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To ensure the safety and the serviceability of civil infrastructure it is essential to visually inspect and
assess its physical and functional condition. This review paper presents the current state of practice of
assessing the visual condition of vertical and horizontal civil infrastructure; in particular of reinforced
concrete bridges, precast concrete tunnels, underground concrete pipes, and asphalt pavements. Since
the rate of creation and deployment of computer vision methods for civil engineering applications has
been exponentially increasing, the main part of the paper presents a comprehensive synthesis of the state
of the art in computer vision based defect detection and condition assessment related to concrete and
asphalt civil infrastructure. Finally, the current achievements and limitations of existing methods as well
as open research challenges are outlined to assist both the civil engineering and the computer science
research community in setting an agenda for future research.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Manual visual inspection is currently the main form of assess-
ing the physical and functional conditions of civil infrastructure
at regular intervals in order to ensure the infrastructure still meets
its expected service requirements. However, there are still a num-
ber of accidents that are related to insufficient inspection and con-
dition assessment. For example, as a result of the collapse of the I-
35W Highway Bridge in Minneapolis (Minnesota, USA) in 2007 13
people died, and 145 people were injured [1]. In the final accident
report the National Transportation Safety Board identified major
safety issues including, besides others, the lack of inspection guid-
ance for conditions of gusset plate distortion; and inadequate use
of technologies for accurately assessing the condition of gusset
plates on deck truss bridges. A different, less tragic example is
the accident of a freight train in the Rebunhama Tunnel in Japan
in 1999 that resulted in people losing the trust in the safety and
durability of tunnels. According to [2], the failure to detect shear
cracks had resulted in five pieces of concrete blocks, as large as sev-
eral tens of centimeters, which had fallen onto the track causing
the train to derail.

In order to prevent these kinds of accidents it is essential to con-
tinuously inspect and assess the physical and functional condition
of civil infrastructure to ensure its safety and serviceability.
Typically, condition assessment procedures are performed
manually by certified inspectors and/or structural engineers, either
at regular intervals (routine inspection) or after disasters (post-dis-
aster inspection). This process includes the detection of the defects
and damage (cracking, spalling, defective joints, corrosion, pot-
holes, etc.) existing on civil infrastructure elements, such as build-
ings, bridges, tunnels, pipes and roads, and the defects’ magnitude
(number, width, length, etc.). The visual inspection and assessment
results help agencies to predict future conditions, to support
investment planning, and to allocate limited maintenance and
repair resources, and thus ensure the civil infrastructure still meets
its service requirements.

This review paper starts with the description of the current
practices of assessing the visual condition of vertical and horizon-
tal civil infrastructure, in particular of reinforced concrete bridges
(horizontal: decks, girders, vertical: columns), precast concrete
tunnels (horizontal: segmental lining), underground concrete
pipes (horizontal) (wastewater infrastructure), and asphalt pave-
ments (horizontal). In order to motivate the potential of computer
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vision, this part focuses on answering the following questions: (1)
what are the common visual defects that cause damage to civil
infrastructure; (2) what are the typical manual procedures to
detect those defects; (3) what are the limitations of manual defect
detection; (4) how are the defects measured; and (5) what tools
and metrics are used to assess the condition of each infrastructure
element.

Due to the availability of low cost, high quality and easy-to-use
visual sensing technologies (e.g. digital cameras), the rate of cre-
ation and deployment of computer vision methods for civil engi-
neering applications has been exponentially increasing over the
last decade. Computer vision modules, for example, are becoming
an integral component of modern Structural Health Monitoring
(SHM) frameworks [3]. In this regards, the second and largest part
of the paper presents a comprehensive synthesis of the state of the
art in computer vision based defect detection and condition assess-
ment of civil infrastructure. In this respect, this part explains and
tries to categorize several state-of-the-art computer vision
methodologies, which are used to automate the process of defect
and damage detection. Basically, these methods are built upon
common image processing techniques, such as template matching,
histogram transforms, background subtraction, filtering, edge and
boundary detection, region growing, texture recognition, and so
forth. It is shown, how these techniques have been used, tested
and evaluated to identify different defect and damage patterns in
remote and close-up images of concrete bridges, precast concrete
tunnels, underground concrete pipes and asphalt pavements.

The third part summarizes the current achievements and
limitations of computer vision for infrastructure condition assess-
ment. Based on that, open research challenges are outlined to assist
both the civil engineering and the computer science research com-
munity in setting an agenda for future research.

2. State of practice in visual condition assessment

This section presents the state of practice in visual condition
assessment of reinforced concrete bridges, precast concrete tun-
nels, underground concrete pipes and asphalt pavements.

2.1. Reinforced concrete bridges

As per US Federal Highway Administration (FHWA)’s recent
bridge element inspection manual [4], during a routine inspection
of a reinforced concrete (RC) bridge, it is mandatory to identify,
Table 1
Defectsa related to general bridge elements (Grey: Required; White: Not Required) [4].

a Del/Spall – Delamination/Spall/Patched area; Exp Rebar – Exposed Rebar; Eff/Rust –
Distortion; Settle – Settlement; Scour – Scouring.
measure (if necessary) and record information related to damage
and defects, such as delamination/spall/patched area, exposed
rebar, efflorescence/rust staining, cracking, abrasion/wear, distor-
tion, settlement and scouring. While this list of defects comprises
the overall list for common RC bridge element categories, such as
decks and slabs, railings, superstructure, substructure, culverts
and approach ways, not all defects are applicable to all components.

Table 1 highlights which defects are applicable to which com-
ponents and hence need to be checked for each type of component
on a bridge. While some of the stated defects are visually detected,
some others of them may require physical measurements for accu-
rate documentation and assessment. The size of the defect plays an
important factor in deciding if it is necessary to go beyond the
visual approach.

In addition to the list of defects stated above, FHWA also man-
dates that all bearings should be checked during inspection, irre-
spective of the material type and functional type of the bridge.
Some of the relevant defects for bearings are corrosion, connection
problems, excessive movement, misalignment, bulging, splitting
and tearing, loss of bearing area, and damage. Furthermore, for
seals and joints, inspectors focus on a specific set of defects, such
as leakage, adhesion loss, seal damage, seal cracking, debris impac-
tion, poor condition of adjacent deck, and metal deterioration or
damage. While most of these defects can be detected visually,
assessing severity of the defects however needs close-up examina-
tion and measurements with suitable tools and equipment.

All of the existing defects on a bridge are categorized on a scale
of 1–4 – each corresponding to the condition state of a particular
element (1-Good, 2-Fair, 3-Poor, and 4-Severe). The condition state
is an implicit function of severity and extent of a defect on a com-
ponent. Though such categorization of condition states provides
uniformity for each component and effects, the actual assessment
that results in such categorization can be subjective. Table 2 pro-
vides some examples of guidelines provided in [4] for categoriza-
tion of the condition states of different defects. Please refer to
Appendix D2.3 in [4] for the complete list of guidelines for all
defects.

There are typically three ways to perform manual inspection for
concrete bridge elements: visual, physical and advanced. A combi-
nation of these methods is required depending on the condition of
the bridge member under consideration. During visual inspection,
an inspector focuses on surface deficiencies, such as cracking, spal-
ling, rusting, distortion, misalignment of bearings and excessive
deflection. Usually, the inspector can visually detect most of the
Efflorescence/Rust Staining; Crack – Cracking; Abr/Wr – Abrasion/Wear; Distor –



Table 2
Examples of defects and guidelines for assessment of condition states [4].

Defects Condition states

1 2 3 4
Good Fair Poor Severe

Delamination/Spall/Patched
Area

None Spall: <1 in depth or <6 in
diameter

Spall: >1 in & >6 in
diameter; unsound patched
area or if signs of distress

Situation worse than for Condition State 3
and if the inspector deems that it might
affect the strength or serviceability of the
element

Efflorescence/Rust staining None Surface white without
build-up or leaching with-
out rust staining

Heavy build-up with rust
staining

Situation worse than for Condition State 3
and if the inspector deems that it might
affect the strength or serviceability of the
element

Cracking Width <0.012 in or
spacing >3 ft

Width 0.012–0.05 in or
spacing 1–3 ft

Width >0.05 in or spacing
<1 ft

Situation worse than for Condition State 3
and if the inspector deems that it might
affect the strength or serviceability of the
element

Abrasion/Wear No abrasion/wear Abrasion or wearing has
exposed coarse aggregate
but the aggregate remains
secure in the concrete

Coarse aggregate is loose or
has popped out of the
concrete matrix due to
abrasion or wear

Situation worse than for Condition State 3
and if the inspector deems that it might
affect the strength or serviceability of the
element
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relevant defects, provided there is suitable access to the bridge ele-
ment. However, visual inspections might not be adequate during the
assessment of some specific defects. For example, an inspector can
identify visually that there is delamination when looking at a patch
of concrete, but would not be able to gauge the extent and depth of it
accurately by just visual inspection. Visual inspections, without uti-
lization of any other inspection techniques, are also known to be
subjective which might result in unreliable results [5,6].

In contrast to the visual inspection, efforts during physical
inspections are mainly towards quantifying the defects once they
are identified visually. For example, to determine delamination
areas in a pier or concrete deck, physical methods, namely, ham-
mer sounding or chain drag may be used [7]. Measurements con-
cerning expansion joint openings and bearing positions are also
essential during the inspection and evaluation of a bridge. In some
cases, advanced inspection methods like those based on strength,
sonic, ultrasonic, magnetic, electrical, nuclear, thermography, radar
and radiography, are used to detect sub-surface defects or for pre-
cise measurements of even surface defects [22].
2.2. Precast concrete tunnels

Precast concrete tunnels are one example of civil infrastructure
components that are becoming increasingly important when
developing modern traffic concepts worldwide. However, it is com-
monly known that numerous tunnels, for example in the US, are
more than 50 years old and are beginning to show signs of dete-
rioration, in particular due to water infiltration [8]. In order to sup-
port owners in operating, maintaining, inspecting and evaluating
tunnels, the US Federal Highway Administration (FHWA), for
example, has provided a Tunnel Operations, Maintenance, Inspec-
tion and Evaluation (TOMIE) Manual [8] and a Highway and Rail
Transit Tunnel Inspection Manual [9] that promote uniform and
consistent guidelines. In addition, Best Practices documents sum-
marize the similarities and differences of tunnel inspection proce-
dures among different US federal states and transportation
agencies [10].

There are different types of tunnel inspections: initial, routine,
damage, in-depth and special inspections [8]. Routine inspections
usually follow an initial inspection at a regular interval of five years
for new tunnels and two years for older tunnels, depending on con-
dition and age. According to [9], inspections should always be
accomplished by a team of inspectors, consisting of registered pro-
fessional engineers with expertise in civil/structural, mechanical,
and electrical engineers, as both structural elements and functional
systems have to be assessed. However, the focus of this review is
on civil and structural condition assessment of precast concrete
tunnels. Accessing the various structural elements for up-close
visual inspection requires specific equipment and tools. Common-
ly, dedicated inspection vehicles, such as Aerial bucket trucks and
rail-mounted vehicles, equipped with, for example, cameras (used
for documentation), chipping hammers (used to sound concrete),
crack comparator gauges (used to measure crack widths), and
inspection forms (used to document stations, dates, liner types,
defect locations and condition codes), are driven through the tun-
nel and permit the inspectors to gain an up-close, hands-on view of
most of the structural elements.

More recently, integrated and vehicle-mounted scanning sys-
tems have entered the market. For example, the Pavemetrics Laser
Tunnel Scanning System (LTSS) uses multiple high-speed laser
scanners to acquire both 2D images and high-resolution 3D pro-
files of tunnel linings at a speed of 20 km/h [11]. Once digitized
the tunnel data can be viewed and analyzed offline by operators
using multi-resolution 3D viewing and analysis software that
allows for high-precision measurement of virtually any tunnel fea-
ture. A different system is the Dibit tunnel scanner that is manually
moved through the tunnel [12]. It provides an actual comprehen-
sive visual and geometrical image of the recorded tunnel surface.
The corresponding tunnel scanner software allows easy, quick
and versatile data evaluations to visualize the inspected tunnel
and manually assess its condition.

According to [9], visual inspection must be made on all exposed
surfaces of the structural (concrete) elements (e.g. precast segmen-
tal liners, placed concrete, slurry walls), and all noted defects have
to be documented for location and measured to determine the
scale of severity (Table 3).

Based on the amount, type, size, and location of defects found
on the structural element as well as the extent to which the ele-
ment retains its original structural capacity, elements are indi-
vidually rated using a numerical rating system of 0–9, 0 being
the worst condition (critical, structure is closed and beyond repair)
and 9 being the best condition (new construction) [9].
2.3. Underground concrete pipes

There is a great deal of buried infrastructure in modern cities,
most of which appears to be out-of-sight and out-of-mind. Thus,
whereas the number of cracks or depths of potholes in asphalt



Table 3
Common civil/structural defects of concrete tunnels and respective severity scales according to [9].

Defect type/
Severity

Minor Moderate Severe

Scaling <6 mm deep 6–25 mm deep >25 mm deep
Cracking <0.80 mm 0.80–3.20 mm, or <0.10 mm (pre-stressed

member)
>3.20 mm, or >0.10 mm (pre-stressed
member)

Spalling/Joint Spall <12 mm deep or 75–150 mm in diameter 12–25 mm deep or �150 mm in diameter >25 mm deep or >150 mm in diameter
Pop-Outs (holes) <10 mm in diameter 10–50 mm in diameter 50–75 mm in diameter (>75 mm are spalls)
Leakage Wet surface, no drops Active flow at volume <30 drips per minute Active flow at volume >30 drips per minute
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and concrete pavements may very well be the subject of water-
cooler conversation, an interest in or an awareness of the state of
underground sewage pipes is quite far removed from the percep-
tion of most citizens.

However there are two key attributes that motivate attention to
underground infrastructure:

1. Being buried, the infrastructure is challenging to inspect.
2. Being buried, the infrastructure is very expensive to fix or

replace.

Indeed, the costs associated with sewage infrastructure mod-
ernization or replacement are staggering, with dollar figures quot-
ed in the range of one or more trillion dollars [13].

There is, however, a strong incentive to undertake research and
to develop sophisticated methods for underground concrete pipe
inspection, due to the huge cost gap between trenchless approach-
es and the far more expensive digging up and replacement. The
North American Society for Trenchless Technology and corre-
sponding No-Dig conferences worldwide demonstrate the wide-
spread interest in this strategy, dating back many years [14].

Direct human inspection, which is possible, at least in principle,
for above-ground exposed infrastructure such as tunnels and road
surfaces, is simply not possible for sewage pipes because of their
relatively small size and buried state. Thus there has long been
interest [15] in automated approaches, normally a small remote-
ly-controlled vehicle with a camera.

A sewage pipe would normally be classified [16] into anticipat-
ed structures,

� Undamaged pipe.
� Pipe joints (connections between pipe segments).
� Pipe laterals (connections to other pipes).

And some number of unanticipated problem classes:

� Cracks.
� Mushroom cracks (networks of multiple, intersecting cracks, a

precursor to collapse).
� Holes.
� Damaged/eroded laterals or joints.
� Root intrusion.
� Pipe collapse.

In common with other forms of infrastructure, the primary
challenge to sewage pipe inspection is the tedium of manual
examination of many hours of camera data, exacerbated by the
sheer physical extent of the infrastructure which, in the case of
sewer pipes, exceeds 200,000 km in each of the UK, Japan, Ger-
many, and the US [17]. There are, however, a few attributes unique
to sewage pipe inspection:

� Lighting is typically poor, since the only light available is that
provided by the inspecting vehicle, and any forward-looking
camera sees a well-lit pipe at the sides transitioning to com-
pletely dark ahead.

� Sewage pipes are subject to extensive staining and background
patterning that can appear as very sudden changes in color or
shade, giving the appearance of a crack.

Since the focus of this paper is on the computer vision analysis
techniques, this following overview of data acquisition is brief, and
the reader is referred to substantial review papers [15,17,18,19].
Closed circuit television (CCTV) [15,17,20,18,19,21–24] is the most
widespread approach to data collection for sewage pipe inspec-
tion; nevertheless the sewer infrastructure which has been imaged
amounts only to a miniscule fraction of perhaps a few percent [19].
Because the most common approach is to have a forward-looking
camera looking down the pipe, the CCTV method suffers from
drawbacks of geometric distortion, a significant drawback in auto-
mated analysis.

Sewer scanner and evaluation technology (SSET)
[15,16,25,26,19] represents a significant step above CCTV imaging.
The pipe is scanned in a circular fashion, such that an image of a
flattened pipe is produced with very few distortions and is uni-
formly illuminated. Laser profiling [17,27,28,20] is similar to the
SSET approach, in that a laser scans the pipe surface circularly, with
an offset camera observing the laser spot and allowing the three-
dimensional surface geometry of the pipe to be constructed via
triangulation.

There are a few further strategies, albeit less common, for sewer
pipe inspection. A SONAR approach [15,28,19] has been proposed
for water-filled pipes, where most visual approaches will fail, par-
ticularly if the water is not clear. Ultrasound methods [29–31,17],
widely used to assess cracks in above-ground pipes, have been pro-
posed to allow an assessment of crack depth, which is difficult to
infer from visual images. Infrared Thermography [15,17,19] relies
on the fact that holes, cracks, or water intrusion may affect the
thermal behavior of the pipe and therefore be revealed as a ther-
mal signature. Finally, ground penetrating radar [15,17] allows
the buried pipe to be studied from the surface, without the clutter
and challenges of driving robots in buried pipes, but at a very sig-
nificant reduction in resolution and contrast.

Because of rather substantial cost associated with data acquisi-
tion of sewer pipes, there is significant interest in maximizing the
use of data. Prediction methods [32–35] develop statistical, neural,
or expert system deterioration models to predict pipe state, over
time, on the basis of earlier observations.

2.4. Asphalt pavements

As reported by the American Society of Civil Engineers (ASCE),
pavement defects, also known as pavement distress, cost US
motorists $67 billion a year for repairs [36]. Therefore, road surface
should be evaluated and defects should be detected timely to
ensure traffic safety. Condition assessment of asphalt pavements
is essential to road maintenance.
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There exist several techniques to detect distress in asphalt
pavements. These techniques differ in the pavement data which
is being collected and in the way this data is processed. Sensor-
based techniques utilize devices to measure parameters of the
pavement surface. Visual-based techniques make use of observa-
tions of the pavement surface to identify anomalies that indicate
distress. Depending on the way of processing data, techniques
are classified as purely manual, semi-automated or automated
[37]. Manual processing is entirely performed by experts, while
semi-automated and automated techniques require little or no
human intervention.

Visual-based techniques consist in manually inspecting the
road surface or employing digital images and computing devices
to assess the pavement condition. In case of manual inspection,
trained personnel walks over the road shoulder and rates the pave-
ment condition according to distress identification manuals. The
disadvantage of this technique is that it is subjective despite the
use of manuals and it depends on the experience of the personnel.
Also, the personnel are exposed to traffic and weather, which
makes the inspection procedure hazardous. Another issue related
to the manual inspection of the road service is the time required
to perform it.

To speed up the assessment process, pavement images are ana-
lyzed instead of walking on the roads. Pavement images are
obtained using downward-looking video cameras mounted on
sophisticated vehicles. When the images and data are analyzed
by human experts, the process of assessing the pavement condition
is semi-automated. However, the rating of the pavement still
depends on the experience of the analyzer and the subjectivity
issue remains.

Most distress detection techniques, regardless of whether they
are manual, semi-automated or automated, depend on the pave-
ment distress type. Pavement distress varies in its form and causes.
Commonly, distress is characterized as alligator cracking, bleeding,
block cracking, depression, longitudinal or transverse cracking,
patches, potholes, rutting, raveling and more. The U.S. Army Corps
of Engineers, for example, distinguishes between 19 types of dis-
tress [38].

Distress types and measurements are defined in visual pave-
ment distress identification manuals. Some of these measurements
and indices vary between different countries, and federal states.
Table 4 presents examples of defect assessment measurements
and condition indices defined in such manuals [39–43]. As can be
seen, severity and extent are present in most of the manuals. The
common procedure to obtain the extent value is to count the
occurrences of the different severity levels for each type of distress
for the whole segment and convert the amount of distress into dis-
tress percentage.

Condition assessment indices are calculated based on the dis-
tress measurements. Several pavement condition assessment
indices have been developed and the procedures of their calcula-
tion are described in visual distress identification manuals. For
instance, the pavement condition index (PCI) is widely used. The
pavement condition index is a statistical measure of the pavement
condition developed by the US Army Corps of Engineers [38]. It is a
numerical value that ranges from 0 to 100, where 0 indicates the
worst possible condition and 100 represents the best possible con-
dition. A verbal description of the pavement condition can be
Table 4
Examples of pavement defect assessment measurements and condition indices.

Ohio [39] British Columbia [40] Wash

Measurement Severity, extent Severity, density Seve
Index Pavement condition rating Pavement distress index Pave
defined depending on the PCI value. This description is referred
to as pavement condition rating (PCR). PCR classifies the pavement
condition as failed, serious, very poor, poor, fair, satisfactory or
good.

3. Computer vision methods for defect detection and
assessment

This section presents a comprehensive synthesis of the state of
the art in computer vision based defect detection and assessment
of civil infrastructure. In this respect, this part explains and tries
to categorize several state-of-the-art computer vision methodolo-
gies, which are used to automate the process of defect and damage
detection as well as assessment. Fig. 1 illustrates the general com-
puter vision pipeline starting from low-level processing up to high-
level processing (Fig. 1, top). Correspondingly, the bottom part of
Fig. 1 categorizes specific methods for the detection, classification
and assessment of defects on civil infrastructure into pre-process-
ing methods, feature-based methods, model-based methods, pat-
tern-based methods, and 3D reconstruction. These methods,
however, cannot be considered fully separately. Rather they build
on top of each other. For example, extracted features are learned
to support the classification process in pattern-based methods.

Subsequently, it is shown, how these methodologies have been
used, tested and evaluated to identify different defect and damage
patterns in remote and close-up images of concrete bridges, pre-
cast concrete tunnels, underground concrete pipes and asphalt
pavements.

3.1. Reinforced concrete bridges

Much of the research in defect detection and assessment using
computer vision methods for RC bridges have largely focused on
cracks, and to some extent on spalling/delamination and rusting.
Many of these research studies targeted and contributed success-
fully to the automation of detection and measurement of defects.
More studies need to be done to improve the methods used for
automatic assessment as they are currently based on several
assumptions.

In addition to cracks, there are also other defects that are essen-
tial to be detected and assessed in relation to a RC bridge. Being
able to detect, assess and document all defects as independent
entities is paramount to provide a comprehensive approach for
bridge inspection.

Currently, some of the other categories of defects are being
inherently detected or assessed as part of other major dominating
defects present at the using computer vision methods. For exam-
ple, some methods detect abrasion as part of the crack [44]. In
other cases, such as distortion and misalignment of bearings, no
automated method exists for detecting and assessing them. This
clearly indicates that more research needs to be done in the direc-
tion of automating the detection and assessment of various defects.
To be able to perform automatic assessment and condition rating
assignment, as a first step, it is necessary to identify the relevant
defect parameters to accurately and comprehensively represent
the defect information.

Below we will present the synthesis of the research done so far
in the computer vision domain for various types of defects.
ington [41] South Africa [42] Germany [43]

rity, extent Degree, extent Extent
ment condition rating Visual condition index Substance value (surface)
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Fig. 1. Categorizing general computer vision methods (top) and specific methods to defect detection, classification and assessment of civil infrastructure.
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3.1.1. Cracking
Previously, Jahanshahi et al. [45] reviewed automatic defect

detection approaches. Very recently, Rose et al. [46] reviewed
existing crack detection and assessment algorithms for concrete
bridges and classified them broadly as edge detection, segmenta-
tion and percolation, machine learning methods, morphology
operations, ground and aerial robot photography, template match-
ing, and other techniques. Building on this categorization, we
reviewed and discussed some of the existing algorithms below.

Abdel-Qader et al. [47] compared various edge detection algo-
rithms and found the Haar Wavelet method to be the most reliable
among them, for the purpose of crack detection. However, the per-
formance of edge detection algorithms on noisy image data is
questionable, and same is the case with morphological operation
based methods [48]. Yamaguchi et al. [49] used scalable local per-
colation-based image processing techniques and they proved to be
efficient and accurate even for large surface images [50]. Abdel-
Qader et al. [51] used a Principle Component Analysis based algo-
rithm to detect cracks on a bridge surface. In this case, the accuracy
of results varied with camera pose and distance from where
images are taken. Prasanna et al. [52] developed a histogram-based
classification algorithm and used it along with Support Vector
Machines to detect cracks on a concrete deck surface. The results
of this algorithm on real bridge data highlighted the need for
improving the accuracy. Nevertheless, training data from various
locations on the bridge could be used to build the classifier and
testing could be done on data from a different location of similar
structural composition. Similarly, Lattanzi and Miller [53] devel-
oped an automatic clustering method for segmentation based on
Canny and K-Means to achieve greater accuracy of crack detection
under various environmental conditions at a greater speed. Lat-
tanzi and Miller’s work is significant, especially if training data
comprises images from different locations because it is important
to offset the environment variability associated with variable light-
ing and shading conditions at different locations on the bridge,
which is often the case with real world bridges. Some researchers
also combined image-based 3D scene constructions with other
techniques, in order to obtain depth perception that a 2D image
lacks, to support automatic crack detection [54,55].

While the above algorithms demonstrated capabilities to detect
cracks, it is also important in a bridge inspection to understand the
crack properties such as location, width, length and orientation,
because condition ratings for bridge elements are assigned based
on such properties. As outputs of the process of extracting proper-
ties from images are quantities, it is imperative that images are
mapped to the global coordinate system. This requirement stems
from the likelihood that images are collected on field with varying
configurations, i.e. resolutions, positions, orientations, etc., over
different inspections, which is primarily due to difficulty in repli-
cating the same image capture configuration as well as a result
of rapid advances in camera technologies over relatively shorter
time periods. Towards normalizing different images to true world
scale, different researchers used techniques such as 3D pose esti-
mation, multiple image stitching or by making measurements rela-
tive to the host structural element. In relation to that, some data
acquisition systems used by researchers also had 3D pose control
feature. These systems likely comprised surface-based (ground-
based, water-based, bridge surface crawler) or aerial robots, which
can either, have pre-configured settings or can log accurate image
capture configuration dynamically.

Targeting to achieve the goal of going beyond mere crack detec-
tion, Yu et al. [56] developed a graph-based search method to
extract crack properties for further assessment and used a
ground-based robot for collecting images; however, this method
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needed manual input of start and end points of crack [50]. Later, Oh
et al. [57] demonstrated a technique implementing automatic two-
step: crack detection and crack tracing algorithm to be able to
detect as well as identify crack properties, such as width and
length, and tested the developed algorithm on a real bridge. They
collected images with a ground-based robotic system that had con-
trolled pan and tilt mechanisms, and used median filter for
smoothening in the pre-processing stage, then isolated the candi-
date crack points and applied morphological operations such as
dilation and thinning to maintain crack segment connectivity. As
part of their study, they compared their results with Fujita, Sobel
and Canny’s method. The performance of the algorithm proposed
by Oh et al. [57] matched the other three methods in terms of
eliminating shaded regions and detecting major cracks, while out-
performing them in the case of thinner cracks.

Other researchers targeted developing crack maps. Jahanshahi
et al. [58] proposed a crack detection system to extract a complete
crack map using 3D scene reconstruction, morphological opera-
tions and machine learning classifiers, and followed it up with a
robust photogrammetry-based approach to compensate for cam-
era perspective errors [59]. In another recent case, Zhu et al. [60]
proposed a novel method involving thinning of the crack maps
and subsequent measurement of each crack skeleton point to the
crack boundary to automatically extract necessary crack para-
meters [50]. More recently, Lim et al. [61] proposed a Laplacian
of Gaussian (LoG) based algorithm to perform crack detection
and mapping on an RC bridge deck, and uses a mobile robotic sys-
tem that can traverse a deck surface to capture images. The robot
stores the spatial locations of image capture and uses robot coordi-
nate system to transform from image coordinate system to global
coordinate system.

The results presented in most of these cases were based on
application of their methods on bridge deck surface, or in some
cases image data of the beams and columns were considered. Gen-
erally speaking, most of the images used in these studies were
images from simple flat and curved surfaces. However, the joints,
seals, bearings and other connections present more complex geo-
metry, often comprise of many sub-components and generally
have varying material composition. Thus, these conditions render
it hard to distinguish cracks from true edges. Also, as bridge inspec-
tors commonly look out for connection related defects, algorithms
should be tested on images from these components.

3.1.2. Delamination/Spalling
Only recently, there have been developments in the detection

and assessment of spalling on concrete surface and these works
seem to have drawn inspiration from rusting detection and assess-
ment [50]. German et al. [62] considered a combination of segmen-
tation, template matching and morphological pre-processing, both
for spall detection and assessment on concrete columns. They
identified length of spalled region along longitudinal direction
and distance between exposed reinforcement bars in the trans-
verse direction and developed an approach for assessing the cumu-
lative severity of the spalling based on different enumeration levels
– (i) spalling of concrete cover without exposing reinforcement, (ii)
spalling exposing longitudinal reinforcement and that of core con-
crete. The results obtained for the test images indicated spall
detection with a precision of 81.1% and a recall of 80.2% for a set
of 70 images. However, they indicated that more work is needed
to achieve more detailed categorization of spall property result,
with particular focus on spalling that exposes transverse
reinforcement.

Adhikhari et al. [63] presented a novel approach based on
orthogonal transformation, using shape preserving algorithms
such as affine and projective transformation, to overcome perspec-
tive and parallax errors of a camera during data collection that can
result in inaccurate defect quantification. They could determine if
spalling had occurred, and if spalling was present, they could
retrieve spall properties automatically. Their research also used
Bridge Condition Index (BCI) after quantifying the defects to map
them to condition ratings. While they could achieve reasonably
accurate results (85% accuracy) for automatic procedures, their
algorithm could not completely address automatic identification
and assessment in situations where multiple defects (e.g. spall
and crack) interact at the same spatial location.

Though work on spalling detection and assessment started only
recently, the progress so far is very promising. The algorithms have
been tested with images from decks and columns. Like in the case
of cracks, even spalling needs to be checked for at concrete joints.
Therefore, including images from those locations will be valuable
for better detection and assessment performance of the algorithms.
3.1.3. Other damage scenarios
Zaurin et al. [3] used video imagery and bridge responses col-

lected by strain gauges and fused them together to detect loss of
connectivity between different composite sections, and change in
boundary conditions. In the process, unit influence line of the
bridge is extracted and statistical outlier detection is done to dif-
ferentiate damage state from the baseline state. This method was
tested using a four span experimental bridge belonging to Univer-
sity of Central Florida. Adhikari et al. [64] presented an change
detection approach based on fourier transformation of the images,
which could useful for detecting subtle defects such as periodic
and sudden settlement of substructure. The review of the paper
also suggests no proper basis for thresholding, and the results vary
depending on the chosen threshold limit chosen. However, this
method is a significant improvement over traditional change
detection approach using the image difference, and can be used
to quickly do a temporal comparison of different images. Uhl
et al. [65] developed a method to detect deflection in structural
members by applying homography mapping. Specifically, they
implemented an automatic shape filter and a corner detector to
calculate the deflection using homography mapping between the
two views. They implemented this algorithm on an experimental
set up in a lab, and also on a real bridge, and verified their results
with the deflection calculated using a laser scanner. The results
seem to be very accurate with the average difference between both
the measurements being less than 0.5%. Though the deflection is
being calculated accurately, it did not address the problem of dam-
age localization and assessment. Kohut et al. [66] extended Uhl
et al.’s work [65] to include damage localization and assessment
using a wavelet transforms based analysis method to do irregular-
ity detection.

Various algorithms, related to detection and assessment of
cracking, spalling and some damage scenarios in RC bridges, have
been discussed above, and our focus was on the progress of the
computer vision research in terms of automation in detection
and assessment of these defects.
3.2. Precast concrete tunnels

In contrast to concrete bridge inspection, the image and video
data acquired inside a tunnel is much different in terms of artificial
lighting and camera distance. From that perspective, it is interest-
ing to review the current state-of-the-art computer vision algo-
rithms for defect detection in tunnel image data. According to
Chaiyasarno [67], automated tunnel inspection systems that cover
both defect detection and condition assessment can be grouped
into the following themes: detection, visualization and
interpretation.
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3.2.1. Defect detection
In analogy to concrete bridges, the most sought after defects are

cracks as they are the primary indicator of deterioration patterns,
which are due to other severe causes that need to be further ana-
lyzed [68]. Yu et al. [56] also highlight that cracks are of particular
concern as they most significantly affect the state of the concrete
within a tunneling environment.

Computer vision methods for crack detection generally involve
a pre-processing step and a crack identification step. First, in the
pre-processing step image processing techniques are applied to
extract potential crack features, such as edges (threshold-based
approaches). Second, the identification step usually applies crack
modeling (model-based approaches) and/or pattern recognition
techniques (pattern-based approaches) in order to classify if the
extracted features belong to crack regions. Next to methods
described in the previous section, mentionable contributions that
are applicable to crack detection during tunnel inspection are the
described below.

3.2.1.1. Threshold-based approaches. Miyamoto et al. [69] calculate
the difference in intensity between each pixel and the average
intensity of each row in an image. A pixel that differs considerably
from the average is said to be a crack pixel. Fujita et al. [70] use a
line filter based on the Hessian matrix to emphasize line structures
associated with cracks before they apply thresholding to separate
cracks from background.

The major drawback of threshold-based approaches is the ques-
tion on how to choose a suitable threshold for extracting crack fea-
tures. The described algorithms select a threshold based on prior
knowledge. However, such methods can hardly be generalized
and may be inapplicable to the imaging conditions found in real
tunnel images. Moreover, they are prone to inaccuracy caused by
shadows as the intensities of shadow pixels tend to have a similar
brightness compared to crack pixels.

3.2.1.2. Model-based approaches. Ukai [71] developed a crack detec-
tion system based on the deformation of tunnel walls. Under this
method, the model of a crack is characterized by eight quantities,
such as area and Feret’s occupancy rate. Subsequently, a filter is
used to remove noise. Yamaguchi et al. [49] modeled cracks based
on the concept of percolation, which is a physical model describing
the phenomenon of liquid permeation. The algorithm starts by ini-
tializing a seed region and then the neighboring regions are labeled
as crack regions based on the percolation process. Paar et al. [72]
present a crack detection algorithm based on the line tracing algo-
rithm that assumes a crack is a series of short straight lines con-
nected together. Again, the algorithm starts from a seed point
followed by searches for a line within the neighboring regions.
Yu et al. [56] proposed a crack detection method in conjunction
with a mobile robot system for automated inspection of concrete
cracks in tunnels. Their method calculates the length, thickness
and orientation of concrete cracks through a graph search; howev-
er, it requires the crack’s start and end point to be manually pro-
vided. Moreover, the robot is required to maintain a constant
distance from the tunnel wall in order to achieve accurate mea-
surements of the damage properties. This system claims to have
an overall detection accuracy rate of 75–85% and a measurement
error of recognized cracks of less than 10%.

According to [67], model-based methods for crack detection
strongly rely on user input to initialize the seed pixels. Conse-
quently, hairline cracks may not be detection because users may
be unable to identify the seed pixels. Due to reliance on the user
input, these methods may not be scalable.

3.2.1.3. Pattern-based approaches. Liu et al. [73] apply a Support
Vector Machine (SVM) classifier to determine if crack features
appear in an image patch. Potential crack features are pre-defined
based on intensity. Abdelqader et al. [51] use a Principal Compo-
nent Principles (PCA) algorithm that reduces the dimensions of fea-
ture vectors based on eigenvalues, and extracts cracks from
concrete images. The images are first pre-processed by line filters
in three directions: vertical, horizontal and oblique; then further
processed by the PCA algorithm and classified based on the nearest
neighbor algorithm.

Methods based on pattern recognition considerably rely on
training data in order to set up robust classifiers. Training and
validation data are usually performed by manual labeling (super-
vised learning), which is a labor-intensive and error-prone
procedure.

3.2.2. Visualization
The main goal of visualization is to visually organize large

image and video data sets to enhance inspection. Image stitching
or image mosaicing is a common method to combine and visualize
a collection of images. In the domain of tunnel inspection, Chaiya-
sarn et al. [74] present a system that constructs a mosaic image of
the tunnel surface with little distortion. Their system obtains a
sparse 3D model of the tunnel by multi-view reconstruction [75].
Then, the Support Vector Machine (SVM) classifier is applied in
order to separate image features lying on the cylindrical surface
from those of the non-surface. The reconstructed 3D points are
reprojected into images for accurate cylindrical surface estimation.
Jahanshahi et al. [76] create stitched images of structural systems
from a specialized camera that can tilt and pan. The method
detects missing parts, such as bolts, when comparing images taken
at different times for the purpose of structural health monitoring
(SHM). The method applies a machine-vision algorithm to perform
image registration to rectify images so that they are in the same
coordinate frame.

In general, image stitching provides a feasible way of increasing
the field of view that cannot be achieved by a single image. Conse-
quently, a wide-angle or stitched image may improve defect detec-
tion results, in particular in case of hairline cracks, since the
stitched image provides a higher resolution of defects, e.g. cracks.

3.2.3. Change monitoring
Apart from detecting cracks, classifying crack patterns and asso-

ciated sizes, it is essential to observe if cracks in tunnel liners have
changed over time and how quickly they do so. This kind of infor-
mation helps determine the deterioration rate of the structural
tunnel components [67].

Lim et al. [77] propose a system for change monitoring of cracks
from multi-temporal images. Their system is based on a 2D projec-
tive transformation that can accurately determine the crack size,
which is then monitored in consecutive images as the crack propa-
gates. Although this system that can cope with images taken from
different viewpoints, it requires explicit user input for the control
points, which makes the system unscalable for a large number of
images. Chen and Hutchinson [78] propose a framework for con-
crete surface crack monitoring and quantification. Their method
is based on optical flow in order to track the movement of cracks.
However, current solutions related to monitoring cracks or anoma-
lies rely greatly on some degree of user input [67].

3.3. Underground concrete pipes

Deplorably, on the basis of a search of sewage pipe inspection
methods currently offered by North American contractors, most
buried pipe inspection continues to be manual and CCTV based,
implying a slow inspection process subject to operator fatigue
and boredom. Although this limitation is frustrating, it strongly
motivates continued research work on machine intelligence and
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computer vision in this application, and is the driving motivation
for this section. There have been significant with computer vision
contributions to pipe inspection, in whole integrated systems such
as PIRAT [28,18], KARO [18], and AIMP [18,79], and the mapping
the underworld (MTU) project [19].

The computer vision analysis of underground concrete sewer
pipes has much in common with other forms of infrastructure. In
particular, all of the parallel sections in this paper discuss aspects
of crack detection, hole detection, and the classification of cracks
into different forms or degrees of severity: multiple cracks, net-
worked cracks etc. The forms of concrete deterioration in different
parts of infrastructure do, after all, share a great deal in common.

As discussed in Section 2.3 and in review articles [15,17–19], an
unusually wide variety of possible imaging modalities has been
developed for buried pipe inspection. In terms of the role of com-
puter vision, we will focus our discussion on the most widespread
methods, which have seen the most attention in the literature,
namely the CCTV, SSET, and laser profiling methods. Other
approaches, such as SONAR, ultrasonics, and ground penetrating
radar do produce image-like data, but of a too specialized nature
to consider here.

The analysis of buried sewage pipes possesses certain unique
aspects which influence the associated computer vision strategy:

� Lighting: The pipes are buried, dark and, depending on the
modality of imaging, there may be constraints on the lighting
possible, particularly in the case of CCTV imaging.
� Patterned background and contrast: Sewage pipes suffer from

significant degrees of deposits and staining, which may be dark,
affecting image contrast, or may be highly and irregularly pat-
terned, looking very much like any of a number of sewage fail-
ure classes – holes, single cracks, networks of cracks, root
intrusion, etc.
� Limited quality and quantity of data: The slow, expensive

approach to data collection strongly limits the total amount of
data available for machine learning. Furthermore the lack of
standardization – varied methodologies of imaging, machine
standards, concrete pipe standards, concrete pipe contents
and staining – make it challenging to learn broadly applicable
approaches.

The methods of image analysis in the literature mostly involve
feature extraction or modeling, both of which are widely used in
computer vision and machine learning. Feature extraction [80] is
the crucial bridge between a raw image and an information-rich
feature vector that can be used for classification. The related prob-
lems of image modeling fall into three categories in the context of
pipe inspection, from the most specific to the most abstract: of
parametric/explicit models, morphology/shape-based models,
and implicit/black-box models.

3.3.1. Feature extraction
Methods of pattern recognition and classification, such as a sup-

port vector machine or nearest neighbor classifier [80], expect to
be given a vector of values describing the object to be classified.
An image, containing thousands to millions of pixels, represents
data in far too dilute a form to be classified, since computation
time and training data requirements are exponential in the number
of dimensions. Feature extraction is essentially dimensionality
reduction; in the context of analyzing images, computer vision
has developed a vast range of approaches for extracting salient
features.

Because buried concrete pipes are patterned and poorly lit,
robust feature extraction is an essential step and appears through-
out the pipe inspection literature. Methods include edge detection
[25,22] or the Hough transform [22] for edge/line detection, image
segmentation [26] and background subtraction [18] for foreground
object extraction, methods of image registration [18] and optical
flow [24] for the tracking and association of objects in successive
video frames, particularly relevant in CCTV imaging. More
advanced methods include texture-based methods, including co-
occurrence [21] and histograms of oriented gradients [23], and
multi-resolution or wavelet-based approaches [29,17]. Not all of
these methods can be described here, and the reader is referred
to a comprehensive review [81].

3.3.2. Parametric models
In principle, any object which we can recognize in an image,

such as a crack, hole, or joint, can be modeled parametrically, with
parameters explicitly describing properties such as width, length,
radius, and color. The strength of parametric models lies in their
explicit nature, being relatively easy to understand and diagnose,
however their limitation lies in their limited generalizability: in
practice, any special case for which a given model is unprepared
leads to a further iteration with a newly revised model addressing
that case, and after repeated such iterations leading to ugly, clunky
models containing a variety of exceptions.

Given an explicit model, the most fundamental, albeit slow,
approach to detecting such objects in an image is using a general-
ized Hough transform [82,83]. Essentially the Hough transform is a
matched filter, placing the model in all possible parametric permu-
tations at all points in the image and asking regarding degree of fit.
If the number of parameters is sufficiently few, say two parameters
describing the position plus one or two parameters describing size
and shape, then the Hough approach may be possible, but given
five or more parameters the Hough search space becomes far too
large to search densely, and optimization approaches are needed.

Significant challenges for parametric approaches arise, by
definition, for those objects which cannot be well modeled. So
whereas a joint (line) or lateral (circle) is relatively simple, a crack
is more challenging but may be modeled as a set of connected line
segments, but a model to describe the wide range of appearances
of root intrusions is very difficult. Most parametric computer vision
models focus on crack detection, such as modeling a crack as being
darker or having a higher variance than its immediate surround-
ings [25] or as a set of segments [22].

3.3.3. Morphology
Image morphology represents image shape on the basis of

mathematical operations such as shape erosion (shrinking) and
dilation (growing). The morphological approaches are more limit-
ed than parametric ones since, in principle, a parametric model
can encode any imaginable behavior, however the strength of mor-
phological approaches is their elegance and operating in a manner
similar to humans.

Any morphological operation is described or controlled through
a structuring element, normally a relatively simple shape, such as a
line, a rectangle, or a disc, which controls the extent to which a
given pixel in the image affects its neighbors in dilating or eroding.
Many textbooks and tutorial papers have been written [84,85] and
the interested reader is referred to them for greater background.

Much of pipe inspection is on the basis of binary (light/dark)
primitive shapes, making image morphology a natural tool. The
most basic shapes are elongated (cracks, joints) and round (holes,
laterals), and so analysis can proceed on the basis of one or more
round and one or more rectangular structuring elements. Recent
uses of morphological approaches in buried pipes can be found
in Sinha et al. [16], Su et al. [86], and Halfawy et al. [22].

3.3.4. Neural models
There has been a huge resurgence in computer vision interest in

neural-like models, particularly in the area of deep belief networks
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[87]. The key advantage of a neural approach is that all stages of
the problem – contrast enhancement, feature extraction, texture/
shape analysis, classification – are machine learned all at once, in
an integrated fashion. If the machine learning optimization con-
verges well, then the integrated approach can offer robust
classification.

On the other hand the sewage pipe problem, with huge num-
bers of images and a wide range of background patterning and tex-
ture, is a very large nonlinear optimization problem for which
convergence may be poor. Neural-like methods are essentially
black-box in nature, and therefore the actual effect or role of indi-
vidual parameters is exceptionally hard to understand, in contrast
to parametric models where the researcher can understand the
operations of different parts of the algorithm and where, although
parameters would ideally be machine learned, in principle the
parameters could be tuned by hand on the basis of an understand-
ing of their effect.

Nevertheless, the limitations of the preceding paragraph
notwithstanding, neural approaches have seen rather significant
application in buried pipe inspection. In most cases, the neural net-
work is preceded by computer vision approaches for feature
extraction, followed by neural learning [29,27,20,21] or neuro-
fuzzy approaches [26,88].

3.3.5. 3D reconstruction
A final contribution from computer vision relates to the three

dimensional reconstruction of a buried pipe, as a direct geometric
detection of deep cracks and holes, rather than indirectly through
visual appearance. The computer vision literature has developed
a vast range of methods for 3D reconstruction, most notably shape
from shading and stereo vision, both relatively complex problems.
In contrast, the instruments for pipe inspection employ a laser and
generate 3D shape one dot at a time, a far more constrained prob-
lem and relatively simple compared to 3D scene reconstruction
from images.

The use of laser reconstruction is widespread in computer
vision, to generate 3D models of heads, limbs for prosthetics, or
objects for 3D printing. For pipe inspection, methods for 3D recon-
struction based on laser illumination are developed in Duran et al.
[27,20] and Kawasue et al. [89].

3.4. Asphalt pavements

3.4.1. Pre-processing
To automatically detect distress on pavement images, it is

required to perform some preprocessing of the images. A common
problem is that images are taken under different weather condi-
tions or daytime and may contain shadows of trees. As a result
non-uniform lighting is present in the images. Many of the meth-
ods for pavement distress detection are based on the assumption
that distress pixels are darker than the background. Wang [90]
and Tsai et al. [91] have concluded that such methods perform
Fig. 2. The checker shadow illusion [88]: The squares marked A and
differently well according to varying lighting conditions and shad-
ows. Fig. 2 illustrates the so-called checker shadow illusion [92].
Square A looks darker than square B, but their pixel intensities
are equal. This means, humans might be able to easily identify
an asphalt crack in an image because it appears darker compared
to the local background. Computers, however, may fail as they
sometimes solely rely on global intensity values.

Several solutions to the non-uniform lighting problem have
been proposed. Varadharajan et al. [93] select only images that
were taken during daytime and when the weather was overcast
or mostly cloudy, so that the lighting conditions are good. The dis-
advantage of this approach is that the selection process is also
time-consuming and all captured images must be saved before
selection and processing, which results in large amounts of data
that is stored. Cheng [94] proposed a method to convert all images
to a standardized background. For that purpose, a frame is split
into rectangular windows. The average light intensity of the pixels
in the windows is calculated for each window. Notably low average
values are then replaced by the average value of the neighbor win-
dows. Finally, multipliers are generated based on the average val-
ues. The multipliers are interpolated for each pixel so that all
intensities vary around a base intensity. Zou [95] proposed a geo-
desic shadow-removal algorithm to remove the pavement shad-
ows while preserving the cracks in images.

Another issue related to distress detection in pavement images
is the presence of lane-marking on the images. Nguyen et al. [96]
detect lane-marking regions and do not consider these regions
for the distress detection. First, a binary image is obtained by
applying a threshold. Second, the probabilistic Hough Transform
is used to detect lines on this binary image. Lane-markings are
detected based on the orientations and dimensions of these lines.

A range of techniques are applied to eliminate noise or for
image enhancement. Lokeshwor [97] and Radopoulou [98] use
median filtering and morphological operations (erosion, dilation,
opening, closing). Li [99] applies Gaussian smoothing for further
denoising. Varadharajan [93] calculates the blur magnitude in
the images and considers for assessment only images for which
the blur-score is below a certain threshold. In some cases it might
also be beneficial to compress the images to reduce the size and
computation time, as done by Salman [100].

3.4.2. Defect detection
Several methods have been proposed, which are capable of

detecting different types of distress in pavement images. Zhou
et al. [101] use wavelet transform to decompose an image into
approximation and detail coefficients. The detail coefficients repre-
sent distress in the pavement images. Zhou also proposed three
statistical criteria and a norm of pavement distress quantification,
which can be used as an index for pavement distress evaluation.
Lokeshwor et al. [102] developed an algorithm which applies seg-
mentation of distress pixels from the background pixels using an
adaptive thresholding technique. User defined decision logic based
B share the same grey intensity (�1995, Edward H. Adelson).
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on the area covered by the distress pixels categorizes video frames
as frames with distress or frames without distress. Most detection
methods are developed for a specific type of distress. Some of the
methods are presented below.

3.4.2.1. Cracks. As cracks are the most common distress type, a
plenty of crack detection algorithms have been developed and pre-
sented. In particular, methods for real time crack analysis
[103,104], crack classification [105] crack depth estimation from
vision [106], and automating crack sealing have been presented
[107,108].

Most of the algorithms for crack detection are based on the
assumption that crack pixels are darker than the surroundings.
Based on statistical measures of the pixel intensities, thresholding
methods that classify pixels as crack or non-crack pixels are
applied. Tsai et al. [91] have made a critical assessment of distress
segmentation methods, in particular statistical thresholding, Can-
ny edge detection, multiscale wavelets, crack seed verification,
iterative clipping methods, and dynamic optimization based meth-
ods. Koutsopoulos et al. [109] developed an algorithm for crack
image segmentation based on a model that describes the statistical
properties of pavement images.

Huang et al. [104] also proposed a classification method. An
image is divided into cells. Depending on the contrast of each cell
to its neighbor, the cells are classified as crack or non-crack cells.
However, a limitation of the method is that it is hard to find a uni-
versal contrast threshold [91].

Salman et al. [100] proposed an algorithm which uses a Gabor
filter. The preprocessed pavement image is convolved with the fil-
ter and the real component of the result image is thresholded to
generate the binary image. Binary images resulting from different-
ly oriented filters are combined and an output image is produced.
The output image contains detected crack segments.

Moussa and Hussain [110] presented an approach for automatic
crack detection, classification and parameter estimation based on
machine learning. They apply Graph Cut segmentation to segment
an image into crack and background pixels. A binary vector is created
after segmentation. Seven features are extracted from the vector for
classification purposes. Then, a Support Vector Machine is used to
classify the crack type in transverse cracking, longitudinal cracking,
block cracking or alligator cracking. Moussa and Hussain also pre-
sented an approach to compute the crack extent and severity based
on the length and the width of the crack in the image [110].

Varadharajan et al. [93] also use machine learning. They assume
input images which can contain background, such as cars, traffic
signs and buildings. First, the ground plane is segmented out from
the rest of the image. After that, feature descriptors are computed
based on the color and texture of the preprocessed pixels. A total of
nine features and data obtained from human annotators are used
to train a Support Vector Machine which classifies the images.

Li et al. [99] partition the image into crack regions and regions
without cracks using the difference value between the maximum
and the minimum grayscales of an image region. Then, the fore-
ground is separated from the background by segmenting with
Otsu’s method and the images are classified using binary trees
and back propagation neural networks.

Zou et al. [95] analyze the intensity difference in regions of the
image to determine whether the pixels belong to cracks or not.
After that, using tensor voting, a crack map is produced. In the
crack map the probability of the pixels that are likely to be located
along long crack curves is enhanced. The cracks in the image may
sometimes be disconnected, so Zou et al. connect the crack parts
with the help of an edge pruning algorithm.

3.4.2.2. Potholes. Usually, potholes also differ significantly from the
background surface. Current computer vision research efforts in
automating the detection of potholes can be divided into 3D recon-
struction-based, 2D vision-based methods. Detection methods that
are based on a 3D reconstruction of the pavement surface rely on
3D point clouds provided by stereo-vision algorithms using a pair
of video cameras. Also there are hybrid systems available that use
digital cameras to capture consecutive images of lines projected by
infrared lasers [111]. A stereo-vision based surface model for com-
prehensive pavement conditioning has been proposed by Wang
[112] and Hou et al. [113]. With the availability of a 3D point cloud,
Chang et al. [114] have presented a clustering approach that can
quantitate the severity and coverage of potholes and Jiaqiu et al.
[115] have created a method for identifying, locating, classifying
and measuring sag deformations like potholes and depression.
The drawbacks of stereo-vision-based approaches are that they
require a complete 3D reconstruction of the pavement surface
and that the procedure of matching points between the two views
is quite challenging due to the very irregular texture and color of
the pavement surface.

Karuppuswamy et al. [116] integrated a vision and motion sys-
tem to detect simulated potholes. Their approach detects potholes
in the center of a lane. However, it relies on computer generated
(simulated) potholes that are larger than 2 ft in diameter and white
in color. The latter are simplified assumptions that do not reflect
realistic pavement conditions. Jahanshahi et al. [117] used a depth
sensor to detect and quantify defects in pavements. Based on the
depth values of the pixels, pixels are classified as deep or flat using
thresholding. Then, the maximum depth of the defective regions is
computed. However, the limitation of the proposed approach is
that the data acquisition system, which is the Kinect sensor, is
designed for indoor use. As a result, all the captured depth values
are zero when the Kinect is exposed to direct sunlight.

Koch et al. [118] also presented a computer vision based
approach for pothole detection in asphalt images. Based on sur-
rounding shadows, elliptic shape and grain surface texture, the
method identifies potholes in images. Image segmentation, shape
approximation, and texture comparison are performed in this
order. The image is divided into defect and non-defect pavement
regions using histogram shape based thresholding and the triangle
algorithm proposed by Zack et al. [119]. The shape of the pothole is
approximated by applying morphological thinning and elliptic
regression. Finally, the surface texture of the pothole candidate
region is compared to the non-defect pavement region using spot
filter responses. The region is determined as a pothole if the region
inside the pothole candidate is coarser and grainer than the one
outside. Koch et al. extended the method with video processing
[120]. Using the described pothole detection method, potholes in
a sequence of pavement images are counted.
3.4.2.3. Patches. Cafiso et al. [121] observed that pixels which
belong to patches have different gray levels from the pixels which
belong to the background. They use a clustering method to analyze
the image with respect to patches.

Radopoulou et al. [98] detect patches in pavement images by
applying morphological operations. Patch regions are segmented
based on the assumption that patch pixels have greater intensities
than pixels belonging to the background. Then, texture information
is utilized and four different filters are applied. Subsequently, fea-
ture vectors of both intact and patch regions are constructed and
compared after the convolution of the image with the filters.
4. Achievements and challenges

This section summarizes the current achievement and open
challenges of computer vision for infrastructure condition assess-
ment. A corresponding overview regarding the level of automation
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in defect detection and condition assessment is presented in
Table 5.

4.1. Achievements

When looking at defect detection and condition assessment of
reinforced concrete bridges – classified as both vertical and
horizontal civil infrastructure – it can be concluded that the cur-
rent state-of-the-art computer vision based methods contribute
successfully to the automation of detection and measurements of
defects. The detection, localization and properties retrieval of both
concrete cracks and concrete spalling is to a very large degree auto-
mated. Spalling defects can even be quantified and to some extend
be mapped to condition ratings. Other important achievements
include the ability of computer vision based methods to successful-
ly support the detection of connectivity losses between composite
sections, changes in boundary conditions, changes in substructure
settlements and deflection of structural members. The accuracy of
vision based deflection detection can even compete with methods
employing high accurate laser scanners.

With regard to very long horizontal civil infrastructure, such as
precast concrete tunnels, underground concrete pipes and asphalt
road networks, it is found that respective data collection technolo-
gies are fully automated. Moreover, available computer vision
based algorithms successfully support the automation of detecting
and localizing defects, such as cracks and joint spalling in concrete
tunnels; cracks, holes and joint damage in concrete pipes; and
cracks, potholes and patches in asphalt pavements. In case of
bridge and tunnel inspection, computer vision based visualization
methods (e.g. image stitching) successfully assist in defect detec-
tion and assessment as they improve the defect detection results
due to better resolution. Concerning asphalt pavements, the crack
properties retrieval procedure (type, with, length) is fully automat-
ed and some computer vision based distress quantification mea-
sures have the potential to be converted to indexes for distress
assessment.

4.2. Challenges

Concerning computer vision supported concrete bridge inspec-
tion, it has to be mentioned that the process of image and video
data collection is not yet fully automated. In terms of crack detec-
tion and assessment, existing methods need to be improved as
performances on noisy data are questionable and accuracies vary
with camera pose, camera distance and environmental conditions
(lighting and shading at different locations). Moreover, several
methods still require a significant amount of manual user input.
In general, most of the methods assume images from simple flat
and curved concrete surfaces, so that they may fail in cases of more
complex geometries and material, such as joints, seals and bear-
ings. Accordingly, there are currently no methods available that
support the detection and assessment of bearing distortion and
misalignment.

When looking at underground civil infrastructure, such as tun-
nels and pipes, it is concluded that poor lighting conditions,
irregularly patterned background and contrast as well as limited
data quality and quantity impose the most significant problems
when dealing with computer vision based approaches to defect
detection and assessment. With respect to lighting, common meth-
ods either use prior knowledge, thus can hardly be generalized or
they rely on some degree of manual input and therefore do not
scale well. More recent methods that use machine learning strong-
ly rely on training data to create robust classifiers. Usually, the
training process is based on supervised learning concepts (manual
labeling) and is therefore labor-intensive and error prone. With
regard to pipe inspection, the limited amount of data for machine
learning and the lack of standardization on defect patterns prevent
those methods to perform reasonably well. In addition, detection
models with few parameters have limited generalizability, where-
as models with many parameters fail in environments with a wide
range of background pattern and texture due to the poor conver-
gence of inherent non-linear optimization problems.

With respect to asphalt pavement monitoring, natural weather
conditions and the daytime determine the success of available
computer vision based defect detection and assessment methods.
Shadows from trees, for example are very natural and prevent sev-
eral methods, which usually work well in good lighting conditions,
to perform reasonably well in real environments. Moreover, many
algorithms endeavor to perform real-time and therefore are based
on some kind of thresholding. However, these methods are not
robust enough for image data with average image quality in prac-
tice as it is hard to find universal thresholds. Consequently, fully
automated and comprehensive pavement distress detection and
classification in a real-time environment has remained a challenge.
Also, there is no comprehensive and robust method available to
determine the severity level of distress for defect and condition
assessment of asphalt pavements.

In general, reliable defect detection and condition assessment of
civil infrastructure must be based not only on visual inspection
methods. First, computer vision methods work under the principle
‘‘What you see is what you can analyze.’’ This means, that scenes
under observation have to be sufficiently illuminated to make
computer vision methods work. Visible shadows, for example,
might have a significant impact on the capability of CV methods.
In case of pothole detection shadows support the process, where
in cases of 3D reconstruction they hinder the procedure. Moreover,
the internal condition of infrastructure components cannot be cap-
tured, thus neither assessed using visual methods. On top of visual
assessment techniques (whether manual or CV-supported), other
advanced in-depth inspection methods (so-called Non-destructive
evaluation (NDE) methods) are required to assess the overall con-
dition, such as sonic, ultrasonic, magnetic, electrical, nuclear, ther-
mography, radar technologies. However, defects on the surface are
good indicators of the overall condition as they are part of many
visual condition assessment manuals. Second, the data quality
plays an important role in terms of noise, distance and perspective
to the object of interest and the corresponding image resolution.
For instance, if one wants to detect a crack of 1 mm width, he or
she has to make sure that this 1 mm is mapped to a least 1 image
pixel. Third, a number of safety risks are associated with working
at certain heights and under heavy traffic. In this case, however,
emerging remote-controlled unmanned aerial vehicles (UAV)
might be a good practical solution for this issue. Forth, the opera-
tion of cameras always has to face privacy issues when monitoring
public scenes, such as bridges and roads. Thus, it is recommended
avoiding people in image and video data.

In summary, the authors conclude that more studies need to be
conducted to improve the methods and algorithms for integrated
condition assessment. It is currently not possible to detect, mea-
sure assess and document all different defects as independent enti-
ties to provide an integrated and comprehensive approach for
bridge, tunnel, pipe and asphalt inspections. This is mainly due
to the unsolved problem of identifying and assessing multiple
interacting defects at the same location and the lack of standard-
ization in identifying relevant defect parameters to comprehen-
sively represent defect information. Moreover, no publically
available large datasets exist to leverage supervised learning meth-
ods for the robust detection and classification of several infrastruc-
ture defect types.

The following listing highlights the key research questions that
have to be addressed by future research both in the civil engineer-
ing and computer science community in order to take the quality
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of computer vision based defect detection and condition assess-
ment of civil infrastructure to the next level:

� How can we comprehensively detect, measure and assess inter-
acting defect patterns at the same location to support integrat-
ed condition assessment of civil infrastructure?
� How can we generalize available detection models to adequate-

ly and universally address realistic environmental conditions,
such as noisy image and video data, varying lighting conditions,
different surface geometries and materials, and different cam-
era poses and distances?
� How can we limit the amount of manual user input to improve

the level of automation from poor defect detection to sophisti-
cated defect and condition assessment?
� How can we create sufficiently large, publically available and

standardized datasets to leverage the power of existing super-
vised machine learning methods for detection, classification
and assessment of defects?
� How can we create unsupervised machine learning methods

(online learning) for efficient training and on-demand updating
of model parameters in defect detection and assessment
models?

5. Summary

To ensure the safety and serviceability of civil infrastructure it is
essential to visually inspect and assess its physical and functional
condition, either at regular intervals (routine inspection) or after
disasters (post-disaster inspection). Typically, such condition
assessment procedures are performed manually by certified
inspectors and/or structural engineers. This process includes the
detection of the defects and damage (cracking, spalling, defective
joints, corrosion, potholes, etc.) existing on civil infrastructure ele-
ments, such as buildings, bridges, roads, pipes and tunnels, and the
defects’ magnitude (number, width, length, etc.). The condition
assessment results are used to predict future conditions, to support
investment planning, and to allocate limited maintenance and
repair resources.

This paper has presented the current practices of assessing the
visual condition of vertical and horizontal civil infrastructure, in
particular of reinforced concrete bridges (horizontal: decks, gird-
ers, vertical: columns), precast concrete tunnels (horizontal: seg-
mental lining), underground concrete pipes (horizontal)
(wastewater infrastructure), and asphalt pavements (horizontal).
Following this, the second and largest part of the paper has focused
on a comprehensive synthesis of the state of the art in computer
vision based defect detection and condition assessment of civil
infrastructure. Several methodologies have been described and
categorized, and literature on respective tests and evaluations on
the current performances to detect and measure different defect
and damage pattern in remote and close-up images of buildings,
bridges, roads, pipes and tunnels has been presented. In the third
part of this paper the current achievements and limitations of com-
puter vision for infrastructure condition assessment have been
summarized. Finally, open research challenges have been outlined
to assist both the civil engineering and the computer science
research community in setting an agenda for future research.
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