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Abstract: Pipeline surface defects such as cracks cause
major problems for asset managers, particularly when the
pipe is buried under the ground. The manual inspection
of surface defects in the underground pipes has a number
of drawbacks, including subjectivity, varying standards,
and high costs. An automatic inspection system using im-
age processing and artificial intelligence techniques can
overcome many of these disadvantages and offer asset
managers an opportunity to significantly improve quality
and reduce costs. This article presents a system for the ap-
plication of computer vision techniques to the automatic
assessment of the structural condition of underground
pipes. The algorithm consists of image preprocessing, a se-
quence of morphological operations to accurately extract
pipe joints and laterals (where smaller pipe is connected
to main bigger pipe), and statistical filters for detection of
surface cracks in the pipeline network. The proposed ap-
proach can be completely automated and has been tested
on over 1,000 scanned images of underground pipes from
major cities in North America.
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1 INTRODUCTION

Beneath North America’s roads lie thousands of miles of
pipe that bring purified water to homes and carry away
wastewater (sewage and storm water). For the most part,
these systems have been functioning longer than their
intended design life (i.e., 50 years for concrete pipe),
with little or no repair. Hence, they are in a state of
deterioration.

Maintenance and rehabilitation (M&R) of pipeline
systems pose a major challenge for most municipalities
in North America, given their budgetary constraints, the
demand on providing quality service, and the need for
preserving their pipeline infrastructure. Neglecting reg-
ular M&R of these underground pipelines adds to life-
cycle costs and liabilities and, in extreme cases, causes
stoppage or reduction of vital services.

Accurate pipeline condition assessment is vital to de-
veloping a cost-effective and efficient pipeline M&R
program. At present, the assessed condition of under-
ground pipes is based on the subjective visual inspec-
tion of closed circuit television (CCTV) surveys (Iseley
et al., 1997). CCTV surveys are conducted using a re-
motely controlled vehicle carrying a television camera
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Fig. 1. Typical images of underground pipe scanned by closed
circuit television (CCTV) camera in the city of Toronto.

through an underground pipe. The data acquired from
this process consist of videotape, photographs of spe-
cific defects, and a record produced by the technician.
A typical scanned image of CCTV surveys is shown in
Figure 1. Diagnosis of defects depends on the experience,
capability, and concentration of the operator, making the
detection of defect error prone. A large number of new
technologies such as pipe scanner and evaluation tech-
nology (PSET) (Iseley, 1999), laser-based systems (Van
Cauwelaert et al., 1989), etc. have made it possible to ob-
tain high-quality images of pipes. PSET is an innovative
technology for obtaining unfolded images of the interior
of pipes (Iseley, 1999). This is accomplished by utilizing
scanner and gyroscope technology. A typical scanned
image of PSET surveys is shown in Figure 2. Although
underground imaging technology has made substantial
strides in recent years, the basic means of analysis are un-
changed: a technician is required to identify defects on a
television monitor. The research of this article seeks to
address this latter limitation, thus allowing the technician
to do exactly what he has been trained to do, which is to
insure that the inspection equipment is being operated
properly.

This article addresses the development of an auto-
mated underground pipe inspection system. Emphasis
has been placed on investigations of algorithms and
techniques for image processing, feature extraction, and

Fig. 2. Typical images of underground pipe scanned by pipe
scanner and evaluation technology (PSET) camera in the city

of Toronto.

pattern classification. In particular, this research has ex-
plored how various signals and image processing con-
cepts, nonlinear filtering, feature extraction, pattern clas-
sification, and artificial intelligence techniques can be
judiciously synthesized for computationally efficient and
robust identification of underground pipe defects (i.e.,
cracks, holes, collapse surface, and defective joints and
laterals). The proposed automated system could over-
come many of the limitations of the current manual in-
spection of pipes and can provide a more accurate as-
sessment of underground pipe conditions.

2 METHODS OF INSPECTING INNER
SURFACE OF PIPES

Nondestructive testing (NDT) (Davies and Mamlouk,
1985) is the branch of engineering concerned with non-
contact methods of detecting and evaluating defects in
materials. Defects can affect the serviceability of the ma-
terial or structure, so NDT is important in guaranteeing
safe operation as well as in quality control and assess-
ing pipe life. The defect may be cracks or inclusions in
welds and castings, or variations in structural proper-
ties that can lead to loss of strength or failure in service.
Nondestructive testing is used for in-service inspection
and for condition monitoring. It is also used for mea-
surement of components and for the measurement of
physical properties such as hardness and internal stress.
The essential feature of NDT is that the test process it-
self produces no deleterious effects on the material or
structure under test. The subject of NDT has no clearly
defined boundaries; it ranges from simple techniques
such as visual examination of surfaces, through the well-
established methods of radiography, ultrasonic testing,
magnetic particle crack detection, to new and very spe-
cialized methods. NDT methods can be adapted to auto-
mate production processes as well as to the inspection of
localized problem areas. All NDT techniques have the
ability to measure only specific types of defects, mate-
rial properties, and/or material response. Therefore, the
best choice of an NDT method in a specific pipeline ap-
plication will depend on the pipeline physical properties
and defects. Thus, before the selection of an appropri-
ate NDT method, a thorough knowledge of each NDT
method application and its limitations is required along
with a good understanding of the piping system.

2.1 Non-visual NDT methods

2.1.1 Ultrasonic inspection (sonar). Ultrasonic inspec-
tion (Birks and Green, 1991) is performed using a beam
of very high frequency coherent sound energy, with the
frequency being many orders of magnitude higher than
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Fig. 3. Ultrasonic inspection of pipes.

a human being can hear. The sound wave travels into the
object being inspected and reflects whenever there is a
change in the density of the material, with some of the
energy in the wave returning to the surface and some
passing on through the new material. The ultrasonic in-
spection process is shown in Figure 3. Ultrasonic beams
can be used to image the human body, inspect aircraft,
or examine oil pipelines. The technique is capable of de-
tecting pits, voids, and cracks, although certain crack ori-
entations are much more difficult to detect than others.
The ultrasonic wave reflects most easily when it crosses
an interface between two materials that are perpendic-
ular to the wave.

2.1.2 Eddy current testing. Eddy current testing
(Joynson et al., 1986) is an electromagnetic technique
that can detect surface and subsurface discontinuities in
tube walls up to about 3/8′′ (10 mm) thick on conductive
materials. Applications range from crack detection, to
the rapid sorting of small components for defects, size
variations, or material variation. When an energized
coil is brought near the surface of a metal component,
eddy currents are induced into the specimen. These
currents set up a magnetic field that tends to oppose
the original magnetic field. The impedance of the coil
in close proximity to the specimen is influenced by the
presence of the induced eddy currents in the specimen.
When the eddy currents in the specimen are distorted
by the presence of a defect or a material variation, the
impedance in the coil is altered. This change is measured
and displayed in a manner that indicates the type of
defect or material condition. This method is commonly
performed on heat exchanger tubing by inserting a
probe down the full length of each tube to be inspected
as shown in Figure 4. The probe contains a coil arrange-
ment, energized by alternating currents operating at one
or more frequencies. The electrical impedance of the
test coil arrangement is modified by the proximity of the
tube, tube dimensions, electrical conductivity, magnetic
permeability of the tube material, and metallurgical and
mechanical discontinuities. Wear on the tube surface

Fig. 4. Eddy current inspection of pipes.

under a support is also detectable. The electromagnetic
response caused by passing these variables produces
electrical signals, which are processed electronically to
produce a visual response characteristic of the change
encountered. Visual responses, often called “signa-
tures,” are displayed on the test instrument monitor for
evaluation by the field technician (analyst).

2.1.3 Acoustic emission monitoring. This method in-
volves listening to the sounds (which are usually inaudi-
ble to the human ear) made by a material, structure,
or machine in use or under load (Bassim and Houssny-
Emam, 1983). Conclusions are made about its “state of
health” from what is heard, just like the doctor who lis-
tens to your heart and lungs. The technique involves
attaching one or more ultrasonic microphones to the ob-
ject and analyzing the sounds using computer-based in-
struments. The noises may arise from friction (including
bearing wear), crack growth, turbulence (including leak-
age), and material changes such as corrosion. Applica-
tions include testing pipelines and storage tanks (above
and below the ground), fiberglass structures, rotating ma-
chinery, weld monitoring, and biological and chemical
changes.

2.2 Visual NDT methods

Visual inspection is an NDT method used extensively
to evaluate the condition or the quality of a component
(Krstulovic et al., 1996). It is easy to perform, inexpen-
sive, and usually does not require special equipment. It
is most effective for the inspection of welds where quick
detection and the correction of defects or process-related
problems can result in significant cost savings. It is the
primary evaluation method of many quality control pro-
grams. The method requires good vision, good lighting,
and operator knowledge.

Most municipal pipeline systems are inspected visu-
ally by mobile closed circuit television (CCTV) systems
or human inspectors. CCTV examination using a mobile
camera system is the typical approach to this type of ex-
amination. However, there are several CCTV variants
that may reduce the cost of the inspection or provide
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improved results. There are also alternative techniques
that will work where CCTV will not or that will give di-
rect measurements of pipe condition as opposed to the
estimates produced by CCTV inspection. Each inspec-
tion technique is discussed separately below.

2.2.1 CCTV inspection. There are two basic types of
CCTV system (Wirahadikusumah et al., 1998). Each uses
a television camera in conjunction with a video moni-
tor, videocassette recorders, and possibly other record-
ing devices. In one case the inspection is performed using
a stationary or zoom camera mounted at a manhole so
that it looks into the pipe, whereas in the other a mo-
bile, robotic system is placed within the pipe itself. The
camera provides images to an operator who is trained to
detect, classify, and rate the severity of defects against
documented criteria. The typical CCTV camera scan-
ning process of underground pipes is shown in Figure
5. Either form of CCTV inspection may miss certain
types of defects, especially those that are hidden from the
camera by obstructions as it looks down the pipe. This
method is also vulnerable to lapses in operator concen-
tration, inexperience, and the inability of the image to re-
veal important defects (Wirahadikusumah et al., 1998).
Thus, the results are widely agreed to lack consistency
and the reliability to track deterioration so that preven-
tive maintenance can be undertaken with confidence.
It does, however, provide useful information on gross
defects.

Fig. 5. CCTV camera inspection process of underground
concrete pipe.

2.2.2 Pipe scanner and evaluation technology. Pipe
scanner and evaluation technology (PSET) is an inno-
vative technology for obtaining images of the interior of
pipe. PSET was developed by TOA Grout, CORE Corp.,
California, and the Tokyo Metropolitan Government’s
Services (TGS) Company. PSET is a system that offers
a new inspection method minimizing some of the short-
comings of the traditional inspection equipment that re-
lies on a CCTV inspection. This is accomplished by utiliz-
ing scanning and gyroscopic technology. The mechanics
of inspecting the pipes by PSET camera are similar to the
CCTV inspection. The PSET is designed to operate from
a tractor platform to propel the tool through the pipe.
Since the PSET utilizes state-of-the-art scanner technol-
ogy, it can travel through the pipe at a uniform rate of
speed. The major benefit of the PSET system over the
current CCTV technology is that the engineer will have
higher quality image data to make critical rehabilitation
decisions.

2.2.3 Laser-based scanning systems. In addition to the
simple light line system described above, lasers have
been used in the past to evaluate both the shapes of
pipelines and the types of defects they contain (Hibino
et al., 1994). These systems are restricted to the part of
the pipe above the waterline, but they can, in theory,
make possible extremely accurate inspections of pipe
condition. An additional advantage to this approach
is that the information from the laser scans is readily
recorded and analyzed by computer, substantially reduc-
ing operator errors. Although the initial equipment may
be more expensive than a CCTV system, the reduced
operator time necessary to use the technique may also
mean that its operation will be more economical. The
technology is still in the development stage.

3 METHODOLOGY FOR AUTOMATIC
IMAGE-BASED INSPECTION

Industry is increasingly using machine vision systems
to aid in the manufacturing and quality-control pro-
cesses (Newman and Jain, 1995). The goal of a machine
vision (Chin and Harlow, 1982) is to create a model
of the real world from images. A machine vision sys-
tem recovers useful information about a scene from
its two-dimensional projections. Since images are two-
dimensional projections of the three-dimensional world,
the information is not directly available and must be re-
covered. To recover the information, knowledge about
the objects in the scene is required. The emphasis in ma-
chine vision systems is on maximizing automatic opera-
tion at each stage, and these systems should use knowl-
edge to accomplish this.
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Machine vision emulates human vision in that it at-
tempts to interpret images. Human vision deals with the
global information available in a scene, resolves ambi-
guities due to perspective, lighting, and attribute, and
can perform guidance through unfamiliar territories. In
fact, human vision has been shown to be incapable of
performing reliable inspection (Agin, 1980), since the
human vision process is prone to subjective considera-
tions, fatigue, and boredom, which interfere with con-
sistent evaluations. Also, the human vision is limited
to the visible spectrum, while a machine vision system
can exploit a much larger range of the electromagnetic
spectrum, including infrared radiation, X-rays, and ul-
trasounds, thereby making it suitable for a wide range
of nondestructive testing and inspection process–related
tasks (Ballard and Brown, 1982).

An automated image-based inspection aims to ex-
tract information from an image on the conditions of
objects represented in the image. Usually it is impos-
sible to extract this information concerning the dimen-
sions of objects or their defect properties directly from
the image. Basically, all machine vision systems involve
image acquisition, image preprocessing, segmentation,
and extracting relevant features for classification of
the type, severity, and extent of defects present in the
image.

3.1 Image processing and segmentation

Vision allows humans to perceive and understand the
world surrounding them. Computer vision aims to du-
plicate the effect of human vision by electronically per-
ceiving and understanding an image. Giving computers
the ability to see is not an easy task. We live in a three-
dimensional (3D) world, and when computers try to ana-
lyze objects in 3D space, the visual sensors available (e.g.,
TV cameras) usually give two-dimensional (2D) images,
and this projection to a lower number of dimensions in-
curs an enormous loss of information.

Image preprocessing and segmentation is the initial
stage for any recognition process, whereby the acquired
image is “broken up” into meaningful regions or seg-
ments. The segmentation process is not primarily con-
cerned with what the regions represent, but only with
the process of partitioning the image. In the simplest case
(binary images) there are only two regions: a foreground
(object) region and a background region. In gray level
images, there may be many types of regions or classes
within the image; for example, in a natural scene to be
segmented, there may be regions of sky, clouds, ground,
building, and trees. There are, broadly speaking, two ap-
proaches to image segmentation, namely, thresholding
and region- or edge-based methods (Pratt, 1978).

3.1.1 Image preprocessing. The principal objective of
image preprocessing is to process an image so that the
result is more suitable than the original image for a spe-
cific application. The word specific is important, because
it establishes at the outset that the techniques discussed
in this section are very much problem-oriented. Thus,
for example, a method that is quite useful for enhancing
X-ray images may not necessarily be the best approach
for enhancing images of underground pipes.

3.1.1.1 Gray scale transformation
Gray scale transformations (Rosenfeld and Kak, 1982)

do not depend on the position of the pixel in the image. A
transformation λ of the original brightness p from scale
[qo, qk] into brightness q from a new scale [po, pk] is given
by

q = λ(p) (1)

The most common gray scale transformations are shown
in Figure 6; the straight line a denotes the negative trans-
formation; the piecewise linear function b enhances the
image contrast between brightness values p1 and p2. The
function c is called brightness thresholding and results in
a black-and-white image.

A gray scale transformation for contrast enhancement
is usually found automatically using the histogram equal-
ization technique (Rosenfeld and Kak, 1982). The aim is
to create an image with equally distributed brightness
levels over the whole brightness scale (see Figure 7).
Histogram equalization enhances contrast for brightness
values close to histogram maxima and decreases contrast
near minima.

 q 

        p

c 

b

a

P1 P2 

Fig. 6. Some gray-scale transformations. The straight line
a denotes the negative transformation; the piecewise

linear function b enhances the image contrast between
brightness values p1 and p2. The function c is called

brightness thresholding.
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Fig. 7. Histogram equalization. The aim is to create an image
with equally distributed brightness levels over the whole

brightness scale.

3.1.1.2 Image smoothing
Image smoothing (Castleman, 1996) is the set of local

processing methods whose predominant use is the sup-
pression of image noise. Calculation of the new value
is based on the averaging of brightness values in some
neighborhood. Smoothing poses the problem of blurring
sharp edges in the image, and so we shall concentrate on
smoothing methods that are edge preserving. They are
based on the general idea that the average is computed
only from those points in the neighborhood that have
similar properties to the point being processed.

3.1.1.3 Color image processing
The use of color in image processing (Smith, 1978) is

motivated by two principal factors. First, in automated
image analysis, color is a powerful descriptor that of-
ten simplifies object identification and extraction from
a scene. Second, in image analysis performed by hu-
man beings, the motivation for color is that the hu-
man eye can discern thousands of color shades and in-
tensities, compared to about only two dozen shades of
gray (Smith, 1978). Color is connected with the abil-
ity of objects to reflect electromagnetic waves of dif-
ferent wavelengths; the chromatic spectrum spans the
electromagnetic spectrum from approximately 400 nm
to 700 nm. Humans detect colors as combinations of
the primary colors red, green, and blue, which for the
purpose of standardization have been defined as 700
nm, 546.1 nm, and 435.8 nm, respectively (Smith, 1978),
although this standardization does not imply that all
colors can be synthesized as combinations of these
three.

The purpose of a color model is to facilitate the spec-
ification of colors in some standard, generally accepted
way. In essence, a color model is a specification of a 3D
coordinate system and a subspace within that system
where each color is represented by a single point. The
color models most often used are the RGB, the YIQ,
and the HIS models (Gonzalez and Wintz, 1987).

3.1.2 Image segmentation. Image segmentation is one of
the most important steps leading to the analysis of pro-
cessed image data—its main goal is to divide an image
into parts that have a strong correlation with objects or
areas of the real world contained in the image. Image
data ambiguity is one of the main segmentation prob-
lems, often accompanied by information noise. Segmen-
tation methods can be divided into three groups accord-
ing to the dominant features they employ. First is global
knowledge about an image or its part; the knowledge
is usually represented by a histogram of image features
(Weszka and Rosenfeld, 1979). Edge-based segmenta-
tions form the second group (Kundu and Mitra, 1987),
and region-based segmentations the third—many differ-
ent characteristics may be used in edge detection or re-
gion growing (Chang and Li, 1995), for example, bright-
ness, texture, velocity field, etc. The second and the third
groups solve a dual problem. Each region can be repre-
sented by its closed boundary, and each closed bound-
ary describes a region. Because of the different natures
of the various edge- and region-based algorithms, they
may be expected to give somewhat different results and
consequently different information.

3.1.2.1 Threshold-based segmentation
Gray level thresholding (Chow and Kaneko, 1972) is

the simplest segmentation process. Many objects or im-
age regions are characterized by constant reflectivity or
light absorption of their surfaces; a brightness constant
or threshold can be determined to segment objects and
background. Thresholding is computationally inexpen-
sive and fast—it is the oldest segmentation method and
is still widely used in simple applications (Chow and
Kaneko, 1972).

A complete segmentation of an image R is a finite set
of regions R1, . . . , RS,

R =
S⋃

i=1

Ri Ri ∩ Rj = Ø i �= j (2)

Segmentation can result from thresholding in simple
scenes. Thresholding is the transformation of an input
image f to an output (segmented) binary image g as
follows:

g(i, j) = 1 if f (i, j) ≥ T

= 0 if f (i, j) < T
(3)

where T is the threshold, g(i, j) = 1 for image elements
of objects, and g(i, j) = 0 for image elements of the back-
ground (or vice versa). If objects do not touch each other,
and if their gray levels are clearly distinct from back-
ground gray levels, thresholding is a suitable segmenta-
tion method.
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Correct threshold selection is crucial for successful
threshold segmentation; this selection can be determined
interactively or it can be the result of some threshold de-
tection method. Only under very unusual circumstances
can thresholding be successful using a single threshold
for the whole image (global thresholding), since even
in very simple images there are likely to be gray level
variations in objects and background; this variation may
be due to nonuniform lighting, nonuniform input device
parameters, or a number of factors. Segmentation using
variable thresholds (also called adaptive thresholding),
in which the threshold value varies over the image as a
function of local image characteristics, can produce the
solution in these cases.

Methods based on approximation of the histogram of
an image using a weighted sum of two or more prob-
ability densities with normal distribution represent a
different approach called optimal thresholding (Chow
and Kaneko, 1972). The threshold is set as the closest
gray level corresponding to the minimum probability be-
tween the maxima of two or more normal distributions,
which results in minimum error segmentation. The dif-
ficulty with these methods is in estimating normal dis-
tribution parameters together with the uncertainty that
the distribution may be considered normal. These diffi-
culties may be overcome if an optimal threshold is sought
that maximizes gray level variance between objects and
background (Kittler and Illingworth, 1985).

3.1.2.2 Edge-based segmentation
Edge-based segmentation represents a large group of

methods based on information about edges in the im-
age; it is one of the easiest segmentation approaches
and still remains very important. Edge-based segmenta-
tions rely on edges found in an image by edge-detecting
operators—these edges mark image locations of dis-
continuities in gray level, color, texture, etc. The image
resulting from edge detection cannot be used as a seg-
mentation result; supplementary processing steps must
follow to combine edges into edge chains that corre-
spond better with borders in the image. The most com-
mon problems of edge-based segmentation, caused by
image noise or unsuitable information in an image, are
an edge presence in locations where there is no border,
and no edge presence where a real border exists. Clearly
both these cases have a negative influence on segmenta-
tion results.

Edge detectors are a collection of very important local
image segmentation methods used to locate changes in
the intensity function; edges are pixels where this func-
tion (brightness) changes abruptly. Calculus describes
changes of continuous functions using derivatives; an im-
age function depends on two variables—coordinates in
the image plane—and so operators describing edges are

expressed using partial derivatives. A change of the im-
age function can be described by a gradient that points in
the direction of the largest growth of the image function.
An edge is a property attached to an individual pixel and
is calculated from the image function behavior in a neigh-
borhood of that pixel. It is a vector variable with two
components, magnitude and direction. The edge magni-
tude is the magnitude of the gradient, and the edge di-
rection φ is rotated with respect to the gradient direction
ψ by −90◦. The gradient direction gives the direction of
maximum growth of the function, e.g., from black [f (i, j)
= 0] to white [f (i, j) = 255)].

The gradient magnitude |grad g(x, y)| and gradient di-
rection ψ are continuous image functions calculated as

|grad g(x, y)| =
√(

∂g
∂x

)2

+
(

∂g
∂y

)2

ψ = arg
(

∂g
∂x

,
∂g
∂y

) (4)

where arg(x, y) is the angle (in radians) from the x-axis
to the point (x, y).

Edge detection represents an extremely important
step facilitating higher-level image analysis and there-
fore remains an area of active research, with new ap-
proaches continually being developed. Recent exam-
ples include edge detectors using fuzzy logic (Law
et al., 1996), neural networks (Vrabel, 1996), or wavelets
(Aydin et al., 1996). It may be difficult to select the
most appropriate edge detection strategy; a compari-
son of edge detection approaches and an assessment of
their performance may be found in Ramesh and Haral-
ick (1994) and Demigny et al. (1995).

3.1.2.3 Region-based segmentation
The aim of the segmentation methods described in the

previous section was to find borders between regions;
the methods discussed in this section construct regions
directly. It is easy to construct regions from their borders,
and it is easy to detect borders of existing regions. How-
ever, segmentations resulting from edge-based meth-
ods and region-growing methods are not usually exactly
the same, and a combination of results may often be
a good idea. Region-growing techniques are generally
better in noisy images, where borders are extremely dif-
ficult to detect. Homogeneity is an important property
of regions and is used as the main segmentation crite-
rion in region growing, whose basic idea is to divide an
image into zones of maximum homogeneity. The crite-
ria for homogeneity can be based on gray level, color,
texture, shape, model (using semantic information), etc.
(Haralick and Shapiro, 1985; Pal and Pal, 1987). Prop-
erties chosen to describe regions influence the form,
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complexity, and amount of prior information in the
specific region-growing segmentation method. Methods
that specifically address region-growing segmentation
of color images are reported in Priese and Rehrmann
(1993) and Schettini (1993).

3.2 Feature extraction

The previous section was devoted to image segmenta-
tion methods and showed how to construct homoge-
nous regions of images and/or their boundaries. Recog-
nition of image regions is an important step on the
way to understanding image data and requires an ex-
act region description in a form suitable for a classifier.
This description should generate a numeric feature vec-
tor, which characterizes properties (e.g., shape) of the
region.

If a system to distinguish objects of different types is
desired, then it is important to first decide which charac-
teristics of the objects should be measured to produce de-
scriptive parameters. The particular characteristics that
are measured are called the features of the object, and
the resulting parameter values comprise the feature vec-
tor for each object. Proper selection of the features is
important, since only these will be used to identify the
objects. There are few analytical means to guide the se-
lection of features. Frequently, intuition guides the list-
ing of potentially useful features. Feature-ordering tech-
niques (Castleman, 1996) compute the relative power
of the various features. In practice, the feature selection
process usually involves testing a set of intuitively rea-
sonable features and reducing the set to an acceptable
number of the best ones. Good features have four char-
acteristics (Castleman, 1996):

� Discrimination: Features should take on significantly
different values for objects belonging to different
classes.

� Reliability: Features should take on similar values for
all objects of the same class.

� Independence: The various features used should be
uncorrelated with each other.

� Small number: The complexity of a pattern recogni-
tion system increases rapidly with the dimensionality
(number of features used) of the system. More im-
portantly, the number of objects required to train the
classifier and to measure its performance increases
exponentially with the number of features (Jain and
Chandrasekeran, 1982). In some cases, it may be im-
practical to acquire the amount of data required to
train the classifier adequately. Finally, adding more
features that are either noisy or highly correlated
with existing features can actually degrade the perfor-
mance of the classifier, particularly in view of the lim-

ited size of the training set (Kanal and Chandrasek-
eran, 1971).

In practice, the feature selection process usually in-
volves testing a set of intuitively reasonable features and
reducing the set to an acceptable number of the best
ones. Many features can be used to describe an object.
The most basic of all image features is the measure of
image amplitude in terms of spectral value, luminance,
tristimulus value, or other units (Castleman, 1996). Im-
age transforms provide the frequency domain informa-
tion in the data. Transform coefficient feature extraction
has proved practical in several applications in which the
transform domain features are used as inputs to a pattern
recognition classification system (Haralick, 1973; Shaikh
and Tian, 1996). The textural features of an object can of-
ten be used to discriminate between the surface finish of
a smooth or coarsely textured object (Shaikh and Tian,
1996). The gray level histogram of an image often con-
tains sufficient information to allow analysis of the image
content and, in particular, to discriminate between ob-
jects (Shaikh and Tian, 1996). The most common object
measurements made are those that describe shape.

Defining the shape of an object can prove to be very
difficult. Shape is usually represented verbally or in fig-
ures, and people use terms such as elongation, rounded,
with sharp edges, etc. The computer era has introduced
the necessity to describe even very complicated shapes
precisely, and while many practical shape description
methods exist, there is no generally accepted method-
ology of shape description. Further, it is not known what
makes a shape important. In general, shape descriptors
are sorted according to whether they are based on ob-
ject boundary information (e.g., contour-based, external
description) or whether the information from object re-
gions is used (e.g., region-based, internal description)
(Hogg, 1993). This classification of shape description
methods may be local or global and differ in sensitiv-
ity to translation, rotation, scaling, etc.

3.3 Pattern recognition

Pattern recognition is the scientific discipline whose goal
is the classification of objects into a number of categories
or classes. Depending on the application, these objects
can be images, signal waveforms, or any type of mea-
surements that need to be classified. Pattern recognition
has a long history, but before the 1960s, it was mostly the
output of theoretical research in the area of statistics. As
with everything else, the advent of computers increased
the demand for practical applications of pattern recog-
nition, which in turn set new demands for further theo-
retical developments. The theory of pattern recognition
is thoroughly discussed in several references (Duda and
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Fig. 8. The basic stages involved in the design of a pattern
classification system.

Hart, 1970; Fu, 1982; Oja, 1983; Schalkoff, 1992), but here
only a brief introduction will be given.

Machine vision is an area in which pattern recognition
is of importance. For example, in inspection, manufac-
tured objects on a moving conveyor may pass the inspec-
tion station, where the camera stands, and it has to be
ascertained whether there is a defect. Thus, images have
to be analyzed, and a pattern recognition system has to
classify the objects.

An object is a physical unit, usually represented in
image analysis and computer vision by a region in a seg-
mented image. The set of objects can be divided into
disjoint subsets, which, from the classification point of
view, have some common features and are called classes.
The definition of how the objects are divided into classes
is ambiguous and depends on the classification goal. The
classifier (similarly to a human) does not decide about
the class from the object itself; rather, sensed object
properties serve this purpose. For example, to distin-
guish steel from sandstone, their molecular structures do
not have to be determined, although this would describe
these materials well. Properties such as texture, specific
weight, hardness, etc., are used instead. This sensed ob-
ject is called the pattern, and the classifier does not actu-
ally recognize objects but recognizes their patterns. The
main pattern recognition steps are shown in Figure 8.
As is apparent from the feedback arrows, these steps
are not independent. On the contrary, they are interre-
lated and, depending on the results, one may go back to
redesign earlier stages in order to improve the overall
performance.

4 DEVELOPMENT OF AUTOMATED
PIPE INSPECTION SYSTEM

We have acquired a data set consisting of thousands of
images of underground pipes from 15 major cities in
North America. This data set has been used to explore
basic characteristics of underground pipe images. Anal-
yses of images have shown that there are two important
characteristics that complicate the segmentation of pipe
images: first, the presence of a complicated background
pattern due to earlier runoff, patches of repair work, cor-

roded areas, debris, nonuniformities in illumination, and
flaws in the image acquisition process; second, the three
main objects of interest—cracks, joints, and laterals—are
all dark features that cannot be distinguished by intensity
criteria alone.

The goal of our research is to develop an automated
method that, given a pipe image, classifies each pixel in
the image into one of five classes: background, crack,
hole, joint, and lateral. In principle, after the image has
been segmented into its classes, each class could be sepa-
rated further into extents of distress (minor crack, major
crack, multiple crack, etc.). In general, an image segmen-
tation and classification problem is difficult to automate
because the differences between classes such as joints
and cracks, although obvious to a human, can be very dif-
ficult to encode mathematically at the pixel level (Sinha,
2000).

4.1 Preprocessing of pipe images

There are several hindrances to identifying the features
in underground pipe images. In the case of cracks, the
principal difficulty is that cracks are set against a highly
patterned background and thus discriminating edges are
often not present. A different problem arises when at-
tempting to identify the crack boundary where there is
low contrast between the inside of the crack surface and
the surrounding area. Pipe background surface is pri-
marily determined by the color of the pipe material. As
such, it is usually found in a restricted range of intensities.
Typically the gray-scale histogram information is used to
enhance the contrast between the object and the back-
ground, as discussed in the background chapter. Here it
is shown that pattern classification techniques applied to
color images can also be used to enhance the contrast
between the background surface and the objects present
in the pipe image.

4.1.1 Bayesian classification. Identification of the boun-
dary between the objects and their surround is formu-
lated as a pattern classification problem. Specifically, it
is desired to classify pixels as to whether it is more likely
that they came from the objects or the neighboring back-
ground regions. In a Bayesian framework, a color pixel
xc = (r, g, b)T can be classified as a crack if its a posteriori
probability P(Crack | x) is greater than the correspond-
ing a posteriori probability for the surrounding pipe
background P(Back | x). If the class-conditional proba-
bility densities p(x | Crack) and p(x | Back) are known,
or can be learned from training images, then Bayes’ rule
can be used to compute the corresponding a posteriori
probabilities.

Standard parametric or nonparametric techniques
can be used to learn the underlying class-conditional
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densities p(x | Crack) and p(x | Back). However, one
must bear in mind that the a posteriori probabilities
P(Crack | x) and P(Back | x) are evaluated for each pixel,
along each search line, at each time step. Thus, in order
for this approach to be usable in practical (real-time) sys-
tems, a premium is placed on the online processing time
required to discriminate between the classes. Toward this
end, Fisher’s linear discriminant (Duda and Hart, 1970)
is used to enhance the contrast between the objects and
the pipe background.

4.1.2 Fisher’s linear discriminant. Since we intend to ap-
ply morphological operators, we require a gray-scale im-
age, in which each pixel xg is a scalar xg = wTxc, where
w is some linear projection. In the case of a two-class
discrimination problem, such as distinguishing between
cracks and pipe background, Fisher’s linear discriminant
(Duda and Hart, 1970) can be used to determine the axis,
w, onto which vector color data can be projected which
preserves as much of the discriminating capability of the
color information as possible. The resulting “Fisher lin-
ear discriminant” maximizes the separability of the two
classes. Crack images representative of those likely to be
encountered during scanning of underground pipes can
be used to learn the Fisher discriminant axis using the
following algorithm.

1. Calculate mean color in class k = 1, 2

mk = 1
nk

∑
x∈χk

x (5)

2. Determine the within class scatter matrices, k =
1, 2

Sk =
∑
x∈χk

(x − mk)(x − mk)T (6)

3. Find the Fisher discriminant vector

w = S−1
w (m1 − m2) where Sw = S1 + S2 (7)

Pipe images representative of those likely to be encoun-
tered during object recognition and classification can be
used to learn the Fisher discriminant axis. Figure 9 shows
that Fisher’s discriminant analysis can be used to en-
hance the contrast between the pipe background and
cracks. In the gray-scale image (Figure 9b) there is little
contrast between the background and cracks. The his-
togram equalization, HIS, and YIQ color models can
also be used to provide additional contrast as shown in
Figures 9c, 9d, and 9e, respectively; although the pipe im-
age shows high contrast, the crack boundary is blurred
and the image is noisy. The projection onto the Fisher
axis (Figure 9f) enhances the contrast and enables bet-
ter extraction of the crack features.

4.2 Segmentation of pipe images

In underground pipe image segmentation, the following
classes are of general interest: the pipe joints (horizon-
tal dark straight lines), pipe laterals (circular dark ob-
jects), surface cracks (irregularly shaped thin dark lines),
and the pipe background (anywhere from a smooth to a
highly patterned surface) (Sinha et al., 1999). The goal
of our research is to segment pipe joints, laterals, and
cracks based on the geometric differences between them,
specifically based on morphological techniques (Serra,
1986).

We performed a morphological opening operation on
the underground pipe image with increasing sizes of the
circular and horizontal structuring elements. Clearly, as
the size of the structuring element is increased, features
of increasing size are removed by the morphological
opening. For example, a structuring element of interme-
diate size will preserve laterals and a collapsed pipe but
will remove cracks and small holes. Figure 10 plots the
average area of objects in each class (crack, hole, joint,
etc.) based on circular structuring element. That is, if we
let | t(I) | represent the number of dark pixels in I af-
ter binary thresholding, then Figure 10 actually plots the
normalized areas

aL(r) = |t(I · SC(r))|
|t(IL)| (8)

aJ (l) = |t(I · SH(l))|
|t(IJ )| (9)

where IL, IJ are idealized, prototype images of the per-
fect lateral and joint.

Although the plots in Figure 10 are interesting and
intuitive, in order to accurately isolate and classify dif-
ferent objects in an image we have to take into account
the variations in the area of each class. That is, holes, lat-
erals, etc. all come in a range of sizes, and this range must
be taken into account in selecting the appropriate struc-
turing element to serve as a classifier. We can compute
or assess the ability of any structuring element to dis-
criminate between any two classes (e.g., crack and hole)
by examining the degree to which the two classes are
separated relative to their standard deviations:

Di, j (r) = |µi (r) − µ j (r)|2
σ 2

i (r) + σ 2
j (r)

(10)

µi (r) = 〈aL(r)〉i (11)

σ 2
i (r) = 〈

aL(r)2〉
i − 〈aL(r)〉2

i (12)

where〈 〉i represents an average taken over images of
class i. A parallel definition exists for discriminant Di, j (l)
based on a horizontal structuring element. The value of
r for which Di, j (r) is maximized represents the optimal
feature by which to discriminate between classes i and j
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Fig. 9. Fisher’s discriminant analysis can be used to enhance the contrast between the pipe background and cracks. In gray-scale
image (b) there is little contrast between the background and cracks. The histogram equalization (c) enhances the contrast of the

image by transforming the values in an intensity image. The HIS and YIQ color models can also be used to provide additional
contrast, as in (d) and (e), respectively; although the pipe image shows high contrast, the crack boundary is blurred and the image

is noisy. Projection onto a Fisher axis (f) enhances the contrast and enables better extraction of the crack features.

on the basis of the area (i.e., number of pixels) remain-
ing after a morphological opening by element SC (r) as
shown in Figure 11. By plotting Di, j (r) and Di, j (l) for
different classes i, j we can deduce the set of features to
be extracted for classification.

More than 100 images, mostly underground concrete
pipe from 15 major cities in North America, are used
in the proposed morphological segmentation algorithm
in a series of steps to isolate the pipe joints and laterals.
Figure 12 shows the capability of morphological opening

operators for extraction of pipe lateral and joint from
underground pipe scanned images.

4.3 Detection of defects in pipe images

In the computer vision literature, one can find various
techniques addressing different types of data, including
natural and artificial textures, synthetic aperture radar
images, and magnetic resonance images. In analyzing
underground pipe scanned image data, one needs to
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consider complications due to the inherent noise in the
scanning process, irregularly shaped cracks, as well as
the wide range of pipe background patterns. One of the
major problems is detecting defects (especially cracks)
that are camouflaged in the background of corroded ar-
eas, debris, patches of repair work, and areas of poorly
illuminated conditions.

In the past 20 years, many approaches have been de-
veloped to deal with the detection of linear features on
optic (Geman and Jedynak, 1996) or radar (Samadani
and Vesechy, 1990) images. Most of them combine two
criteria: (1) a local criterion evaluating the radiometry
on some small neighborhood surrounding a target pixel
to discriminate lines from background, and (2) a global
criterion introducing some large-scale knowledge about
the structures to be detected.

Concerning the local criterion, most of the techniques
used for pavement distress detection in scanned images

are based either on conventional edge or line detec-
tors (Mohajeri and Manning, 1991; Walker and Harris,
1991). These methods evaluate differences of averages,
implying noisy results and variable false-alarm rates
(Koutsopoulos and Downey, 1993). In addition, local cri-
teria are in many cases insufficient for edge or line detec-
tion, and global constraints must be introduced (Tupin
et al., 1998). For instance, dynamic programming is used
to minimize some global cost functions, as in the original
algorithm of Fischler et al. (1981) and its improvement
(Merlet and Zerubia, 1996). Hough transform–based ap-
proaches have also been tested for the detection of para-
metric curves, such as straight lines or circles (Skingley
and Rye, 1987). Tracking methods are another possibil-
ity. They find the minimum cost path in a graph by us-
ing some heuristics, for instance, an entropy criterion
(Skingley and Rye, 1987). Energy minimization curves,
such as snakes, have been applied (Skingley and Rye,
1987). The Bayesian framework, which is well adapted
for taking some contextual knowledge into account, has
been widely used (Tupin et al., 1998).

The approach proposed in this paper falls within the
scope of the Bayesian framework. Since our aim is to de-
tect the defects present in an image, contextual knowl-
edge on the scale of pixels is insufficient and results in nu-
merous small, disconnected segments. However, on the
scale of segments, a priori knowledge allows for the de-
tection of cracks. Thus, detection of cracks is performed
in two steps. In the first step, crack-segment candidates
are detected. In the second step, cracks are obtained by
cleaning and linking operations.

The algorithm begins with performing a local detec-
tion of cracks (Fieguth and Sinha, 1999). This is based
on the fusion of the results from two crack detectors
D1 and D2, both taking the statistical properties of im-
age into account. Crack detector D1 is based on a ratio
edge detector for which an in-depth statistical study of
its behavior is given in Lopes et al. (1993). Detector D2,
which has emerged from this research, uses the normal-
ized centered correlation between two populations of
pixels. Both responses from D1 and D2 are merged to ob-
tain a unique response as well as an associated direction
in each pixel. The detection results are postprocessed to
provide candidate segments. Figure 13 shows the differ-
ent steps of the proposed crack detection algorithms.

In this article, an almost unsupervised method has
been proposed for detecting the cracks, as seen in un-
derground pipe scanned images. The method includes
both high- and low-level treatments. All the parameters
for the detection of cracks are determined experimen-
tally. Thresholded responses of the crack detectors after
fusing and linking operations are shown in Figure 14.

The first image (left panel of Figure 14) is a part of
Toronto sewer pipeline system, showing some minor
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(a) Original Image       (b) Gray-Scale Opening      (c) Thresholded Image

Fig. 12. This figure illustrates joint/lateral discrimination using different structuring elements: a horizontal element (top) of length
285 mm, consistent with the geometry of a perfect joint, as opposed to a circular element (bottom) of radius 57 mm, tuned to the

shape of a perfect lateral.
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Fig. 13. Flowchart showing proposed steps of crack
detection algorithm.

cracks in the pipe surface. In this case, the crack detection
step performs quite well in detecting most of the crack
structures in the image. The second scanned image (right
panel of Figure 14) is from the city of Boston. This image
has dark background pipe surface with multiple cracks,
most severely above the pipe joint. In this case, the crack
detection step performed well, but results are noisy with
many false alarms. The cleaning and linking operations
proved to be a powerful method to fill gaps between the
detected segments providing a map of the cracked pipe

surface, while suppressing most of the false-alarm detec-
tion. In fact, the results are close to those that could be
obtained by a trained human operator for classification
of defects in the underground pipes.

4.4 Feature extraction of pipe defects

Feature extraction is an important stage for any pattern
recognition task, especially for pipe defect classification,
since pipe defects are highly variable and it is difficult
to find reliable and robust features. According to the
study in Hogg (1993), trained operators mainly rely on
five criteria in visual interpretation of images. These are
intensity, texture, size, shape, and organization. The in-
tensity corresponds to the spectral features, which can
generally be extracted easily. Textural features are those
characteristics such as smoothness, fineness, coarse-
ness, or a particular pattern associated with an image
(Haralick, 1973). They reflect the local spatial distribu-
tion property in a certain region. The spectral and textu-
ral features are most widely used in automatic object
classification. Other features such as size, shape, and
organization information attribute to the large-scale or
global spatial distribution.
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Fig. 14. Thresholded responses of the crack detectors for minor cracks (left) and multiple cracks (right).

Generally, two broad categories of object features are
most commonly used in the material/pavement classifi-
cation field (Kaseko and Ritchie, 1993): shape and textu-
ral features. The first class of features, which plays a more
important role for object classification, extracts the infor-
mation based on the geometric shape of the object. Some
of the most commonly used methods in this category in-
clude area, length, roundness, etc. The second categories
(i.e., textural features) distinguish objects by using sta-
tistical measures based on gray-scale co-occurrence ma-
trix (Haralick, 1973) and its variant, such as gray-scale
difference vector, moment invariants, and gray-scale dif-
ference matrix. The salient features of the data can also
be extracted through a mapping, such as Fourier trans-
form, discrete cosine transform, Karhunen-Loeve trans-
form, or principal component method (Jain, 1989), from
a higher dimensional input space to a lower dimensional
representation space.

Depending on the analyzed parameters or features of
each object, the most suitable set of features that rep-
resents the characteristics of each object in the under-
ground pipe images is selected. We have used informa-
tion based on the geometric shape and size of the objects
present in the underground pipe images for feature ex-
traction. The advantages of the proposed extraction of
geometrical features from the image are its capability
to quantify distress features in terms of understanding
parameters (area, lengths, roundness, etc.) and its abil-
ity to classify the segmented image based on such quan-
tities. These features constitute the input parameters for
the classifier.

In the present case for classification of severity of
cracks, if the attributes are selected to be the ma-
jor/minor axis length, and area, then the classifier can
be trained for classifying different objects based on their
geometry. For example, if an object has a width (minor
axis length) of a few millimeters and its length (major

axis length) is much greater than its width, then the ob-
ject can be classified as a crack. On the other hand, if the
ratio of major and minor is close to one and its minor
axis length is a few centimeters, then the object can be
classified as a hole rather than a crack. We can also use
the information of four direction projections to classify
the cracks. An image projection in a direction is done by
adding the pixels values along four directions: horizontal
(0◦), vertical (90◦), and two diagonals (45◦ and 135◦). The
idea of using image projections to classify crack types is
based on: (1) if it is a longitudinal crack, there is a peak
in the vertical projection; (2) if it is a transverse crack,
there should be a peak in the horizontal projection;
(3) if the crack is diagonal, there is a peak in the di-
agonal direction; and (4) if it is a mushroom crack, there
are peaks in all four direction projections. The 12 fea-
tures selected for classification of the type of the cracks
in the underground pipe image are as follows:

1. Area
2. Number of objects
3. Major axis length
4. Minor axis length
5. Projection of pixels and then taking mean and

variance in each of the four projected directions
(0◦, 45◦, 90◦, and 135◦)

Each segmented crack image is to be classified into one
of the following five classes. They are based on the ex-
tracted 12 feature vectors, which describe the existence
of crack segments and severity of holes present in the
image:

1. Minor crack
2. Major crack
3. Minor hole
4. Major hole
5. Fracture pipe
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4.5 Classification of pipe defects

Underground pipe defects appear in the form of ran-
domly shaped cracks. The decision making of the pipe
condition by human experts is based on very compli-
cated rules such as “if the total area of crack is A, then
it gives a penalty f to the decision; if the total area of
crack is B, then it gives a penalty g to the decision; if a
pipe has f , g, . . . , k penalties, then the final decision of
the pipe is Pth class.” To set all these complicated rules,
many efforts and time-consuming discussions would be
required by human experts. In practice, carrying out this
task would be even harder if different criteria existing
among the experts about the defects were taken into ac-
count. Therefore, there has been a lack of normalization
in assessment of underground pipe condition.

For such a complicated decision rule problem, the so-
lution is based on the use of a neural network paradigm
that can mimic the human reasoning (Hsieh, 1993). The
benefit of the neural network is the generalization abil-
ity (Lawerence, 1991) about the untrained samples due
to the massively parallel interconnections and easiness
of implementation for any complicated rule or mapping
problem.

4.5.1 Error backpropagation algorithm. In this section
crack classification using an error backpropagation
(EBP) algorithm (Rumelhart and McClelland, 1986) is
discussed. The conventional EBP algorithm used a fixed
learning rate and momentum factor; thus, to reduce the
learning time and to avoid local minima, these param-
eters must be determined adaptively. A variable learn-
ing rate and momentum factor are used by iteratively
updating weights, resulting in the modified EBP algo-
rithm. In the modified EBP algorithm, the learning rate
η, momentum factor α, and weight ω are updated by the
following equations, respectively:

�η jk(m + 1) = ε

(
∂Ep

∂ω jk

)2

+ β�η jk(m), (13)

�α jk(m + 1) = µ

(
∂Ep

∂ω jk

)2

+ γ�α jk(m), (14)

�ω jk(m + 1) = −η jk
∂ Ep

∂ω jk
+ α jk�ω jk(m) (15)

where ε, β, µ, and γ denote constants and m represents
the iteration step. Subscripts j and k signify the jth neuron
of the input (hidden) layer and kth neuron of the hidden
(output) layer, respectively. Ep represents the total error
function at the pth layer. The network is constructed by
12 input neurons, 7 neurons in the hidden layer, and 5
output neurons for five classes of pipe defects. Parameter
values are selected experimentally: in the conventional

algorithm, the learning rate and momentum factor are
set to 0.7 and 0.15, respectively, whereas in the modified
algorithm, 0.5 and 0.2, respectively.

4.5.2 Classification using neuro-fuzzy algorithm. To in-
crease the recognition rate, a neuro-fuzzy algorithm is
employed that combines neural networks and the fuzzy
concepts. Neural networks have learning capability and
the fuzzy concepts can absorb variability in feature val-
ues. The fuzzy concept (Zadeh, 1965) can be combined
with neural networks in various ways (Pal and Mitra,
1992; Glorennec, 1994). In this study the fuzzy concept is
applied simply in converting feature values into fuzzified
data, which are inputs to the modified backpropagation
neural network algorithm. In the proposed neuro-fuzzy
algorithm, the fuzzy data are used as inputs to neural
networks. Sometimes variation of feature values is large,
and then it is difficult to classify defects correctly based
on these feature values. To solve this problem, each de-
fect feature value is first converted into three fuzzy data
(Yamakawa and Teodorescu, 1997), and then learning is
performed with these 3I fuzzy data using the modified
EBP algorithm. Finally, defects are classified using the
modified backpropagation algorithm.

To convert 12 normalized features into 36 fuzzy data,
the MAX and MIN values are determined that are
the maximum and minimum feature values for the en-
tire data set, respectively. As shown in Figure 15, three
membership functions denoted by “S” (small), “M”
(medium), and “L” (large) are generated. Note that
these membership functions are specified by MIN and
MAX, as shown in Figure 15. Then three fuzzy data are
computed for each feature values and these data are used
as the input data to neural networks. In Figure 15 µS(xi ),
µM(xi ), and µL(xi ) are three fuzzy data of an input fea-
ture value (xi ), corresponding to linguistic variables of
“S,” “M,” and “L,” respectively. The trapezoidal mem-
bership function, as shown in Figure 15, is located at the
average value of the features of the same defect, and it
has a maximum value of 1 over the limited range that is
specified by the standard deviation of the feature value.

Fig. 15. Proposed neuro-fuzzy network for classification
of underground pipe images.
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Table 1
Classification rate for the proposed neuro-fuzzy network

Classification method Classification rate (%)

Euclidean distance method 81.1
Fuzzy K-nearest neighbor method 83.2
Backpropagation neural network 85.9
Proposed neuro-fuzzy network 89.6

To generate a linguistic variable, the average and stan-
dard deviation of the feature values of the defect are
computed. Then the interval between MIN and MAX is
uniformly divided into several subintervals, where MIN
and MAX represent the minimum and maximum of av-
erage values of the specific feature, respectively. The
membership function of each image is centered at the
average value of the features of the defect. Variation of
feature values for the same image is allowed by employ-
ing the trapezoidal membership function (i.e., the width
at the top of the trapezoidal membership function is set
to σi , where σi denotes the standard deviation of the ith
feature value).

4.5.3 Experimental results. For performance compari-
son with the proposed neuro-fuzzy algorithm, conven-
tional algorithms such as Euclidean distance method,
EBP algorithm, and fuzzy methods with triangular and
trapezoidal membership functions are simulated. In the
modified EBP algorithm to reduce the computational
complexity and to avoid local minima problem, the learn-
ing rate and momentum factor are varied adaptively. In
the input layer, there exist 12 nodes for 12 features, but 5
neurons in the output layer for 5 classes of pipe defects.
The number of nodes in the hidden layer is determined
experimentally. In the proposed neuro-fuzzy algorithm
36 fuzzy data are used in the input layer, and in the hid-
den and output layer the same number of neurons are
used as in the modified EBP algorithm. Table 1 shows the
classification results by the proposed neuro-fuzzy algo-
rithm and other conventional algorithms. From Table 1
it can be observed that the proposed neuro-fuzzy algo-
rithm using a trapezoidal membership function yields
better classification results than the Euclidean distance
method, EBP algorithm, and fuzzy-based algorithms.

5 CONCLUSIONS

A practical use of computer vision for automatic seg-
mentation of underground concrete pipes from PSET
scanned images has been suggested and implemented.
Two main obstacles are the poor background illumina-

tion and the highly patterned surface of sewer pipes,
which causes problems for detection of defects. The de-
fect detection techniques used in this study, especially
the linear feature extraction, are robust for detection of
cracks, but for root extraction, the techniques need to
be improved further. The local crack detector deals with
scanned images with respect to their statistical proper-
ties. Since there does not appear to exist a single coher-
ent model suitable for reliable detection of pipe cracks,
it is essential that some means of integrating information
from multiple image operators and knowledge sources
be devised. This research has provided a simple mech-
anism for integrating the information provided by the
two operators for the specific task of crack detection. For
joint and lateral analysis, a technique based on mathe-
matical morphology has been proposed and investigated.
The technique is quite effective if the original size of the
joint and lateral is available or estimated accurately.

A fully automated underground pipe inspection sys-
tem is envisaged, in which successive image frames are
analyzed until a pipe defect is identified. The defective
frame would be selected and analyzed using the tech-
niques discussed in this study. Such a scheme would ex-
tract valuable information from PSET surveys of under-
ground concrete pipes. The proposed automated system
has the potential to overcome the limitations of the cur-
rent CCTV inspection and can provide a more accurate
assessment of underground sewer pipe conditions.
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