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Abstract

Image segmentation and labelling are the two concep-
tual operations in image classification. As the remote sens-
ing community uses more powerful segmentation proce-
dures with spatial constraint, new possibilities can be ex-
plored for labelling. Instead of assigning a label to a sin-
gle observation (pixel), whole segments of image are la-
belled at once implying the use of multivariate samples
rather than pixel vectors. This approach to image classi-
fication also offers new possibilities for using a priori in-
formation about the classes such as existing maps or object
signature libraries. The present paper addresses the two is-
sues. First a labelling scheme is presented that gathers ev-
idence about the classes from incomplete a priori informa-
tion using a “cognitive reasoning” approach. Then, five dif-
ferent metrics are compared for the label assignment and
are combined through a voting scheme. The results show
that very different results can be obtained depending on the
metric chosen. The metric combination through voting, be-
ing a suboptimal approach does not necessarily provide the
best results but could be a safe alternative to choosing only
one metric.

1. Introduction

In computer vision, the classification of any digital im-
age can be separated into two distinct conceptual opera-
tions: segmentation and labelling. Segmentation consists in
identifying objects, labelling in naming them. In the re-
mote sensing community, most classification problems are
approached using point-dependant algorithms where each
pixel is independently compared to feature space clusters
(e.g. spectral bands and texture features) for its classifica-
tion. Point-dependant classification can be considered a spe-
cial case of segmentation with no spatial constraint: each
pixel is considered an “object”. More powerful segmenta-
tion schemes impose some spatial constraint on the identi-

fication of objects and create spatial clusters of connected
pixels: segments. These segments can then be labelled.

Segment labelling is slightly different from point-
dependant classification in the sense that instead of as-
signing a label to an observation (pixel) by comparing it
to known classes (training), entire segments having vari-
able populations of pixels are being considered. This broad-
ens the number of metrics that can be used but also brings
up other issues such as distribution parameters. The possi-
bility of a wider range of classification metrics also makes
it possible to use a voting scheme that can take advan-
tage of all the classification methods.

The examples used in the present paper are derived from
a sea ice mapping application using synthetic aperture radar
(SAR) data. For a number of reasons including geometri-
cal, electrical and noise factors [19], [18], [22], the direct
classification of SAR images into sea ice types is a very dif-
ficult operation that involves not only SAR backscattering
values but also information on incident angle, texture, con-
text and even higher visual cues like shape (e.g. leads) and
size (e.g. floe size). In the approach advocated here, a rough
map (containing only homogeneous region outlines and the
number and type of sea ice classes without their actual lo-
cation) produced by an ice analyst is fed into a system that
takes advantage of this information to specify the number
(a classical problem in image segmentation) and types of
classes to be found in the “homogeneous” regions drawn by
the analysts. This system named MAGSISC (Map-Guided
Sea Ice Segmentation and Classification) is being developed
with the objective of being inserted in Canadian Ice Ser-
vice (CIS) operations to provide added value products such
as pixel-based ice maps. The complete system is described
elsewhere [17] and this paper outlines the labelling solution
implemented.

The present paper addresses two main issues:

1. It describes a segment labelling scheme based on ev-
idence gathering and multi-metrics classification by
voting.
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2. It assesses the performance of five classification met-
rics: 1) Mahanalobis distance, 2) Fisher criterion, 3)
Chi-square test, 4) Kolmogorov-Smirnov test and 5)
Student’s t-test.

2. Image segmentation

2.1. Pre-processing

Apart from geographical registration and eight-bit quan-
tization, the pre-processing essentially consists in generat-
ing texture features to complement SAR intensities in the
feature space.

The grey-level co-occurrence matrix (GLCM) [11] is a
commonly used texture method in remote sensing applica-
tions and has proven very powerful for sea ice using SAR
data [1], [24], [3]. More specifically, the GLCM approach
can accurately capture the textural characteristics of sea-ice
using SAR data [2] and has often proven superior to other
popular methods in a classification context [4], [16]. Based
on previous results [12], the two preferred GLCM statistics
are contrast and entropy. A window size of nine by nine pix-
els, sixty-four (64) grey level and rotationally invariant fea-
tures (GLCM statistics were averaged over four directions:
0, 45, 90 and 135 degrees) have proven to generate accept-
able results for sea ice classification [3] and were adopted
here.

2.2. Segmentation

The segmentation is performed using a Markov random
field (MRF) model. MRFs can provide solutions for many
image analysis problems such as image restoration, texture
description and image segmentation [8], [14]. MRF models
inherently describe spatial context: the local spatial inter-
action among neighboring pixels. This is most appropriate
since neighboring pixels are generally not statistically inde-
pendent but are linked by spatial correlation. Furthermore,
MRFs can effectively combine the relative importance of
the pixel being considered and its neighborhood. Numer-
ous MRF-based segmentation methods have been devel-
oped [5], [26], [10], [20], [6]. Considering SAR images,
MRF models have already shown to provide an appropri-
ate representation of SAR images given their variance (due
to speckle) and texture [7], [20], [13], [15]. In the MAG-
SISC system, the “Modified adaptive Markov random field
segmentation” (MAMSEG) [6] was adopted because of its
good performance with SAR data and sea ice [6]. MAM-
SEG is innovative because it does not fix a priori the rel-
ative weight of the central pixel and its neighborhood but
rather lets it vary with each iteration in the simulated anneal-
ing solution. Examples of segmentation results for a few re-
gions are shown in Fig. 1.

(a)

(b)

Figure 1. Original SAR image samples (left
hand side) and segmentation result (right
hand side). (a) and (b) have both three ice
types and open water. (a) had to be seg-
mented in two parts because of its size; note
the consistency of the segmentation across
the artificial border. The images are 700 x 430
pixels and were scaled down for display pur-
poses.

2.3. Segment description

The segmentation process is guided in terms of region
(large areas defined by the ice analysts) and number of
sea ice classes (and could include open water) but yields
no clues as to which segment correspond to which class.
This is referred to as the labelling process. For labelling
to take place, segments must be described in a way that
they can be compared between themselves and with known
classes. Unlike pixel-based classification which compares a
single observation (a m-feature vector) to a population sam-
ple, segment-based classification requires the comparison of
population samples between themselves. A separate com-
ponent of MAGSISC extracts a number of statistics to de-
scribe each segment and stores this information in a spread-
sheet file. The following statistics are stored as vectors or
matrices: mean (µ), standard deviation (σ), population (N ),
covariance matrix (Σ) and histogram (H).

3. Labeling and classification metrics

The image labelling is based on a “learning” approach
which seeks to provide high-level semantic concepts from
low-level visual features [27]. In our case, the examples
from which the system can learn are provided a priori from a
rough interpretation stating what ice types (labels) are found
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in a limited region. Unlike the pure “learning by examples”
approach, these training data are not necessarily “ready-to-
use” but has to be deduced. The low-level features are based
on image texture (GLCM) and SAR intensity.

3.1. The cognitive reasoning approach

The segmentation is guided by pre-defined large regions
(on the order of 1000-5000 km2 or 1-5 Megapixels) through
the maps produced by CIS’s ice analysts and in some cases
these regions might have only one or two classes. In the case
of a unique class, these regions can be treated as training ar-
eas. In other cases a single class might be common to two of
these regions and the segments corresponding to the shared
class can be deduced easily through some means of compar-
ison. These possibilities lead to developing an approach that
can take advantage of these deductions and has been named
“classification by cognitive reasoning”. The evidence was
classified in three types: first-, second- and third-degree.

First-degree evidence falls into two categories: 1) the egg
code region contains only one class or 2) the egg code re-
gion contains several classes and all but one have already
been solved and assigned. In either case, the association is
straight-forward and no additional information is needed to
solve the association.

Second-degree evidence is characterized by the fact that
although all or some classes of a region have previously
been solved (in other regions), the program still has to find
which set of associations is the most likely. For a total of nc

classes, there are nc! permutations of matching each seg-
ment of a particular region to one of the nc classes. The
objective is then to determine which permutation is more
likely according to some metric.

In third-degree evidence, reasoning is based on the fact
that while comparing two egg code regions, although no as-
sociation was previously solved, if only one class is com-
mon to both egg code regions (intersection), then one can
deduce which is more likely by calculating a distance met-
ric between all pairwise possibilities. The optimal result is
retained as the correct association.

Each time the evidence leads to the labelling of a seg-
ment, that segment becomes part of the class sample and so
statistics for that class must be updated. Hence, for the seg-
ment i having ni samples and found to belong to class j
(with nj samples), the mean of j is updated using the fol-
lowing equation:

µij =
µini + µjnj

ni + nj
(1)

Similarly, the covariance of the merged samples Σij can be
updated using the following closed form update equation
([9], p.119):

Σij =
Sij

(ni + nj)
(2)

where

Sij = Si + Sj + (µi − µj) · (µi − µj)t ninj

ni + nj
(3)

is the scatter matrix defined by Σini. The histograms are
also merged by simple summation:

Hij = Hi + Hj (4)

3.2. Classification metrics

Numerous methods have been developed to compare two
populations or samples. Five of these methods are tested
here. A multi-classifier approach is also proposed as a
means to take advantage of all five methods. The five meth-
ods are:

1. Mahanalobis distance (MD), [9]

2. Fisher criterion, [9]

3. Chi-square (goodness-of-fit) test (χ2), [21]

4. Kolmogorov-Smirnov test (KS), [21]

5. Student’s t-test (t-test), [21]

The Mahanalobis distance ([9], p. 36) is used to measure the
distance between a single observation x and a class distrib-
ution (µ,Σ). Although it uses the mean and covariance ma-
trix, unlike the maximum likelihood it does not assume a
Gaussian distribution. The traditional form of MD follows:

MD = (x − µ)tΣ−1(x − µ) (5)

To compensate for the fact that only the spread of one sam-
ple is considered, the MD has been replaced by the maxi-
mum MD (MMD) which is defined as:

MMD = max[(µi − µj)tΣ−1
j (µi − µj),

(µj − µi)tΣ−1
i (µj − µi)]

The Fisher criterion (FC, [9], p. 117) projects the feature
space onto a line that best separates between two classes:

J(ω) =
ωtSBω

ωtSW ω
(6)

where SB and SW are the between- and within-class scat-
ter matrices respectively and ω = Σ−1

12 (µ1 − µ2). A Fisher
criterion is calculated for each class pair and the segment
is assigned to the class with the smallest J . The Fisher cri-
terion offers the advantage of taking into consideration the
spread of both distributions being compared.

The chi-square “goodness-of-fit” test (χ2, [21], p. 620)
is usually employed to compare a sample’s distribution to a
theoretical distribution such as the Gaussian function. In the
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present case, it is used to compare two independent sample
distributions. The chi-square statistic is defined by:

χ2 =
Nb∑
k=1

(Hik
− Hjk

)2

Hik
+ Hjk

(7)

where Hi and Hj are the two sample histograms and Nb

represent the number of bins in the histograms. The chi-
square probability function is an incomplete gamma func-
tion defined by χ2 and ν degrees of freedom and corre-
sponds to the probability that the sum of square differences
between Hi and Hj are attributable to the samples’ vari-
ance (H0). The largest the probability, the more likely the
two samples belong to the same population.

The Kolmogorov-Smirnov (K-S, [21], p. 623) test com-
putes the probability of two distributions belonging to the
same population based on the distance between their cumu-
lative distributions:

D = max−∞<x<∞ |SNi
(x) − SNj

(x)| (8)

The probability that D is significant (reject H0 that the two
distributions are the same) is then computed using the fol-
lowing sum:

QKS(λ) = 2
∞∑

k=1

(−1)k−1e−2k2λ2
(9)

where λ = D(
√

Ne+0.12+0.11/
√

Ne) and Ne = NiNj

Ni+Nj
.

Thus, the larger QKS , the less likely the two distributions
belong to the same population.

Finally, Student’s t-test (t, [21], p. 616) verifies if the
difference between two sample’s mean is significant to a
certain degree of confidence or if the difference can be at-
tributed to the sample’s pooled variance. The t-test assumes
a Gaussian distribution but this assumption can usually be
relaxed if N is large ([23], p. 410). For samples that could
have different variances, the sample’s pooled variance is de-
fined as:

SD =

√
S2

xi

ni
+

S2
xj

nj
(10)

and the t statistic as:

t =
µi − µj

SD
(11)

and the number of degrees of freedom (ν) can be approxi-
mated for large samples by:

ν = ni + nj − 2 (12)

The t statistic is compared with Student’s distribution
A(t|v) being an incomplete beta function and returns the
probability that the samples are drawn from the same popu-
lation (H0).

3.3. Combining the classifier: the most likely solu-
tion?

With the possibility of using various classifiers arises
the possibility of combining them by stating that they are
complimentary and no single approach is better in all situa-
tions [25]. When all methods are probabilistic, their proba-
bilities can be combined by simple averaging. Since in the
present case includes two distance metrics and three proba-
bilistic metrics, a simple “voting” scheme was adopted and
the candidate (label combination) that receives the high-
est number of “votes” wins the election. In this approach,
the ambiguous results (no or more than one winner) are not
classified.

This is a sub-optimal approach and a candidate with only
two very strong votes (very high probability) would lose to
one with three “barely” votes (low probability but higher
than for the other candidates) even though it should maybe
win. It is hoped that the solutions of the different metrics do
not differ to the point of provoking such situation but it re-
mains nonetheless a possibility.

3.4. Experimental design for evaluating the results

Evaluating results for most remote sensing application
consists of counting hits and misses while comparing the
classified image and a ground truth sample. Here however,
only the labelling is being evaluated and not the segmen-
tation (the latter has already been evaluated and approved
elsewhere [6], [17]). Furthermore, the labels are known for
each region but not their exact assignment. So instead of
comparing individual segments, whole “label assignment”
solutions have to be evaluated and compared. The goal is to
evaluate each of the five metrics, compare them and evalu-
ate their combination as well (combining classifiers by vot-
ing). To do so, four tests were designed which are summa-
rized below and detailed in section 4.

1. Level of agreement. This first test is intended to find
out how the five metrics differ from one another. The
test consists in simply counting for each metric, how
many times it matches each of the other metrics in
a contingency table. A chi-square test was also per-
formed on the contingency table to check if the level
of agreement between each metric pair is significant.

2. Nearest segment. Since the previous test was per-
formed on “solutions” that includes a combination of
labels and not each segment individually, a test was de-
signed to measure the degree of consistency between
the metrics. This test consists in finding, for each seg-
ment taken as a sample, the nearest segment in the rest
of the data. Since all ice types are found more than
once, all segments should find another segment of the
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same class. The number of agreements was also com-
pared in a contingency table.

3. Level of agreement with “winning label”. This test is
similar to the first one but this time the individual “so-
lutions” are compared with the “winning” solution in
order to determine if any metric can act as a gauge met-
ric that usually agrees with the most voted solution.

4. Level of agreement with ground truth. This last test
is meant to evaluate the metrics individually and the
combined metrics as a successful approach to the la-
belling problem.

These tests were performed on two sets of data from two
different SAR images from RADARSAT-1 totalling over
fifty regions segmented in two to four classes. The images
cover the Western (10 March 2002) and Eastern (13 March
2000) part of the Gulf of Saint-Lawrence (including the
Canadian East coast) respectively.

4. Results and discussion

4.1. Level of agreement

The level of agreement between the five metrics is cal-
culated by summing the number of times that one “solu-
tion” (for a set of labels in a single region) of a metric
exactly matches the solution of another. The regions had
to be separated by the number of classes they contain be-
cause the probability of a match (pm) decreases dramati-
cally with increasing number of classes (nc): pm = 1/nc!.
Table 1 shows for each region set the number of matches in
a contingency table. For each metric pair, a contingency ta-
ble was constructed for observed and expected matches (ac-
cording to chance alone) in the fashion presented in Table 2.
A chi-square test was applied to see if the observed matches
were larger than the expected by-chance matches: H0 :
Pobserved = Pexpected and H1 : Pobserved > Pexpected.

The results of the chi-square tests are presented in Ta-
ble 3. They clearly show that, although most metrics have
a significant level of agreement, no metric pair match per-
fectly. Based on these results, three rough groups can be
formed: 1) MMD and FC have a high level of agreement
(35 in 62) and form a first group; 2) χ2 and KS are both dis-
tribution comparison methods and generally agree (35 in
62); and 3) the t-test only marginally agrees with the other
methods and can form a group of its own. The χ2 metric
is the only one for which H0 is always rejected: its level of
agreement with all the other metrics cannot be attributed to
chance alone (at a 95% level of confidence).

2 classes MMD FC χ2 KS t-test
(2 possibilities)

MMD 24* 22 19 13 19
FC 24* 19 16 16
χ2 24* 17 20
KS 24* 17

t-test 24*

3 classes MMD FC χ2 KS t-test
(6 possibilities)

MMD 20* 8 7 6 5
FC 20* 6 7 1
χ2 20* 18 3
KS 20* 3

t-test 20*

4 classes MMD FC χ2 KS t-test
(24 possibilities)

MMD 18* 5 1 1 1
FC 18* 0 2 0
χ2 18* 0 1
KS 18* 2

t-test 18*

Table 1. Number of pairwise agreements be-
tween the five metrics for the two- (top),
three- (middle) and four-classes (bottom) re-
gions (* represents the total number of re-
gions).

Observed Expected
= �= Σ = �= Σ

2 classes 22 2 24 12 12 24
3 classes 8 12 20 3.33 16.66 20
4 classes 5 13 18 0.75 17.25 18

Σ 35 27 62 16.08 45.92 62

Table 2. Example of contingency tables
for observed (left) and expected by-chance
(right) matches between the Mahanalobis
distance (MMD) and Fisher criterion (FC) met-
rics.

4.2. Nearest segment

The “nearest segment” test was performed in order to
test the level of consistency of the metrics between them-
selves in an independent fashion. Here, it is not the “solu-
tions” that are tested but each segment independently of the
others. The two test images together contain a total of 776
(340 and 446 for the first and second image respectively).
Table 4 shows the compiled results for this test.

The results are similar for both images and show that the
FC and MMD tend to agree more on their solutions than
the other three metrics. Still, their number of agreements
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Probability of H0

FC χ2 KS t-test
MMD 0.000 0.001 0.245 0.010

FC 0.003 0.008 0.067
χ2 0.000 0.005
KS 0.041

Accepted hypothesis (95%)
FC χ2 KS t-test

MMD H1 H1 H0 H1

FC H1 H1 H0

χ2 H1 H1

KS H1

Table 3. Results of the chi-square tests for
pairwise agreement between the five metrics
for all 62 regions.

Image MMD FC χ2 KS t-test Maximum
1 152 156 63 132 77 340
2 164 174 42 127 97 436
Σ 316 330 105 259 174 776

Table 4. Number of times each metric found
the same nearest segment as other metrics.

are well below the maximum possible attainable (less than
half) which shows that no single metric is universally ac-
ceptable and that any single metric likely to yield different
results from the other. The χ2 metric has the lowest level
of agreement which can seem contradictory with the results
in 4 where it was found to be the sole metric with significant
level of agreement with all the other metrics. A plausible ex-
planation is that when considering that the χ2 metric never
really disagrees with all other metrics, it is possible that it
also never quite agrees since a strong level of agreement
with one particular metric would signify stronger disagree-
ment with others. However, insufficient evidence is avail-
able to fully support such explanation.

4.3. Level of agreement with “winning label”

This test is meant to assess if one of the metrics generally
agrees with the label that won the majority of votes. Table 5
is a compilation of the percentage of times that each metric
agrees with the winning label. Again, the results have been
divided into three to match the number of classes in the re-
gions. The regions with no winner (each of the five votes
were given to a different solution) or with ambiguous re-
sults (equality of votes between two solutions) were left out
of the calculations.

The results appear to indicate that with a total score of

84% the χ2 tends to agree better with the winning com-
binations of labels than any other single metric. The χ2 is
followed by the KS (72.7%), the MMD and FC with both
68.2% leaving the t-test with the worse level of agreement.
This ranking is also consistent for the two- and three-class
regions. The four-class regions however, show much lower
levels of agreement and a different ranking. It should be
noted that in their case, the change of a perfect match is
only 1

24 and that there are only eight valid cases (unambigu-
ous). One conclusion that can be drawn from these results
is that if one should choose only one metric, the χ2 is ap-
parently the preferred choice.

N-class MMD FC χ2 KS t-test
(N-cases) % % % % %
2 cl.(24) 83.3 83.3 95.8 75 87.5
3 cl.(12) 50.0 50.0 100 100 25.0
4 cl.(8) 50.0 50.0 25.0 25.0 12.5

Total (44) 68.2 68.2 84.1 72.7 56.8

Table 5. Number of times (in percentage) each
metric agrees with the solution having the
majority of votes. Note that null or ambigu-
ous results were left out.

4.4. Level of agreement with ground truth

The best possible test for any classification scheme is to
see how successfully it performs when compared against
ground truth. Unfortunately, ground truth is seldom avail-
able and is substituted by a sample. In the case of sea ice,
ground truth is not practically accessible and here it was
substituted by an interpreted version. It should be noted that
each segment could not be interpreted individually but in
combination with the other labels in the region. Through
this interpretation process, various flaws and doubtful solu-
tions were detected. Human operators only approximate the
exact answer; statistical validation requires exact answers
but these are not available. In some regions, the CIS ice map
appeared to have “missed” a class which has caused prob-
lems in the segmentation and consequently, in the classifi-
cation as well. These “doubtful” regions were left out of the
compilation.

Table 6 shows the results (in percentage) of compar-
ing the solutions of each individual metric and the winning
solution with the interpreted ground truth. Because of the
uncertainty that surrounds the interpretation, many regions
were left out of the validation data and only 39 of the 62
regions were used. The four-classes regions were particu-
larly affected by the selection process and only five of the
18 were considered. The scores are roughly between 62%
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and 80% but the ground truth cannot be considered com-
pletely reliable and these scores might vary with better val-
idation data.

Unlike the previous tests, these results seem to indicate
that the distance metrics, MMD and FC are more reliable
than the probabilistic methods. However, if the three type
of regions are considered separately, the results are not as
clear. When considering only the three- and four-class re-
gions (because the results for the two-class regions can eas-
ily be attributed to chance with a probability of 0.5), all
scores fall below the 60% mark but the MMD still performs
better followed by the “winner” of the voting approach.

Although the data is too sparse to provide a definite ex-
planation as to the ranking of the metrics, three facts can
shed some light some of the reasons.

1. Stationarity: because of the variations in the incident
angle in the SAR images, the various classes of ice and
open water cannot be expected to have a stationary be-
havior and can have shifts in their distributions. Fre-
quency comparison methods like χ2 and KS are par-
ticularly sensitive to such shifts and can become “un-
stable”.

2. Feature dependency: the three probabilistic metrics
consider the features (SAR intensity and texture fea-
tures) to be independent which is not a very reliable
assumption. Only the MMD and FC metrics truly cre-
ate a feature space.

3. Variance: neither the MMD and FC metrics are af-
fected by differences in variance between the samples
whereas some normalization is necessary for the three
probabilistic methods.

Additional testing is required to obtain a better expla-
nation as to the reasons behind the ranking of the differ-
ent metrics and, more importantly, explain the mechanisms
that make them provide different answers to a single prob-
lem.

5. Conclusions

This paper presents an innovative method for labelling
segmented images using evidence gathering from a priori
information supplied by an analyst in the form of large, par-
tially interpreted regions containing a pre-determined num-
ber of classes. Instead of using training data, the algorithm
accumulates evidence about one or two classes and then
builds the statistics about the other classes by deduction
while continuously updating these statistics as the segments
are gradually assigned a label. Five different metrics are
used and compared for assigning a label to the segments:
two non-parametric distances and three probabilistic meth-
ods. The five metrics were also combined in a voting ap-
proach to produce a sixth possible solution.

Although the five metrics were found to have a signifi-
cant degree of agreement between themselves, they yielded
very different results. The χ2 metric was found to generally
agree better with the most common (“winning”) solution
but when compared against interpreted ground truth, the
Mahanalobis distance and the Fisher criterion were found
to perform better. The voting scheme performed well and
could be an alternative to selecting a single metric.

For other applications, the a priori information can be re-
placed by training data or class signature libraries. Work is
currently underway to test this methodology on other re-
mote sensing data and with ground truth data for train-
ing and validation.
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