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Abstract

In MRF based unsupervised segmentation, the MRF
model parameters are typically estimated globally. Those
global statistics sometimes are far from accurate for lo-
cal areas if the image is highly non-stationary, and hence
will generate false boundaries. The problem cannot be
solved if local statistics are not considered. This work in-
corporates the local feature of edge strength in the MRF
energy function, and segmentation is obtained by reduc-
ing the energy function using iterative classification and
region merging.
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1. Introduction

Markov random field (MRF) allows the modelling of
the joint probability distribution of image pixels in terms
of the local spatial interactions, and hence has found great
applications in image segmentation. MRF can not only be
used to extract texture features [4], but can also model
spatial context constraint under the Bayesian framework
[2][6][17][11]. The latter is referred as the region model,
and combined with the feature distribution model forms a
2-layer model for the segmentation problem.

For unsupervised applications, the 2-layer MRF model
parameters are not known in advance, and hence need to be
estimated from the same image, mostly using expectation-
maximization (E-M) methods [5]. A main drawback of this
kind of approach is that the model parameters estimated
from global statistics may not fit for local regions, result-
ing in incorrect identification of boundaries during segmen-
tation. To overcome this drawback, here the edge strength
is introduced as a term into the MRF energy.

Finding the global minimum is expected to give the cor-
rect solution, and optimization techniques such as iterated
conditional mode (ICM) [2] and simulated annealing [7] are

typically used to solve the MRF formulation. It has been
found, however, that the solution can become trapped into
the local minima due to the impossibility of implement-
ing an ideal optimization method. The non-optimal result
is intolerable if the configuration corresponding to the lo-
cal minima is far from the desired. This situation is likely to
occur for highly non-stationary images, of which the corre-
sponding MRF energy function is highly non-convex with
the introduction of the edge strength term. Annealing per-
formed on single pixels is not efficient for such situations
and methods having larger perturbation units instead of sin-
gle pixels are needed.

The region merging method proposed in this pa-
per, called ICRM (iterative classification and region merg-
ing), is one such approach. It keeps merging the segments
if the merging result gives a reduced MRF energy. Classi-
fication is then performed on those regions instead of sin-
gle pixels. Therefore, the perturbation unit can be much
larger.

There has been a significant amount of work on hybrid
region and edge segmentation [14][12][15][10] and region
merging [9][13][15]. For example, in [10] a deformable
model (balloon) is coupled with the regional MRF model,
but the method is not designed for simultaneous segmen-
tation of multiple regions. Tu and Song [15] use an edge
map to guide the region splitting and merging step in find-
ing minima of the model energy. Their model has not inte-
grated the edge strength directly into the energy function
and is quite complex. Sakar et al. [13] also merge simi-
lar regions to reduce MRF energy. But the edge process in
their work is based on neighboring regional statistics not on
edge strength. The most similar to the proposed work is [3],
where the optimization is performed by graph theory tech-
nique which actually is also region merging.

The organization of the paper is as follows. Section 2
gives an introduction to the traditional 2-layer MRF seg-
mentation model, from which the new model is derived
and presented in section 3. Section 4 introduces the ICRM
method. Section 5 gives the experiments and discussions.
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Summary and future works comprise section 6.

2. Segmentation Model

2.1. Markov Random Field (MRF)

An MRF [8][11] assumes that each site is independent
of sites outside its defined neighborhood given the neigh-
borhood sites. The neighborhood, with appropriate size or
order, makes computation of the dependence among sites
manageable, especially for images which often have hun-
dreds of thousands of pixels. The Hammersley-Clifford the-
orem [1] shows that a random field X is an MRF if and only
if X is a Gibbs distribution. That is, for any configuration x
of the state space T of random field X , the joint probabil-
ity is

P (X = x) =
1

Z
exp {−E(x)} =

1

Z
exp

{
−

∑
c∈C

Vc(x)

}
(1)

where C is the set of cliques which are defined as the
sets of mutually neighboring sites, Vc(x) is the energy
of configuration x on clique c, E(x) is the total energy
of configuration x, and the normalizing constant Z =∑

y∈T exp{−E(y)} is called the partition function.

2.2. Two-Layer MRF Model

Let Y denote the observed data (i.e., the original image)
and X the desired segmentation. A 2-layer model is con-
structed from the Bayes’ rule [6][11]:

P (X = x|Y = y) =
p(Y = y|X = x)P (X = x)

p(Y = y)
(2)

where P (X = x|Y = y) is the posterior conditional
probability of the segmentation given the observed data,
p(Y = y|X = x) is the conditional probability distri-
bution of the observation conditioned on the segmentation,
P (X = x) is the prior probability of the segmentation, and
p(Y = y) is the probability distribution of the observation.

Maximization of the posterior P (X = x|Y = y) gives a
segmentation solution, and since p(Y = y) is a constant it
is equivalent to maximizing p(Y = y|X = x)P (X = x).
p(Y = y|X = x) describes the gray level, texture or any
other features while P (X = x) can incorporate spatial con-
text constraint. Two separate models, a feature distribution
model and a region model, are needed to obtain the analyt-
ical expressions for p(Y = y|X = x) and P (X = x) re-
spectively.

For the region model, a multi-level logistic model (MLL)
[6] is typically used, whose clique potential is defined as:

Vc(X) =

{
βc if all sites on c equal
0 otherwise

(3)

The term p(Y = y|X = x) is typically assumed to be
Gaussian at each site. Maximizing the posterior is equiva-
lent to minimizing the objective function in (4)

arg min
Ω1,...,Ωn

n∑
i=1

∑
s∈Ωi

{
log(σi) +

[Y (s) − µi]
2

2σ2
i

− βUi(s)

}
(4)

where n is the number of classes, Ω1, . . . ,Ωn are the ob-
tained classes, µi is the mean gray level of class Ωi, σi is
the standard deviation of class Ωi, and Ui(s) is the num-
ber of neighbors of s that belongs to class Ωi.

3. Proposed Model

3.1. Objective Function

To estimate the mean and standard deviation for Equa-
tion (4), most approaches assume that the number of classes
is known and solve the Gaussian mixture by E-M based
method [5]. The estimation uses global statistics and does
not describe local regions well if the image is highly non-
stationary. Incorporating local statistics is thus necessary.

Consider Equation (4) from another point-of-view. Min-
imization of (4) is equivalent to the minimization of:

arg min
Ω1,...,Ωn

n∑
i=1

∑
s∈Ωi

{
log(σi) +

[Y (s) − µi]
2

2σ2
i

+ βŪi(s)

}
(5)

where Ūi(s) is the number of neighbors of s that does not
belong to class Ωi. That means the term βŪi(s) is not zero
only when the site s is at the boundary. Therefore, Equation
(4) becomes

arg min
Ω1,...,Ωn

{
n∑

i=1

∑
s∈Ωi

{
log(σi) +

[Y (s) − µi]
2

2σ2
i

}

+β

n∑
i=1

∑
s∈∂Ωi

Ūi(s)

}
(6)

∑n
i=1

∑
s∈∂Ωi

Ūi(s) is approximately proportional to the
length of the obtained boundary. Therefore, the role of the
region model term is actually penalizing the existence of
boundary by its population.

Instead of penalizing equally for all boundary pixels,
greater penalty can be applied to weak edge pixels and a
lesser penalty to strong edge pixels, so that local statistic
such as edge strength can be incorporated. Therefore, we
can replace the penalty term with some monotonically de-
creasing function of edge strength g(|∇(·)|), where |∇(·)|
is the gradient magnitude. The proposed objective function
is therefore

arg min
Ω1,...,Ωn

{
n∑

i=1

∑
s∈Ωi

{
log(σi) +

[Y (s) − µi]
2

2σ2
i

}

+β

n∑
i=1

∑
s∈∂Ωi

g(|∇(Y (s))|)
}

(7)
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Our method of penalizing differently on the edge
strength has the shortcoming of bias on certain classes
since boundaries between some classes can be gener-
ally weaker than those of others. However, including
edge strength is advantageous in describing local be-
haviors, and we will also show next that the bias prob-
lem can be alleviated by properly manipulating the edge
penalty function g(·).

3.2. Choosing Edge Penalty Function

The edge penalty function g(·) can be any monotonically
decreasing function, so that the greater the edge strength,
the smaller the penalty. Suppose the gradient |∇(Y )| has
been normalized. Then, the penalty function can be formu-
lated as:

g(|∇(Y )|) = e−(|∇(Y )|/K)2

The parameter K (Fig. 1) defines how fast the edge penalty
decays with the increase of edge strength. As K increases,
the penalty difference between weak and strong edges de-
creases. When K approaches infinity, all edge penalties are
equally 1.
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Figure 1. Edge penalty functions

Therefore, the parameter K of the edge penalty function
g(·) is allowed to increase during the segmentation, details
of which are described in Section 4.2. The local feature of
edge strength is hence utilized, but the bias is significantly
reduced.

4. Segmentation Algorithm

Finding the global minimum of (7) is expected to give
the desired segmentation. Optimization techniques such as
simulated annealing can be used. However, due to the im-
possibility of implementing an ideal optimization method,

the solution searching may be trapped into some local min-
ima. If the image is highly non-stationary, the local minima
are easily located far away from the desired solution and
convergence to such local minima is intolerable.

Consider the following example. Fig. 2(a) is an image
that has two distinct regions, one relatively bright and one
relatively dark. Both clusters have Gaussian distributed in-
tensities. However, they are highly non-stationary. Fig. 2(b)
gives the segmentation result using Gaussian mixture model
whose parameters are estimated by E-M. It is quite obvious
that the globally estimated statistics for the clusters are not
sufficient for the segmentation due to the non-stationarity
of the image. Therefore, edge information is incorporated
as in Equation (7), and simulated annealing is used to give
the segmentation result in Fig. 2(c). Interestingly however,
there is no visible improvement. The region of the global
minimum of (7) is too small and surrounded by energeti-
cally unfavorable configurations (a phenomena referred to
as a ”golf course” [7]), thus making the algorithm easily
trapped into the local minima.

(a) An example image.

(b) By Gaussian mixture model.

(c) By proposed model, simulated
annealing used.

(d) By proposed model, ICRM used.

Figure 2. An example highly non-stationary
image.

Aiming at suppressing the unfavorable configurations
surrounding the global minimum and increasing the relative
area of the global minimum region, the perturbation unit is
changed from a single pixel to a homogenous region. The
idea is intuitively simple. Pixels or regions that have sim-
ilar local statistics are grouped together first, and then la-
belling is performed on the obtained regions using global
statistics. Back to the example of Fig. 2, we are expecting
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that we can group pixels belonging to the left part into one
region and those belonging to the right part into another re-
gion before we label them. This leads to the combined re-
gion merging and classification approach.

4.1. Merging and Classification

4.1.1. Region Merging For the optimization purpose, the
region merging process in our approach aims at reducing
the overall energy function. However, we need to modify
the energy function (7) a little for the convenience of the
merging process. The formula is still the same, but the no-
tation of class is replaced by segment (closed region). That
is, n is the number of segments, Ω1, . . . ,Ωn are the seg-
ments, µi is the mean gray level of segment Ωi, σi is the
standard deviation of segment Ωi, and Ui(s) is the number
of neighbors of s that belongs to segment Ωi. During each
merging operation, the overall energy for the resulting con-
figuration is computed and compared with that of the un-
merged ones. If there is a decrease, the merging is justified.

The overall energy need not be calculated in order to
make a decision for merging a pair of segments. There is
only a need to compute the difference between the sum en-
ergy of the two neighboring segments tested and the energy
of the obtained merged one. Suppose we are investigating
segment Ωi and segment Ωj , and let Ωk = Ωi

⋃
Ωj . The

energy difference δE is:∑
s∈Ωk

log(σk) −
∑
s∈Ωi

log(σi) −
∑
s∈Ωj

log(σj)

−2β
∑

s∈∂Ωi

⋂
∂Ωj

g(|∇(Y (s))|) (8)

If (8) gives a negative value, Ωi and Ωj can be merged. If
(8) gives a positive value, Ωi and Ωj are not merged.

A sequential merging order needs to be defined since
the merging cannot be performed simultaneously. A natu-
ral method is to find the two segments whose energy de-
crease most if merged, and merge them first.

The merging begins on an initial configuration obtained
by a watershed algorithm [16], and is iterated until the en-
ergy cannot be reduced any more. This will usually generate
an over-segmentation result, which is further labelled (clas-
sified).

4.1.2. Classification Aiming at finding the minimum of
(7), we define for each segment Ωi its individual energy to
be

E(Y (Ωi)|k) =
∑
s∈Ωi

{
log(σk) +

[Y (s) − µk]2

2σ2
k

}

+β
∑

s∈∂Ωi

⋂
∂Ωj

g(|∇(Y (s))|) (9)

where k is the class label, Ωj is a neighboring segment to
Ωi and does not belong to class k. Simulated annealing is
then used for the classification.

4.2. Iterative Classification and Merging (ICRM)

As we have mentioned in section 3.2, using a single
penalty function will produce bias. Different classes that
have fuzzy boundaries between could be merged, and class
that has high intra-class variation or noise could be split.
Both could result in poor performance of the system, even
though in the later situation the split parts could probably
be assigned the same class label in the subsequent classifi-
cation.

Therefore, the combined merging and classification pro-
cess is iterative. The diagram for the overall algorithm is
shown in Fig. 3. At each iteration, there is a classification
process followed by merging. The edge penalty function pa-
rameter K increases while the iteration continues until there
is no merging occurred or a maximum number of iterations
have been reached.

Figure 3. Edge penalty functions

Different from the merging-classification approach in
section 4.1, classification is placed ahead of merging dur-
ing each iteration. Two segments are not mergable if they
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belong to different classes, the purpose of which is to sup-
press the merging between segments of different classes that
have weak boundaries in between.

It is noteworthy that the high level interpretation part is
not necessarily to be restricted to the classification in sec-
tion 4.1.2. Nor does it have to be aiming at minimizing the
objective function of (7). We can replace it with any reason-
able interpretation incorporating any features such as tex-
ture and shape. Therefore this iterative classification and
merging method provides a way of bilateral communica-
tion between low level segmentation and high level inter-
pretation.

4.3. Computational Complexity

The computational complexity of ICRM is reasonably
low compared to that of the traditional model, even though
this algorithm has the classification and merging process
that is iterative. In this method the classification is per-
formed on segments rather than over image pixels, which
considerably reduced the computation time. And moreover,
even if the initial number of segments is large, it often re-
duced dramatically after the first round of merging. As to
the merging process, the corresponding computation is triv-
ial since efficient way of estimating segment parameters
(mean and variance) can be used, and the pixels are scanned
only once at the initial stage.

The algorithm is implemented in C++. Running on a
Pentium 4 1.8G PC with memory 512M, it takes about 5-
7 minutes to segment images of 1252×873 pixels.

5. Experiments and Discussions

Before beginning the experiment, the parameter β needs
to be determined. Images that have a large boundary pop-
ulation (i.e. having many small irregular segments) should
be given a small β, while those having few boundary pix-
els (i.e. consisting of only a few large regular segments)
should be given a large β. Table 1 gives the βs we set exper-
imentally, which is determined based on the percentage of
boundary pixels in the image. Obviously, the percentage of
boundary pixels are not known in advance. But as the iter-
ative classification and merging progresses, this percentage
number will gradually stabilize.

The first experiment is on the example image of Fig. 2.
Fig. 2(d) shows an accurate segmentation using the pro-
posed edge weighted model and ICRM optimization
method. Parameters of the Gaussian mixture are glob-
ally estimated by the E-M method. Class distributions are
all assumed to be Gaussian for these experiments.

The next three experiments are performed on three SAR
images acquired by Radarsat ScanSAR C-band mode with
the resolution of 100m × 100m. The traditional model of

Boundary pixels (%) β
≤ 0.02 23
≤ 0.03 13
≤ 0.04 8
≤ 0.05 5
≤ 0.06 3
≤ 0.07 2
≤ 0.08 1

else 0.5

Table 1. β corresponding to different percent-
age of boundary pixels

(4) and the edge weighted model of (7) are compared. Sim-
ulate annealing is used for the traditional model and ICRM
is used for the edge weighted model.

Fig. 4(a) was extracted from a SAR image of Baffin
Bay on June 24, 1998. The extracted region is highly non-
stationary. The gray level of the water increases gradually
from the center part of the image to the left, reaching some
values close to those of ice floes. This is a manifestation
of the change of backscatter as a function of antenna’s in-
cidence angle with respect to the earth’s surface. The tra-
ditional model result, given by Fig. 4(c), incorrectly clas-
sified some water regions in the left part of the image to
ice. The result of the proposed method shown in (d), how-
ever, is much better in this aspect. On the other hand, the
proposed method has failed in preserving some tiny ice seg-
ments, which is probably caused by the smoothing oper-
ation in computing the gradient for the initial watershed
segmentation. Overall, the quality of the segmentation pro-
duced by the ICRM algorithm is an improvement over the
traditional model.

Experiments on two other images, Fig. 5(a) and 6(a),
provide similar results. Fig. 5(a) was extracted from the
same image of Fig. 4(a), and Fig. 6(a) was captured over the
Gulf of St. Lawrence on Feb 19, 1997. On the right side of
Fig. 5(a) there is a body of rough water. Some of the rough
water pixels (indicated by the white rectangular) are classi-
fied as ice at the center in the right of Fig. 5(c), while the
corresponding part in (d) is quite clean. Similar results are
noted in Fig. 6.

To show the advantage of ICRM over simulated anneal-
ing in finding the global minimum for the edge weighted
model, we compute the energy values corresponding to the
segmentation results of the two methods. For edge weighted
model with simulated annealing, the energy values for the
three SAR images are 3.14285 × 106, 4.00532 × 106,
and 4.71885 × 106 respectively. For the same model with
ICRM result, the corresponding values are 3.06702 × 106,
3.82866 × 106, and 4.64495 × 106 respectively. Clearly,
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(a) Original image. (b) Manual segmentation result.

(c) By traditional model and simulated annealing (d) By edge weighted model and ICRM.

Figure 4. Segmentation of a SAR image of Baffin Bay

ICRM provides a better solution.

6. Summary and Future work

In this paper, an advanced image segmentation algorithm
called ICRM (iterative classification and region merge) has
been designed, implemented, and tested successfully. The
essence of the proposed method lies in two aspects: edge
information is incorporated, and neighboring similar seg-
ments are constrained to be of the same class. It should be
mentioned, however, that the underlying MAP criterion of
the ICRM algorithm does not consider the size of the dis-
crepancy between the obtained configuration and the truth
configuration. Therefore, merging first and then classifying
could possibly cause more pixels to be labelled incorrectly
and result in a more discrepant configuration than that of the
traditional model which is pixel-based. However, the uti-
lization of edge information has greatly decreased this prob-
ability, and more information such as texture and shape can
easily be introduced.

Those information can be utilized in the high level in-

terpretation part of the system. Multiple separate interpre-
tations can be performed using different kinds of features,
the result of each determines which two segments are al-
lowed to merge and which are not. Incorporating those in-
formation will be the future work.
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