundaries can not
be evaluated using ice chart due to its coarse spatial resolu-
tion. Each pixel of the 15 scenes are, therefore, manually
labeled to ice or water for the evaluation of ice/water classi-
fication results and the effectiveness of SFCRF. These labels
are generated using a segmentation based scheme described
in [8, 32] augmented with manual inspection.

4. Experiment and results
4.1. Training

The CNN is initialized by uniform random sampling be-
tween -0.05 and 0.05. The biases are initialized to 1 to im-

prove learning speed of network using ReLU units. Mean
square error is used as the cost function for training. Stan-
dard stochastic gradient descent (SGD) with weight decay
0.0005 and momentum 0.9 is used. Batch size is set to 128.
An epoch training scheme [21] is adopted. Early stop is
used to accelerate the training process [25]. 9 images are
used for training, 3 images are used for testing and 3 are
used for validation (Table 1). The CNN with the smallest
validation error is adopted as the trained model.

The parameters of the SFCRF are evaluated and tuned
on a set of image patches of dimension 128 by 128. The
search window for potential connections is 101 by 101 so
that the search area is big enough to find enough correct
connections. The weight of the unary term is tuned to 0.4.
The similarity of two pixels are calculated in the 3 by 3
windows around the two pixels. The SFCRF normally con-
verges within 5 iterations on our test images.

The experiment is conducted on a computer equipped
with one 8-core i7-2600 CPU, 32GB memory and one
Nvidia GTX 780 graphic card. The training of CNN takes
about 1 day using Pylearn2 [13]. The SFCREF is imple-
mented in C++ and Matlab. Each iteration of the SFCRF
on a image of size around 800 by 1000 takes less than 25
minutes.

4.2. Evaluation results

The achieved overall mean absolute differences between
ice chart and the estimated ice concentration using CNN
are 0.11, 0.12 and 0.11 for training, validating and testing
dataset respectively. Selected results from training, test-
ing and validation sets are shown in Fig. 5. The proposed
method is able to generate ice concentration maps with well
preserved boundaries for all the three sets. The ice water
boundaries of the CNN output are in many cases in stronger
agreement with the validation data when the SFCRF is used.
As shown in Fig. 4, CNN overestimates the spatial extent of
the ice-water boundary, which is corrected by SFCRE. It can
also be observed in Fig. 6 that CNN-SFCREF is able to pro-
duce more finer ice concentration maps than that produced
using CNN, which is coarser in nature.

The area under the ROC (receiver operating characteris-
tic) curve and the classification accuracy are used to evalu-
ate the classification results by simply thresholding on ice
concentration estimates. Points on a ROC curve are pairs
of false positive rate and true positive rate of the classifi-
cation results obtained by using different thresholds on the
refined ice concentration estimations. Details about gen-
erating ROC plots can be found in [10]. The accuracies
are calculated using an ice concentration threshold of 0.4
which gives the highest overall accuracy. The performance
evaluation is shown in Table 1. A consistent improvement
in performance is brought by the use of SFCRF on CNN
compared to the use of CNN only. The average classifica-



tion accuracy is 96.77% for validation data and 96.16% for
testing data which is comparable to the results reported in
[23].

Melting surface is a common cause of ice miss-
classifications and under estimation of ice concentration. In
Fig. 7, the dark regions are very likely to be melting ice
at this time of year. Most of this region is correctly recog-
nized by CNN. Details of ice concentration variations are
captured by our proposed method while the ice chart indi-
cates the whole image patch has an ice concentration being
0.6. In panels (d), (e) and (f), it is shown that the remaining
misclassified areas using CNN output are mostly corrected
by SFCREF. This suggests that the proposed method is robust
to melting conditions. Ice concentration maps that contains
more details than ice charts can be generated by the pro-
posed method.

5. Conclusion

This work combines convolutional neural network and
stochastic fully connected random field for the purpose of
ice water concentration estimation from SAR images. We
demonstrated the usefulness of ice charts as training data for
ice water classification using CNN. In the present study the
ice concentrations from the ice chart were mapped pixel-
wise to the SAR image. The use of ice charts at a smaller
scale than its original scale introduces representation errors
in the training data, which potentially degrades the perfor-
mance of the method. Using ice chart polygons as training
data is one of our future research interests.

SFCREF is shown to improve boundaries between ice and
water for most of the images considered. As part of our fu-
ture investigations, we hypothesize that smaller scale struc-
tures may be better preserved if the connections found by
SFCREF can be improved. This can be potentially be done
using improved similarity metrics that better considers the
image characteristics of SAR images, which will be our
next step in the near future.
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Figure 4: Boundary improvement. First row, from left to right: region extracted from HH band SAR image; ice concentration
estimate using CNN; ice labels generated by CNN, ice labels generated by CNN-SFCRF. The second row from left to right:
ground truth labels; ice concentration estimate using CNN-SFCREF; difference between CNN generated ice labels and ground
truth; difference between CNN-SFCRF generated ice labels and ground truth. In all label images, white corresponds to ice
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Figure 5: Results of scene 20101006 (first row), 20110720 (second row) and 20110811 (third row) from training, validating
and testing dataset respectively. White corresponds to ice and black corresponds to water for label panels (second and third
column). SAR images are enhanced for visualization.
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Figure 6: Example zoomed-in region of ice concentration maps generated using CNN and CNN-SFCREF in scene 20101006.
Images are enhanced for visualization.
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Figure 7: Example of correct ice concentration estimation and classification of melting ice from scene 20110811. Images are
enhanced for visualization.
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