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ABSTRACT 
Statist ical es t imat ion  of large-scale dynamic  sys tems  
governed by stochastic partial differential equations i s  
impor tant  in a wide range of scientific applications. 
However,  t he  realization of computationally e f i c i en t  al- 
gor i thms  f o r  statistical es t imat ion  of such  dynamic  sys- 
t e m s  i s  ve ry  d i f icu l t .  Convent ional  linear least squares 
methods  are impractical f o r  both computational and stor- 
age reasons. 

A recently-developed multiscale es t imat ion  method- 
ology has  been successfully applied t o  a number  of large- 
scale static es t imat ion  problems. In th is  paper we  ap- 
p l y  the  multiscale approach t o  the  more  challenging dy- 
namic es t imat ion  problems, introducing a recursive pro- 
cedure tha t  e f i c i en t l y  propagates multiscale models for 
t he  es t imat ion  errors in a m a n n e r  analogous to ,  but 
more  e f i c i e n t  t han ,  t he  K a l m a n  filter’s propagation of 
the  error covariances. W e  will illustrate our  research 
in the  contex t  of 1-D and 2 - 0  diffusive processes. 

1. INTRODUCTION 

Statistical estimation of dynamic systems governed by 
stochastic partial differential equations finds numerous 
scientific applications ranging from computing optical 
flow [l] to tracer tracking in the ocean [7]. Dynamic 
estimation of large-scale systems governed by even sim- 
ple dynamics such as advection-diffusion is challenging 
and would represent a major step forward in numerous 
applications, such as imaging ocean surface height [3], 
where methods for assimilating data with dynamics 
have hitherto been limited. Conventional linear least 
squares estimation methods such as Kalman filtering 
are impractical given the sheer size of the error covari- 
ance matrices, as the algorithm is of O ( N 3 )  computa- 
tional complexity and requires (3 (N2)  storage. Com- 
putationally more efficient methods such as multigrid 
and FFT are undesirable because they either do not 
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supply error statistics or require spatially stationary 
prior models and regular measurement patterns. 

In this paper we consider the use of a multiscale 
stochastic modeling and estimation methodology de- 
veloped in [2], which has been successfully applied to a 
number of large-scale static estimation problems [5 ,  31. 
This class of models admits an O ( N )  algorithm for 
the calculation of estimates and error variances. For 
dynamic  systems, in the same way that the Kalman 
filter propagates the error covariance matrices through 
the dynamic prediction and measurement update steps, 
similarly in our multiscale context we need to  propa- 
gate the statistics for the multiscale estimation error. 
Given the sheer size of our estimation problem, the key 
challenge is that we need to propagate models for the es- 
timation error, not covariances, and to  do so efficiently. 
Since each measurement update step has a straightfor- 
ward interpretation as solving a static estimation prob- 
lem, propagating the estimation error model through 
the measurement update step is easy and is accom- 
plished as a by-product of the O ( N )  estimation algo- 
rithm [6]. It is the propagation of the multiscale model 
through the prediction step that remains. 

The challenge here is to untangle the mixing ef- 
fect of the dynamics in updating the parameters of the 
model. Doing this requires a careful examination of 
what variables should be captured at each scale in the 
multiscale representation of the estimation errors and 
how the temporal dynamics mix the variables. In this 
paper we perform that examination for 1-D and 2-D 
diffusion processes. For 1-D diffusion we can construct 
an O ( N )  algorithm for the dynamic propagation of our 
multiscale models for the estimation errors resulting in 
an overall algorithm with near-optimal performance. 
In 2-D the computational complexity rises to  O(N3I2)  
for exact models, but even this makes the multiscale 
approach an attractive alternative for large-scale esti- 
mation problems when compared to  0 ( N 3 )  of the full 
Kalman filter. Reduced-order models for 2-D diffusion 
are currently under investigation. 
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3. MULTISCALE RECURSIVE 
ESTIMATION 

Fig. 1. An example multiscale tree for 2-D fields. 

2. MULTISCALE MODELING 

In the multiscale estimation framework, random fields 
are modeled on multiscale tree structures, e.g., in Fig. 1 
for a quad tree where each node has q = 4 children: 

Z(S) = A ( S ) Z ( S ~ )  + B(s)w(s) ,  (1) 

where s indexes the nodes of the tree, s7 is the parent 
of s, and w(s) is a white noise process uncorrelated 
with ~ ( 0 ) .  Conditioned on the state ~ ( s )  the q + 1 
subtrees connected to node s are conditionally decor- 
related by the whiteness of w(s). This Markovianity 
property makes possible an efficient scale-recursive es- 
timation algorithm on the tree [a]. 

Two-dimensional random fields of interest are often 
represented at  the finest scale of a q = 4 quad tree 
(Fig. 1); similarly 1-D processes can be placed at the 
finest scale of q = 2 dyadic trees. The challenge, in 
both the static and dynamic estimation cases, is the 
determination of appropriate multiscale states ~ ( s )  and 
model parameters A(s) and B ( s )  on all scales so that 
the desired statistical behavior is produced at the finest 
scale. One specific class of multiscale models defines 
the multiscale state a t  s as a linear function L(s )  of 
the finest-scale process x :  

Z ( S )  = L T ( S ) X .  (2) 
The model parameters A(s)  and B ( s )  are uniquely de- 
termined given the joint statistics between Z(S) and 
z ( s ~ ) ,  i.e., P ( s ) ,  P ( s y ) ,  and P ( s , s y ) ,  which are eas- 
ily computed once (2) is defined and given the second- 
order statistics for x ,  P, .  It is known that the class of 
first-order Markov random fields (MRF) can be exactly 
modeled by letting L ( s )  be the boundary points of sub- 
regions of x in 2-D, or the end points of subintervals 
of x in 1-D, as shown in Fig. 2(a) [5]. 

The goal of our research is the development of mul- 
tiscale models for large dynamic systems and of com- 
putationally tractable methods for propagating such 
models without the explicit availability of second-order 
statistics, P,.  

Consider a discrete-time system whose temporal dy- 
namics are governed by 

~ ( t  + 1) = A d ~ ( t )  + ~ d ( t ) ,  (3) 

where wd(t) N N(O,Qd) is Gaussian with zero mean 
and diagonal covariance Qd.  The measurements are 

Y d t )  = C d ( t )  4 t )  + V d ( t ) ,  (4) 

where w d ( t )  - N ( 0 , R d )  with diagonal R d .  Let 2 ( t l ~ )  
denote the estimate of z ( t )  based on measurements 
through time 7, and let x(tl7) denote the correspond- 
ing estimation error 

X ( t 1 7 )  = %(t) - 2(tlT). (5) 

The form of a class of recursive estimators (which in- 
cludes the optimal Kalman filter) consists of a predic- 
tion stage 

and a measurement update stage 

2(t  + llt) = Ad 2(tlt), 

2(tlt) = i ( t l t  - 1) + X(tlt - l), 

(6) 

(7) 

where x(tlt - 1) is the estimate of the one-step predic- 
tion error x(tlt - 1) based on the measurement 

v(t) = yd( t )  - Cd 2(tlt - 1) (8)  
= Cd x(tlt - 1) + V d ( t ) .  (9) 

Each measurement update step is essentially a static es- 
timation problem of computing x(tlt - 1). In standard 
Kalman filtering the estimate k(tlt - 1) is calculated 
explicitly as 

k(tlt - 1) = K(t )v( t ) ,  

for which the prediction error covariance P,(tlt - 1) 
is required in computing the Kalman filter gain K( t ) .  
P,(tlt - 1) is propagated through time to  P,(t + llt) 
at the next time step via a Riccati equation, which 
is of 0 ( N 3 )  computational complexity. The updated 
estimation error covariance P,(tlt) is exactly the a 
posteriori estimation error covariance from estimating 

The alternative approach that we consider in this 
paper involves the implicit calculation and propagation 
of the statistics of the estimation error as a sequence 
of multiscale models. The multiscale update step, no 
different from static estimation, is known [6] .  The mul- 
tiscale prediction step-deriving a model A(s; t + lit) 
and B ( s ;  t+ llt) for the one-step ahead predicted errors 

x(tlt - 1). 
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from a model A(s; tlt) and B ( s ;  tlt) for the updated 
errors-is substantially more difficult. We write the i- 
t h  state variable at node s on the model for ~ ( t  + llt): 

zi(s;t + llt) 

= ZT(S)X(t + l i t )  (11) 
= ZT(~)Adx(tlt) + Z T ( S ) W ~ ( ~ )  (12) 

= hT(S)<(tlt) + lT(S)Wd(t) ,  (14) 

= h~~Z~(o)zj(o-;tlt) + ZY(s)wd(t) (13) 
(.d 

where (11) follows from (2), and (12) follows from (3) 
and (5). In (13) we attempt to relate z i ( s ; t  + lit) 
to states on the model for x(tlt), rather than to ~ ( t l t )  
itself. Denoting by <(tit) the collection of all state vari- 
ables on the updated error model, we may write (13) 
in the vector form of (14). To compute the joint statis- 
tics between z(s; t + llt) and x(s7; t + l i t ) ,  which will 
give us A(s; t + llt) and B ( s ;  t + lit), more than just 
the joint statistics between z(s; tit) and z(s7; tit) are 
needed due to the temporal dynamics, since the sum 
in (13) usually depends on more than just zi(s; tlt). 
Specifically which additional joint statistics will be re- 
quired will depend on the choice of linear functionals 
and on the temporal dynamics. 

The dynamics generally operate locally in space, 
e.g., Ad is tridiagonal. Fig. 2(a) shows a realization 
from [5] for 1-D MRFs, where L(s )  consists of the 
boundary points of the subintervals under s. Consider 
computing the joint statistics between nodes s and s?: 
some of the additional functionals needed for predic- 
tion are found only at nodes far away from s or s7. 
The overall computational complexity for the predic- 
tion step is C?(NlogN). 

A new type of non-redundant model that we intro- 
duce in this paper further reduces the complexity for 
the prediction step. The physical process is no longer 
conveniently mapped to  the finest scale of the tree, but 
distributed among the nodes, as shown in Fig. 2(b). 
Each element of the physical process appears only once 
on the tree, i.e., there are no redundant functionals. 
The computational benefit is that the additional func- 
tionals needed for the prediction step always appear 
at either a parent or child node. The computational 
complexity is only O ( N ) ,  the same as the update step. 
The resulting multiscale recursive algorithm is then of 

In general one might expect L ( s )  to change with 
time if the statistics of the prediction errors are time 
varying. However, we will assume a fixed set of L ( s )  
for the multiscale realization, an assumption similar in 
spirit to  the assertion of a Markov structure in [l]. The 
choice of L ( s )  is not arbitrary as the functionals must 

Q ( N ) .  
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Fig. 2. (a) The linear functionals of the type in [ 5 ] ;  (b) 
non-redundant linear functionals for modeling the updated 
estimation errors are labeled with circles (and with filled 
circles at s and s?). The x marks indicate the locations of 
additional functionals needed for the prediction step due to 
a tridiagonal A d .  The arrows point to shaded circles where 
the additional linear functionals are found. Joint statistics 
among all nodes with either filled or shaded circles are must 
be computed to determine A(s; t + llt) and B ( s ;  t + llt). 

also satisfy the Markovianity property on the tree in 
order to give an accurate statistical realization. The 
imposition of a fixed set of linear functionals means 
that the prediction errors are only approximately re- 
alized. We will see that for 1-D diffusion, the linear 
functionals in Fig. 2 do indeed adequately capture the 
error statistics under a variety of conditions. 

4. 1-D DIFFUSION 

Consider a diffusion process governed by the normal- 
ized stochastic PDE 

az 
- at = v 2 z - p . z + + . w ,  

where z is the temperature distribution on a thin rod 
in 1-D, or on a sheet in 2-D; w is white Gaussian noise, 
and ,B and y are constants. We discretize this PDE in 
both space and time to arrive at a system of difference 
equations in the form of (3). 

For small-sized systems, we can solve for the steady- 
state process P ,  and predicted estimation error P,  co- 
variances by exactly solving the Lyapunov and Riccati 
equations, respectively. We find that Pi1 and PP' are 
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Fig. 3. Pinned cooling fin with two measurements at loca- 
tions 11 and 38. (SNR = 0 dB.) Heat loss is nonuniform: 
p = 0 at locations 1 - 23 and p = 10 at 24 - 45. (a) 
Steady-state process and steady-state updated estimation 
error variances. (b) Percent FVR of the optimal and multi- 
scale estimators. The values for the optimal and multiscale 
estimators are indistinguishable. (c) Percent degradation 
in FVR of suboptimal multiscale estimator with respect to 
the optimal. 

approximately banded. Since we know that MRFs have 
banded inverse covariance matrices and that MRFs can 
be exactly modeled with the linear functionals shown in 
Fig. 2, we have good reason to  believe that these func- 
tionals result in good approximate multiscale models 
for the estimation errors. This is indeed the case as 
the two examples in Figs. 3 and 4 demonstrate. 

The multiscale recursive algorithm can be used as 
an iterative procedure for finding the steady-state esti- 
mator, in the same way that the Kalman filter repre- 
sents an iterative solution to the Riccati equation. In 
Fig. 3 we show a 45-element pinned cooling fin exam- 
ple modeled with non-redundant functionals. The mul- 
tiscale suboptimal estimator is found after 1000 itera- 
tions or about one time constant of the optimal steady- 
state estimator. We use fractional variance reduction 
(FVR) of the updated estimation errors to measure the 
performance of the estimators: 

Var(s.s. process) - Var(s.s. updated error) 
Var(s.s. process) 

FVR = 

(16) 
In Fig. 3(a), we can see the reduction in variance due 
to the two measurements at 11 and 38. The mul- 
tiscale steady-state estimators in general perform no 
more than a few percent below optimal. 

The non-redundant linear functionals work well for 
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Fig. 4. A warm liquid flows to the right down a cooling 
pipe. (SNR = 0 dB, p = -10, p = 0 at 1 - 32, ,O = 10 at 
33 - 64.) A different measurement pattern is used for every 
100 steps (about 1/13 of process time constant). The num- 
ber of measurements is a Poisson distribution with mean 4. 
The locations are uniformly distributed. (a) True process 
at step 1300 and initial values of the process. (b) Updated 
estimates at step 1300. The optimal and the multiscale 
suboptimal estimates are indistinguishable at this resolu- 
tion. The locations and values of the two measurements 
are labeled with circles. (c) The difference between the 
multiscale estimates and the optimal estimates. The dot- 
ted curves show the magnitude of one standard deviation 
of the optimal estimation errors. 

modeling the estimation errors under a variety of more 
general conditions. Fig. 4 shows an example in which 
an advection component pVz is added to (15), and 
the number and locations of measurements are time- 
varying. Since the problem is time-varying and does 
not attain steady-state, we compare the multiscale es- 
timates with the optimal ones. 

5. 2-D DIFFUSION 

Analogous to the 1-D model in Fig. 2(b), we can build 
2-D multiscale models which keep the boundary points 
of s as the state variables in z(s). The 2-D multi- 
scale steady-state estimator performs well compared to 
the optimal estimator, as the example in Fig. 5 shows. 
However, these 2-D models have state dimensions that 
grow with the size of the random field. For a 2-D field 
of interest with N elements, the complexity of the mul- 
tiscale recursive estimator becomes O(N3I2) .  This is 
still substantially better than O ( N 3 )  complexity of the 
Kalman filter. Reduced-order models that subsample 
the boundary points lead to further reduction in com- 
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Fig. 5.  Performance of multiscale estimator for 2-D diffu- 
sion, with boundary points are kept as linear functionals in 
the model. (p  = 1, one measurement at location (8,8)). 
(a) Steady-state FVR of multiscale suboptimal estimator. 
(b) Percent degradation in FVR of suboptimal multiscale 
estimator with respect to the optimal. 

putation, although the asymptotic complexity remains 
the same. Similar models have been successfully used 
in ocean hydrography applications where conventional 
estimation methods are infeasible due to the size of the 
problems. 

It is a major challenge to design multiscale mod- 
els for 2-D random fields that achieve better asymp- 
totic computational complexity. Wavelet coefficients of 
the boundaries were used for modeling textures in [5]. 
Alternative approaches, such as canonical correlation 
realization (CCR) [4]-a singular value decomposition 
method-produce linear functionals shown in Fig. 6, 
that resemble the Fourier basis (which is reasonable, 
since a 2-D boundary resembles a diffusion process, 
which is diagonalized by the Fourier transform). Such 
approaches may lead to  effective, reduced-order, mul- 
tiscale state definitions for 2-D systems, and are cur- 
rently under investigation. 
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