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Abstract

The benefits of augmenting AMSR-E image data with

QuikSCAT image data for supervised sea ice classi-

fication in the Western Arctic region are investigated.

Experiments compared the performance of a maximum

likelihood classifier when used with the AMSR-E only

data set against the combined data and examined the

preferred number of features to use as well as the relia-

bility of training data over time. Adding QuikSCAT of-

ten improves classifier accuracy in a statistically signif-

icant manner and never decreased it significantly when

enough features are used. Combining these data sets is

beneficial for sea ice mapping. Using all available fea-

tures is recommended and training data from a specific

date remains reliable within 30 days.

1. Introduction

The mapping of sea ice is an important task for un-

derstanding global climate and for safe navigation. The

Canadian Ice Service (CIS) is tasked with creating op-

erational ice charts that map the sea ice around Canada.

These charts identify different ice classes geographi-

cally and are created with the help of remotely sensed

data, such as RADARSAT images. To help improve sea

ice mapping, information from other satellite systems

needs to be evaluated.

In this work, combining AMSR-E passive mi-

crowave and QuikSCAT SeaWinds scatterometer data

is considered. Passive microwave data has been used

for ice typing [12] and QuikSCAT shows promise as

well [5]. Recent work has shown that combining pas-

sive microwave and scatterometer data is useful for

sea ice classification and mapping [9, 11]. However,

little work has specifically combined AMSR-E and

QuikSCAT data or compared the performance of using

the multisensor data set against the individual data sets.

These issues are examined here with a pattern recog-

nition framework to generate quantitative results that

can lead to developing an automated ice mapping sys-

tem. In particular, the following research questions are

posed:

1. Does adding QuikSCAT to AMSR-E provide a sig-

nificant improvement in sea ice classification?

2. How does the number of preferred features used

affect classification?

3. How reliable is the training data over time?

The results will indicate whether the AMSR-E and

QuikSCAT sensor combination should be investigated

in more detail for use in sea ice classification.

2. Data

The AMSR-E data used is the daily average Level

3, 12.5 km brightness temperature product [2]. This

product has a polar stereographic projection and con-

sists of 8 bands: 18 GHz, 23 GHz, 36 GHz and 89

GHz in both horizontal and vertical polarizations. The

QuikSCAT data used is the near real-time daily aver-

age H-pol Arctic σ
o product (NHEAVEH) obtained on-

line from NOAA/NESDIS [3]. The projection of the

AMSR-E data matches the QuikSCAT data so the only

registration needed is scaling to a common resolution

(done via nearest neighbour interpolation to preserve

data values). The dates in 2004 to 2005 were cho-

sen since they provide enough ground truth samples for

training (≥ 100 per class for 9 features, following the

guideline of ≥ 10 samples per feature [6]) in the study

area of the Western Arctic around the Beaufort sea.

Ice charts produced by the CIS are used as ground

truth. The ice charts define regions which CIS opera-

tors have manually classified. The CIS defined ice types
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were aggregated into five classes for these experiments

by grouping similar CIS stage of development codes.

This ensures that there are enough samples for each

class. Table 1 maps the CIS codes to the class names

used. Since the ice chart regions can have mixed ice

types, only regions with ≥ 70% concentration of one

of the classes are considered ground truth to ensure that

only representative samples are used.

Table 1. CIS codes mapped to class name.

CIS Code Class
1, 2 Thin Ice

3, 4, 5 Medium (Med) Ice
6, 7, 4., 1., 8, 9 First Year (FY) Ice

7., 8., 9. Multiyear (MY) Ice
Open Water OW

3. Methods

A maximum likelihood classifier with multivariate

Gaussian class distributions was used for all experi-

ments. The intent is to evaluate the data sources under

a common classifier rather than designing the best clas-

sifier for the data. AMSR-E and QuikSCAT data have

different units so the bands were normalized to [0, 1] be-

fore being used as features, ensuring that each feature

is weighted fairly in distance calculations [6]. Except

for tests in Section 4.3 (explained later), each date was

trained and validated independently with random selec-

tion of training and testing samples by consulting the

CIS chart for that date.

The experiments required selecting feature subsets

to use in classification. Sequential Floating Forward

Search (SFFS) [8] was implemented but was modified

to sequential forward search (SFS) which adds unse-

lected features one by one, choosing the one that forms

the best subset with the already selected features. Dif-

ferences in classification results between the combined

data set and the individual data sets are easier to in-

terpret with SFS since they are directly due to includ-

ing QuikSCAT. For example, if QuikSCAT is not in the

n features chosen from the combined data set, the se-

lected bands are the same n bands chosen from AMSR-

E alone. This is not true for SFFS: a different set of n

AMSR-E bands may be chosen that can have a different

classification result. The accuracy difference between

SFS and SFFS was not statistically significant for the

data used here, so SFS was chosen. To evaluate sub-

sets, the transformed divergence [10] between the least

separable classes is maximized.

Kappa (κ) and its confidence interval σ [1] are used

to evaluate classifier accuracy. When converted to Z-

values [4], they can indicate whether the difference be-

tween two classification rates is statistically significant.

4. Results

4.1. Question 1: Improvements due to adding
QuikSCAT

Table 2 shows Z-values which compare the classi-

fication using only AMSR-E data and using combined

AMSR-E + QuikSCAT data at each feature subset size.

It compares the “best” (as chosen by SFS) n features

of AMSR-E against the best n features of AMSR-E +

QuikSCAT (the last column compares all eight AMSR-

E with all nine AMSR-E + QuikSCAT bands). For the

most part, adding QuikSCAT either makes a statisti-

cally significant (at the 95% level) improvement over

AMSR-E alone or does not hurt the performance. A few

rare cases show a significant decrease but these are for

smaller feature set sizes, which (as shown later) perform

worse than using all features. The last column shows

that when all nine features are used, adding QuikSCAT

improves the classification rate, with more than half

showing a statistically significant increase.

Table 2. Z-values comparing AMSR-E +
QS and AMSR-E at each feature set size.

Feature Set Size

Dates 1 2 3 4 5 6 7 8 9vs8

20040906 -2.00 -0.99 -0.52 1.23 1.09 0.53 -0.09 0.61 0.38
20041004 -8.80 4.40 3.25 6.35 4.25 2.00 3.39 3.81 2.66
20041025 23.25 3.51 1.71 2.26 0.59 1.41 0.56 1.49 1.61
20041108 - - - - - - 1.39 1.89 2.31
20050301 - -2.23 -0.68 0.89 -1.29 -0.08 0.45 0.09 -0.09
20050601 6.23 7.02 6.58 5.25 3.31 4.83 2.56 3.56 3.90
20050613 6.27 -0.65 -2.62 -1.75 0.03 -0.19 0.87 -0.05 0.90
20050620 - 8.66 8.66 10.14 11.01 9.70 10.12 10.23 10.27
20050822 11.33 -1.12 -0.67 1.79 -0.48 3.01 0.67 1.10 2.11
20050829 - - - - - - 2.98 2.50 3.37
20050815 - - - - 0.95 0.03 -0.70 0.15 1.00

Bold black = AMSR-E + QS better; Bold red = AMSR-E better

Unbolded = Not significant; Blank = QS not chosen by SFS.

Table 3 shows κ for three different cases: using all

eight AMSR-E, using QuikSCAT alone and using all

nine combined bands. This gives an idea of the classifi-

cation performance via κ and shows that the combined

data set is better than either AMSR-E or QuikSCAT

alone. Also of note is that QuikSCAT alone cannot

match the accuracy of AMSR-E.

Table 4 shows the classification (producer’s) accu-

racy of the individual ice classes for each date, com-

paring the results from all 8 AMSR-E bands and all 9

combined bands. It shows consistent improvements due

to QuikSCAT (highlighted in green) for all classes, pre-



Table 3. κ values for full feature sets.

κ

Date AMSR-E QS AMSR-E+QS
20040906 0.87 0.82 0.87
20041004 0.78 0.64 0.81
20041025 0.62 0.60 0.64
20041108 0.57 0.47 0.61
20050301 0.88 0.87 0.88
20050601 0.63 0.59 0.69
20050613 0.59 0.39 0.60
20050620 0.40 0.41 0.57
20050822 0.62 0.40 0.66
20050829 0.66 0.45 0.71
20050815 0.71 0.33 0.73

Bold = AMSR-E+QS better (statistically significant)

senting a strong case that QuikSCAT is a good comple-

ment to AMSR-E.

Table 4. Accuracy of each class using
AMSR-E (A) vs. combined (A+QS) data.

Accuracy (%)
Dates Data Thin Med FY MY OW

20040906 A - - 79 91 96
A+QS - - 78 91 97

20041004 A 70 87 - 85 92
A+QS 74 88 - 88 93

20041025 A 72 60 89 78 96
A+QS 73 65 90 78 96

20041108 A - 78 82 80 -
A+QS - 82 83 82 -

20050301 A - - 94 95 -
A+QS - - 94 94 -

20050601 A - - 85 73 95
A+QS - - 86 78 96

20050613 A - - 69 77 97
A+QS - - 70 79 97

20050620 A - - 51 71 95
A+QS - - 77 70 96

20050822 A - - 88 67 96
A+QS - - 89 70 97

20050829 A - - 79 74 95
A+QS - - 85 78 97

20050815 A - - 77 80 96
A+QS - - 82 80 97

AMSR-E + QS better AMSR-E better

Spatially, the AMSR-E 8 band and AMSR-E +

QuikSCAT 9 band results are compared in Figure 1.

Both data sets allow correct identification of many pix-

els (gray) and incorrect identification of others (red).

However, AMSR-E + QuikSCAT is more often correct

(blue) than AMSR-E alone (yellow). QuikSCAT again

appears to be complementary to AMSR-E.

4.2. Question 2: Number of preferred features

This section examines how the number of fea-

tures used affect classification with the AMSR-E +

QuikSCAT data set. Table 5 shows Z-value compar-

isons between classifications using all 9 bands and those

using subsets of 1 to 8 bands. The full feature set never

has a statistically significant reduction in accuracy com-

Figure 1. Spatial comparison of accuracy;
colours show how each data set per-

formed when classifying each pixel.

pared to any of the feature subsets. With a reduced

number of features, there are more cases of significant

increases in accuracy due to using the full feature set.

Table 5 indicates that the data is not suffering from the

“curse of dimensionality” [7] and that the 9 band fea-

ture set results in improvements over the smaller sub-

sets. Therefore, the full feature set should be used to

take maximum advantage of all the information avail-

able. This is important because feature selection does

not always choose the QuikSCAT band even though it

offers additional information, as shown earlier by the

dashes in Table 2.

Table 5. Z-values comparing the full

AMSR-E + QS feature set with its subsets.

Feature Subset Size

Dates 1 2 3 4 5 6 7 8

20040906 4.45 2.56 1.98 0.86 0.70 0.21 0.27 -0.23
20041004 13.63 4.99 4.10 0.36 -0.07 -0.68 -0.95 -1.15
20041025 3.29 4.92 2.42 2.30 2.30 1.33 1.13 0.12
20041108 11.62 4.46 1.68 2.62 3.03 3.82 1.10 0.42
20050301 -1.41 0.17 0.13 0.25 0.80 -0.72 -0.49 -0.17
20050601 6.87 4.90 4.96 3.77 4.63 3.03 2.29 0.35
20050613 13.17 9.67 11.02 6.25 3.35 2.45 1.04 0.95
20050620 23.08 8.92 6.22 3.63 2.89 2.21 -0.03 0.04
20050822 16.87 12.34 8.68 5.88 6.25 1.28 2.03 1.00
20050829 22.39 10.58 12.95 8.19 6.08 3.63 0.62 0.87
20050815 3.36 7.15 3.39 2.10 1.47 1.80 1.68 0.84

Bold black = Full feature set better; Unbolded = Not significant.

4.3. Question 3: Reliability of training data
over time

In the previous experiments, each date was trained

independently. In this section, training is done with



all samples from one date and applied to classify other

dates in 2004 to 2005, with one date being classified at a

time. The test is repeated by training with each date that

has enough training samples. This experiment reveals

the applicability of the training data over time. The clas-

sification results are binned by the absolute number of

days between the date of the training data and the date

being classified (∆Days). The bin size is 15 days. Fig-

ure 2 shows the mean κ and its standard deviation in

each bin as a function of ∆Days. As expected, accu-

racy decreases with increasing ∆Days. The AMSR-E

+ QuikSCAT data set has higher average κ for larger

∆Days, suggesting more time invariance but with large

∆Days, κ has a higher spread with unacceptable nega-

tive κ values. This test shows that training data within

30 days of the date being classified is acceptable, an im-

portant consideration if a database of training data is to

be created for automated classification.
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Figure 2. Average κ obtained for dates
that are ∆Days from training dates.

5. Conclusions

This work has shown that the combined data set is

statiscally better than either AMSR-E or QuikSCAT

data alone for sea ice classification. The data appear

to be complementary, providing improvements in all

ice types. Using the full 9 features of AMSR-E +

QuikSCAT is recommended since this uses all of the

available data without suffering from dimensionality

problems. Training data for this data set appear to be

valid for only about a month, so training databases will

have to be designed accordingly. Although the findings

here are strictly for the western Arctic area, preliminary

tests that consider the entire Arctic show similar results.

This will be investigated in more detail.
Future work should look at improving the absolute

classification rate. This may be obtained by designing

a different classifier or by using another method of data

fusion. QuikSCAT provides additional information; the

work that remains is how to make the best use of it.
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