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Abstract

We develop a simple and very fast method for ob-
ject tracking based exclusively on color information in
digitized video images. Running on a Silicon Graphics
R4600 Indy system with an IndyCam, our algorithm is
capable of simultaneously tracking objects at full frame
size (640 x 480 pizels) and video frame rate (30 fps).
Robustness with respect to occlusion is achieved via an
explicit hypothesis-tree model of the occlusion process.
We demonstrate the efficacy of our technique in the
challenging task of tracking people, especially tracking
human heads and hands.

1. Introduction

A variety of problems of current interest in com-
puter vision require the ability to track moving objects
[2], whether for purposes of surveillance [9], manufac-
turing, video compression [6], visually “aware” infor-
mation kiosks [19], etc. The fundamental challenges
that drive much of the research in this field are the
enormous data bandwidths implied by high resolution
frames at high frame rates, a desire for real-time, pos-
sibly interactive, performance, and a typically vaguely
or ill-posed specification of the tracking problem it-
self. Numerous innovative methods have been proposed
[4,7,12, 16, 17, 18, 20], however most of these are rela-
tively sophisticated edge/snake/spline/template [3, 8]
or eigenimage [10] based models; although these ap-
proaches are broad in their abilities (e.g., offering ob-
ject recognition or pose estimation in addition to track-
ing), they are unable (yet) to run on full video resolu-
tion images at high frame rates.

The goal of the research described in this paper is to
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develop a tracking algorithm capable of tracking mul-
tiple objects in real time at full frame size and rate.
We achieve this by relying heavily on color cues (as
have others [14, 16, 20]) rather than tracking edges.
Furthermore, we achieve some degree of robustness to
occlusion by explicitly modeling the occlusion process,
rather than relying implicitly on prior model fidelity
(for which our simple prior model be inadequate).

Our tracking algorithm is intended to complement
existing approaches. While our proposed algorithm is
capable of simultaneously tracking multiple objects at
video frame rates, we require the support of existing
methods for two crucial steps:

o the detection and localization (e.g., [18]} of new
objects to track;

o periodic reassessment of each object, to take into
account possible color, shape, or scale changes.

For example, one might use our approach as a fast core
program, with a more general (but slower) algorithm
wrapped around this core providing periodic {e.g., ev-
ery 10-60 frames) updates on object form and position.

Section 2 outlines a simple color-based model for
tracking and demonstrates preliminary results. Sec-
tion 3 addresses the question of robustness in the face
of occlusion, and develops an explicit model for the
occlusion process. Section 4 demonstrates our algo-
rithmn in tracking objects subject to occlusion. Section
5 draws conclusions about our approach.

2 Simple Color Tracking

Our simple tracking method is based on tracking re-
gions of similar normalized color from frame to frame.
Specifically, N regions Ry, ..., Rn (taken to be rectan-
gular for convenience) are defined within the extent of
the object to be tracked; the size and relative position



Figure 1. Example of six regions which might
be used for head/torso tracking.

of these regions is assumed to be fixed. For example, in
the context of head tracking, a possible assignment of
five regions is shown in Figure 1; optionally a sixth re-
gion might be added to record clothing color below the
head to provide some level of discrimination.between
individuals.

Each region R; is characterized by a color vector

(i, 9i,bi) = Z (r(z,9),9(z,y), b(z,y)) /| Ri

(z,y)ER;

which represents the averaged color of pixels within
R;, and where the notation |R| measures the number
of elements in set R (i.e., the number of pixels). If the
camera possesses a favorable signal-to-noise ratio and
the tracker is used in circumstances where the strongly
colored features in each region R, are relatively large,
then the average in (1) will be relatively insensitive to
subsampling and can be well approximated by comput-
ing the average over a regularly gridded subset of pixels
as follows:

(ri, gi,bi) =
(i‘,ﬂ)'—'(fto +elz,y, +bA3/) ER;

(r(£,9),9(2,9), b(%,9) ==

(1)

Typically we sample about 50-200 pixels per region;
this subsampling yields a significant (order of magni-
tude) computational benefit.

For each region R;, we assume the existence of an
ideal or target color vector (7;,g;,b;), which is com-
puted at initialization. The details of assessing an ac-
curate initial estimate of the position and shape of the
object of interest may be relegated to any of several
allegedly capable methods {10, 18, 20].
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Goodness of Fit

The closeness in color space of a measurement vec-
tor (ri,gi, b;) and its target (7;, gi, b;) is assessed by the
following goodness of fit criterion. To reduce sensitiv-
ity to shading or changes in illumination we want to
eliminate multiplicative factors in intensity. Let

i gi bi
L= — L= = = = 3
Yri 7o Yg: gi, e b ( )
Ideally these ratios are equal; deviations from equality
are assessed by the goodness of fit

max{ Yris 79,‘ s Vb; } (4)
mln{ Yris Vgis Vbi }

i.e., ¥ = 1implies a perfect fit (modulo normalization),
and ¥ increases as the fit becomes poorer. Clearly
¥, is a function of two parameters: ¥;(zo,y,) is the
gooduness of fit of the hypothesis that R; is centered on
coordinate (Z,, Yo )-

Two properties of ¥ -are worth mentioning:

¥, =

1. T is insensitive to camera noise.

For common CCD imaging systems, the low stan-
dard deviation of the pixel noise (on the order of
2—7 units), further reduced by a factor of 10 to
15 by the pixel averaging process (2), reduces the
variability in ¥ due to pixel noise to a negligible
value (about 0.02 in our setup).

2. ¥ is insensitive to scaling the object of interest,
as opposed to the considerable sensitivity in edge-
based approaches (which has motivated the devel-
opment of more complicated deformable models
[3, 4, 8] in order to retain robustness). In our
tests (see below), if the regions R; were chosen to
be non-negligible in size (e.g., as suggested by the
proportions in Figure 1), then changes in scale of
A~ £50% can be tracked without any special ac-
commodation.

Tracking

Denote by (z;,yi) the center of region R; relative to
some natural origin of the object of interest. Then the
hypothesis that (the origin of) the obJect is at location
(%4 Yy ) Is tested using

Z‘I’l w +w“yH +y1) (5)

H’yH
i=1

Based on ¥, the best estimate for the obJect s location
is just

(2,9) = arg  min {¥(z,,y,)} (6)

T
(Te Ynr)
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Figure 2. The nine lattice points which deter-
mine the local hypotheses to be tested for -
each object at each frame.

Equation (6) is essentially a measurement, and as such
it can be employed in the context of a variety of estab-
lished estimation/tracking algorithms: a Kalman filter
[1, 2], Blake’s condensation algorithm [7], a multiple-
hypothesis tree approach [5, 12], a maximum likelihood
approach [13] etc. We will be using a simple implemen-
tation of the latter two methods.

The optimization in (6) in principle implies a
search over the entire plane (z,y). In practice, be-
cause our tracker is operating at video frame rate (30
frames/second), the prediction error in the object’s po-
sition is likely to be small, so the search can be re-
stricted to a local region. Specifically, at each frame f,
we hypothesize M different positions of the object en-
circling the predicted location (z(f|f — 1), y(f|f — 1))
of the object at frame f based on observations up to
frame (f — 1). The best hypothesis is then selected as
the estimate for frame f (i.e., classical M-ary hypoth-
esis testing [13]):

(z(f15), y(f1£))

(@(fIf = 1), u(FIf - 1) +

6 - (p=(f), py(f)) (7)
(p=(f)spy(f)) = arg min {\Il [m(f[f—l)-}-
(z,y) €S

§-ay(flf -1 459} (®)

where ¢ is a predefined step size, limiting the tracking
resolution, and where S, |S| = M, is a set of lattice
points in the plane including the origin. For example,
the simplest choice of S is

§=1{(0,0)(0,1) (0,-1) (1,0) (-1,0) } (9)

The frame-to-frame prediction is the usual linear one,

Figure 3. An example showing the simul-
taneous real-time tracking of three objects:
a head, a hand, and the 'MIT’ logo on the
sweater. The effective motion can be inferred
from the tracked positions in earlier frames
indicated by the white rectangles.

e(fIf —)=2(f-Uf-1)+ At -0 (f-1) (10)

where At = 1/30 second is the frame separation time.
The estimation of the velocity (vs, vy) is typically eas-
ily accomplished using a Kalman filter [3, 4]. In the
context of our color-based tracker, the velocity estima-
tion step is made difficult because the Kalman filter is,
strictly speaking, inapplicable, because the noise in the
“measurements” (6) or (7) is not Gaussian and its un-
certainty is unknown (and variable). Using a Kalman
filter to estimate (v, vy) by assuming a variety of mea-
surement noise uncertainties led to poor tracking re-
sults in all cases. Instead, we use a simple, nonlinear
estimator which estimates the velocity based on trend-
ing:

l = o(f-1)
if (p(f)-p(f—1)>0) »v(f) += ¢%B0Ll)
it (p(f) -v(f=1) < 0) v(f)
)

if (p(f) =0) v

where the last three equations respectively represent
velocity correction on the basis of an accelerating trend,
a decelerating trend, and a damping term to avoid os-
cillations.

ssloiy (1)
__ gsmnlv)
2A¢

Experiments

The tracker described above was implemented on a
Silicon Graphics R4600 Indy system for testing. The
tracker is based on the N = 4 regions (A,B,C,D) shown
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in Figure 1 and the M = |S| = 9-ary hypothesis cluster
shown in Figure 2. The video source was the Indy cam-
era operating at the full frame size of 640 x 480 RGB
pixels. In this configuration, up to about ten objects
can simultaneously be tracked and displayed at the full
frame rate (30Hz) of the IndyCam camera.! For each
of the following examples, the initial location of the ob-
ject and its dimensions (a, b in Figure 1} are assumed
known (e.g., provided by some independent algorithm);
in this case, the initialization was performed manually.
Figure 3 demonstrates the results of tracking three
objects: a head, hand, and the colored logo on a shirt.
The sequence of rectangular frames in the figure indi-
cates the tracked motion. The tracker is robust in the
sense that normal head and hand motions are tracked
without failure. Although it is possible to cause the
tracker to fail with sufficiently vigorous motion, the
robustness can be increased by increasing M (values
of M ~ 60 were tested on a more powerful DIGITAL
Alpha workstation with remarkably robust results).
Figure 4 illustrates the insensitivity of the proposed
tracking method to changes in scale. The tracker is
initialized to a head as in Figure 4(a). In Figure 4(b)
the head (or some portion of it) has been tracked over
about 40 frames while approaching the camera, grow-
ing in linear dimension by about 75%. Similarly, in
Figure 4{c) the head moves away from the camera, to
the point where it is now smaller than its initialized
counterpart by 50% in linear dimension. In each case,
the size of the head model, implied by the plotted rect-
angles in the figures, remains constant. To be fair, it
should be pointed out that an insensitivity to scale does
imply an inability on the part of the tracker to achieve
an accurate (e.g., pixel level) target lock, which may be
a liability in certain circumstances; using the tracker in
the context of a more robust shell, as envisaged in the
Introduction, would mitigate this liability somewhat.

3. Modeling Occlusion

Many robust tracking methods have been developed;
however, the question of occlusion is addressed infre-
quently [11, 17], and then usually implicitly rather than
by virtue of an explicit model. Typically, some measure
of occlusion robustness is realized via a sufficiently de-
tailed model of the object being tracked, with a limited
rate of deformability. With such a detailed model, it
is possible to discriminate between good and spurious
measurements, and therefore to ignore measurements
taken while the object of interest is occluded.

! The computational complexity of the tracker scales in gen-
eral by a factor proportional to MN/(Az - Ay).
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(b) Increased Object Size.

(c) Diminished Object Size.

Figure 4. An example illustrating the insensi-
tivity of color-region-based tracking to mod-
erate changes in scale of the object being
tracked: the regions are initialized to “truth”
in (a). The head is then tracked reliably de-
spite increases (b) and decreases (c) in size.



Our simple color-based model, developed in the pre-
vious section, offers several motivations for looking at
the question of occlusion more explicitly:

1. The tracker proposed in the previous section is not
occlusion-robust: The prior model (i.e., N color
vectors) is not highly tuned or specific and, more
significantly, an estimate (6) is computed in every
frame, regardless of how well the image fits the
prior color model. Occlusion forces (6) to track a
different (incorrect) local minimum of ¥.

2. We are interested in fast (real-time) tracking. Al-
though maintaining a very large set of hypotheses
(such as in [7]) could address the above limita-
tions, it is unlikely that this could be accomplished
within the desired computational limits.

3. The simplicity of our model provides an excellent
opportunity for explicitly modeling the state of oc-
clusion with relatively few hypotheses. If each re-
gion R; is assumed to be either visible or occluded,
then there are 2V possible occlusion states (quite
tractable for the modest N considered in this pa-
per). If we also assume that the occluding object
is comparable or larger in size than the object be-
ing tracked, then the number of hypotheses can
be reduced much further. This forms the basis for
the occlusion modeling described below.

The N = 5 regions (A,B,C,D,E) of Figure 1 will be
used to model the head for tracking purposes. For oc-
cluding objects larger than the tracked object, the oc-
cluding hypotheses can reasonably be limited to those
shown in Figure 5. We limit ourselves to the H = 10
hypotheses drawn in bold; a variety of logical exten-
sions are possible, such as the four additional dashed
hypotheses. The arrows in the figure identify the per-
mitted successive hypothesis states.

Each occlusion class is represented by a set O which
is a set of integer indices corresponding to visible re-
gions; that 1s,

1 ¢ O = R; is occluded (12)
Each hypothesis, then, is identified in terms of its state
(z, Y, Vg, vy, O). We denote by N(O) the set of occlud-
ing states adjacent to O as implied by Figure 5. In con-
sidering the transition of a hypothesis from one class
O; to another Oy, the quantity of primary interest is
the state of the disputed region O; & O (where @ is
the set exclusive-or operator). With reference to (5),
we now define

\I’C’(xn’yﬂ) - Z

€0

Y (5, + @i, yy + ¥i)

= (13
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Figure 5. A set of occlusion classes and
the permitted transitions of a hypothesis be-
tween these classes. The ten classes in bold
represent those used in the example of this
paper; the dashed classes are a possible rea-
sonable extension.

Then it is ¥p, g0, which is of interest, and which de-
termines the relative probabilities of hypothesis cre-
ation and destruction. Specifically, for each hypothesis
(z, Y, vz, vy, ©) and for each O € N(0), we solve (7)-
(11), but with ¥ replaced by ¥5. Then, with the es-
timated position z(f|f), y(f|f) from (7}, we calculate
the discriminant

¢ = Yogo(e(flf), y(f1f))

Low values of ¢ (near unity) imply that the contested
regions O @ O are not occluded; larger values suggest
increasing probabilities of occlusion. Consequently if

0Co,
Pr(Create Hypoth(z(f|f), y(f1f), vz (), vy (), O))

(14)

0 ¢ < 1
FL $1<¢< 4 (15)
1 $2< ¢
Pr(Delete Hypoth(z, y, vz, vy, O))
_J 0 ¢<¢2
B { 1 ¢2<¢ (16)

for appropriate thresholds ¢1, ¢2. The probabilities are
reversed for the opposite case in which ® C @. Rea-
sonable threshold values were selected empirically as
¢1=1.1,¢,=1.3.

Having repeated the above procedure for each hy-
pothesis, a pruning step is required to prevent exponen-
tial growth of the tree. Specifically, we wish to limit



the number of active hypotheses to H < P. Choos-
ing the P most likely hypotheses is complicated by the
difficulty in comparing the relative likelihoods of hy-
potheses belonging to different occlusion classes. Con-
sequently, we limit ourselves to pruning ouly within
occlusion classes, for which comparing relative likeli-
hoods ¥ is straightforward (with the exception of the
totally occluded class, in which case the more recently
fully-occluded hypotheses are considered to be more
likely).

Of course, there are some limitations to this scheme.
The simplicity of the prior model in our particular head
tracking application leads to ambiguity as to whether
the head is being occluded from the left or from the
right (similarly for top and bottom). However, to the
extent that our goal is robust tracking, and not so much
an understanding of the occlusive behavior, this is not
a significant drawback.

4. Results

We will limit ourselves here to a single demonstra-
tion of tracking in the presence of occlusion, for an ex-
ample in which the tracker of Section 2 alone would fail.
Because of the large number of hypotheses of varying
likelihood in different occlusion classes which may be
present in each frame, to simplify the presentation we
will limit ourselves to showing only the least-occluded
hypothesis subset.

As before, we start by initializing our head model
as in Figure 4(a), except now based on the 5 regions
(A,B,C,D,E) depicted in Figure 1. The underlying
tracker is that described in Section 2, with the five
point search space S given in (9). The upper bound on
the number of hypotheses kept after the pruning step
is set to P = 12; with this setting real-time tracking
can still be achieved.

Figure 6 contains a sequence of four images which
show the least-occluded hypotheses as the tracked head
is occluded. In each case, the line-style of the plotted
rectangle determines the occlusion state of the associ-
ated hypothesis; that is, [, G, [}, {i respectively imply
fully visible, right 30% occluded, right 70% occluded,
and fully occluded states.

Figure 6(a) shows the occlusion process just begin-

Figure 6. Four images illustrating the progres-
sion of occluding a tracked head from right to
left. In each image, the rectangles show the
position and occlusion type of the least oc-
cluded hypotheses.
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(a) Occlusion starts.

(b) Mostly occluded.
"

(¢) Fully occluded head.

(d) Head re-exposed after occlusion.



ning; the tracker correctly has no hypotheses in the
fully-visible state, and the two hypotheses shown rep-
resent left and right occlusion (consistent with the left—
right ambiguity discussed in the previous section). As
the occlusion progresses, in Figure 6(b), the least oc-
cluded hypotheses are those in which only one of the
five modeled regions is visible. When the actual oc-
clusion is total, Figure 6(c), the tracker correctly does
not have a single hypothesis less than fully occluded,
and seven fully occluded hypotheses are shown. As the
tracked head is re-exposed, Figure 6(d), several of the
hypotheses successfully reacquire the tracked object.

5. Conclusion

We have illustrated the development and operation
of a real-time feature tracker based entirely on image
color information that possesses an explicit occlusion
model. Future work will include examining questions
of color-based tracking in contexts where the tracked
object and the background may have similar normal-
ized colors, tracking in contexts where multiple similar
objects (e.g., several people) are simultaneously present
in the scene in possibly close proximity, the tracking of
articulated objects (e.g., fingers) whose members allow
several degrees of freedom of motion with respect to one
another (as opposed to the rigidity assumption made
of the colored regions in the model of this paper), and
looking at the introduction of edge-based cues to al-
low finer tracking and possibly to resolve the left/right
top/bottom occlusion ambiguity.
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