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Abstract. Scientific image processing involves a variety of problems
including image modeling, reconstruction, and synthesis. In this paper
we develop a constrained sampling approach for porous media synthe-
sis and reconstruction in order to generate artificial samples of porous
media. Our approach is different from current porous media reconstruc-
tion methods in which the Gibbs probability distribution is maximized
by simulated annealing. We show that the artificial images generated
by those methods do not contain the variability that typical samples of
random fields are required to have.

1 Introduction

Scientific imaging plays a key role in many research areas such as medical imag-
ing, remote sensing and porous media. Due to the significant research funding
and public interest in medical imaging and remote sensing, these aspects have
been considered and studied significantly. However, there are other aspects like
porous media in which more contributions and attentions are needed. Porous
media is the science of water- porous materials such as cement, concrete, carti-
lage, bone, wood, and soil, with corresponding significance in the construction,
medical, and environmental industries[12]. Fig. 1 shows two samples of porous
media. Describing and studying the permeability, porosity and transport proper-
ties of porous media requires various 2D and/or 3D high-resolution realizations.
However, obtaining 2D high-resolution of porous media surface requires cutting,
polishing, and exposure to air, all of which may alter the sample, and the process
is costly, and 3D samples are generated by MRI imaging which can only resolve
large scale structures. Therefore, artificial realizations are required to be gener-
ated using porous media reconstruction process. Through this process artificial
porous media are reconstructed such that they possess the same statistical prop-
erties and structures as the real 2D/3D samples [1]. For the purpose of porous
media reconstruction, we seek a random realization obeying a model. Since the
structure and morphology of porous media are complex, stochastic modeling is a
proper approach to representing their structures and statistical properties [13].

While simple stochastic image models such as correlation models and spatial
variance can be used to model porous media, they are very poor due to the
chaotic and complex morphology of these material, and instead for discrete-
state problems (porous media images are binary) widely-used Gibbs Random
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Fig. 1. Two Samples of Porous Media. The sample in panel (b) contains large pores
known as vugs. Porous media have two phases: void and solid, which are presented as
black and white, respectively.

Fields(GRF) are considered [8] [16]. GRFs are lattice models, used to quantify
the spatial interactions of observed values at the nodes of a grid and to compute
a probability for any configuration of that grid [16] [6]. GRFs were originally used
in statistical physics to study the thermodynamic characteristics of interacting
neighboring particles in a system [16]. For a GRF, Gibbs probability distribution
is defined as

p(Z) =
e−H(Z)/T

Z (1)

for all Z ∈ Ω (the configuration space), where H(·) is an energy function written
as a function of interactions over a local neighborhood structure, Z is a normal-
ization factor, and T is the temperature. As the joint prior probability p(Z) is
strictly a function of H , the energy H implicitly encodes all of the characteristics
of the random field.

Having the prior model defined as (1), the question is how we can use this model
to generate artificial samples of porousmedia.Most people use simulated annealing
along with Markov Chain Monte Carlo (MCMC) methods like Gibbs sampler to
generate artificial realizations from the Gibbs model [15], [5], [4], [3]. This method
involves decreasing T slowly which is equivalent to maximizing Gibbs probabil-
ity distribution [10]. However, due to the maximization process, the result will be
the most probable realization of the configuration space, which can not reflect the
variations presented in a typical random sample. This paper propose constrained
sampling to generating typical samples from Gibbs probability distribution func-
tion (pdf) without maximizing the pdf, and also investigates to what extend the
generated typical samples can be representatives of porous media samples.
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(a) Superimposed chordlength distri-
butions for multiple samples.

(b) Variations in the training sample
S at different scales (k).

Fig. 2. Variation of the model with respect to the size of the training sample sk. Panel
(a) shows a set of superimposed chordlength distributions taken from different parts
of a large image. Note the considerable variation between samples. For panel (b) we
have considered a set of images of size k × k (k = 64, 128, 256, 512, 1024), and inferred
the average chordlength probability and its variability as a function of k. Clearly as k
decreases the variability increases.

2 Sampling from Gibbs Probability Distribution

Having Gibbs probability distribution defined as (1) we consider chordlength
distribution function which is a reasonable widely use function in porous me-
dia reconstruction [15], in the energy function. For a two-phase porous media
(a binary image), the chordlength distribution function Ci(�) is defined to be
the probability of finding a chord with length � in phase i. Chords are all line
segments between intersections of an infinitely long line thrown in a two-phase
random field. The chordlength distribution can be defined for both phases (dual
chordlength) and for chords at different orientations. However, we have consid-
ered dual chordlength model with horizontal and vertical chords. To define the
parameters of chordlength distribution, a training sample S such as those shown
in Fig. 1 is used.

The artificial samples generated from Gibbs probability distribution are re-
quired to represent the variability in the training sample S. However, S has
various structures at different scales. To study the variations in S at differ-
ent scales, multiple random sk – truncated images from S at size k × k– have
been considered. Each sk has its corresponding chordlength distribution lead-
ing to different energy function. In Fig. 2 panel (a), superimposition of various
chordlength distribution for different sk is shown, and panel (b) shows the vari-
ability of chordlength distribution for different k. This variability is due to having
different structures at various scales in the training sample S. As can be seen
from this figure, smaller k leads to more variability.

The artificial porous media samples need to reflect variabilities presented in
the training sample. The method in the literature used to generate artificial
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Fig. 3. Superimposed chordlength distributions resulting from annealing down to T = 0,
with two example images shown. The variation between artificial images is less that the
original variation shown in the Fig. 2 panel (a).

samples is simulated annealing [15], [5], [4], [3]. The process of annealing in-
volves generating a sequence of samples through applying the Gibbs sampler
and gradually decreasing T in the energy function. This annealing process is
started at high temperature, where p(Z) is only a weak function of Z, thus Z
is relatively unconstrained, and as T decreases the system is driven to lower
energy until the minimum energy, the most probable Z maximizing p(Z), is ob-
tained. However, the images generated by this method can not represent the
original variability in the training sample shown in Fig. 2, since T is decreasing
down to zero and consequently the probability distribution p(·) is maximized.
As shown in Fig. 3, the superimposed chordlength distribution of the generated
images through this method are almost the same and do not contain the required
variability in comparison to the original variability shown in Fig. 2 panel (a).

Theoretically, for Gibbs sampler to generate independent uniformly distributed
random samples from Gibbs probability distribution along with simulated anneal-
ing, the relaxation parameter T should be decreased down to a non-zero finite
value like Tf �= 0, and the rate of decrease should be logarithmic [10]. However,
we do not know at what finite value of T the Gibbs sampler generates independent
random sample from the chordlength distribution. Even if Tf can be extracted, the
logarithmic annealing schedule causing high computational complexity, should be
used to guarantee generating independent random samples, and using fast non-
logarithmic schedules leads to quenching (rapid cooling), instead of annealing.
The small variability in Fig. 3 is due to quenching rather than a typical variability
in typical random samples. Quenching is decreasing T faster that the logarithmic
schedule, since logarithmic schedule involves very high computational complexity.

Moreover, even if we anneal the energy function down to small enough Tf �= 0
(using logarithmic or non-logarithmic schedule), although large scale structures
are presented and there is more variations in the samples (since p(·) is not maxi-
mized), the result contains illegal small scale morphologies and structures. Fig. 4
shows superimposed chordlength distribution of the artificial samples generated
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Fig. 4. Superimposed chordlength distributions of samples generated by annealing
down to Tf �= 0. Although the variation in small scale structures (small chordlength)
is 21% more than the variation of the results generated by annealing down to T = 0
in Fig. 3, the samples contain illegal morphologies and structures.

by annealing down to finite temperature Tf . As can be seen from this figure, the
variability in small scale structures of the samples generated by annealing down
to Tf �= 0 is 21% more than the variability of the results generated by annealing
down to T = 0.

However, the variability is not inherent in porous media, rather it is a function
of scale. As can be seen from Fig. 2, panel (b), as k gets larger, the variability de-
creases. In general, for 1/f (power law, self-similar) [7] processes, there is almost
as much as variability in fine scale as in coarse scale, while for ergodic processes
such as porous media, there is one scale from which the statistics is stationary.
Studying the variability in the training samples at different scales, we can see
from Fig. 5 that standard deviation (std) of a set of chordlength distributions
obtained from multiple sk decreases as k increases. Thus, the random field is
ergodic from one specific scale (k∗). Therefore to capture the variability in the
training sample a possible approach is to synthesize the image at scale k∗ – the
scale that the ergodicity of the random field is observable.

Thus, for generating random samples, one can

– synthesize an image at size k∗ × k∗ by simulated annealing. Since k∗ is very
large (in Fig. 5 k∗ > 8000), synthesizing an image at that size involves very
high computational complexity.

– consider a smaller scale k < k∗, and synthesize the image at that scale by
simulated annealing. As discussed earlier and shown in Fig. 3, the results do
not represent required variations in porous media.

– down-sample the training sample and synthesize at smaller scale by sim-
ulated annealing. By down-sampling the image, we will loose small-scale
morphologies information, therefore we can not reconstruct the small scale
structures.
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(a) Carbonate rock (b) Sintered glass
spheres with vugs

(c) Sintered glass
spheres without vugs

Fig. 5. Variation of the chordlength model with respect to the size of the training sam-
ple having the standard deviation as a function of sample type (a, b, c) and chordlength

– use variable models at different scales and synthesize by simulated annealing.
This makes the problem more complicated, and needs an annealing method
for variable models.

– use fixed model and synthesize an image at size k < k∗ by constrained
annealing. Through this approach we propose to change the energy function
by adding a constraint. More details on this approach comes in the next
section.

3 Proposed Method: Constrained Sampling

To generate typical random samples from Gibbs probability distribution, we
propose to

– change the energy function to a constrained energy function,
– generate samples from the constrained energy function using constrained

annealing.

3.1 Problem Formulation

The constraint term in the energy function can be measurement (posterior energy
function [11]) or another prior model which can take care of invalid small scale
structures found in the finite temperature annealing. The constrained energy
function is defined as

Hc(Z) = H(Z) + αG(Z) (2)

where G(Z) is the constraint and α is a parameter controlling the contribution
of constraint in the energy function. The constraint term is considered to be
another model learnt from the training sample. More specifically,

Hc(Z) = ‖Cs − C[Z]‖ + α‖Gs − G(Z)‖ (3)

where Cs and Gs are chordlength and histogram [14] distributions respectively,
learnt from the training sample, C[Z] denotes the chordlength distribution for
Z, and ‖ · ‖ denotes �2-norm.
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Fig. 6. Constrained sampling by annealing down to finite T and increasing α in equa-
tion (2) up to αf �= ∞. Tf and αf are set according to the critical phase(Fig. 7),
when a steep decrease happens in the energy function. Although the variations in the
samples are 22% more than the unconstrained annealing shown in Fig. 3, the samples
still contain noisy and invalid structures.

3.2 Methodology

Having the constrained energy function defined as (3), we are required to gen-
erate samples. Basically, according to [9], one should fix T �= 0 and increase α
up to infinity to satisfy the constraint. However, we do not know what specific
value for T leads to porous media samples.

Therefore, we propose to start with large T and small α, and decrease T while
increasing α very slowly. This annealing process has a critical phase in which
the large-scale structures are generated. Up to this phase both terms in the
energy function involve to represent valid structures in the sample. As shown in
Fig. 7, by critical phase we mean when a steep decrease happens in the energy
function. Fig. 6 shows the samples generated from constrained energy Hc and
their variations, right after the critical phase. As can be seen, the variations
between samples is more than the variations between images shown in Fig. 3
generated from unconstrained annealing.

After the critical phase, we let T to be fixed (Tf ) and let the constraint
term changes the medium to small scale structures by continuing increasing α.
According to Fig. 3 sampling at Tf from the unconstrained energy function in
(1) does not lead to a result with valid structures, or we may say that it does not
generate porous media samples. With the proposed method, we are sampling at
Tf , while the constrained term G(·) contributes in the process from the beginning
and after T is fixed, so it can change the small scale structures into the valid
structures asserted by the constraint. Therefore, by the proposed method we end
up by sampling from the constrained space

{Z|Z ∈ Ω, G(Z) = 0}. (4)
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Fig. 7. How the energy function changes as a function of iteration. Two methods have
been considered here: (1) annealing the unconstrained energy function H down to
T = 0, and (2) annealing the constrained energy down to Tf while increasing α up to
infinity. In both methods there is a steep decrease in the energy function, that we name
it as the critical phase. In panel (a) the energy level for both method is illustrated.
Panel (b) shows how both terms in the constrained energy (Hc) changes for method
(2).

Fig. 8 shows the variability of the samples generated by the proposed method.
We can see that the variability is 39% more than Fig. 3.

The proposed method is different from annealing down to T = 0 by which
the probability distribution is maximized. On the other hand, unlike the results
generated by unconstrained annealing, the samples generated by constrained
sampling satisfies two different prior distribution: Cs and Gs. Moreover, this
approach can be generalized to have more than one constraint in the energy
function and changing the parameter for each constraint to control their degree
of contribution in the whole process. Although, we can synthesize and reconstruct
porous media at smaller scale while having more variations in the samples, for
larger image synthesis we still cope with computational complexity, and the
original variability in the training sample has not been reached completely.

The proposed method is describe in Algorithm 1. The decrease and increase
rate for annealing schedule is considered to be exponential [14].

4 Results and Evaluation

We have considered chordlength distribution for the prior term H(Z) and his-
togram model as the constraint term G(Z) in the constrained energy function.

The histogram model [14] is non-parametric, keeping the entire joint proba-
bility distribution of a local set of pixels within a neighborhood. Choosing eight
adjacent pixels as the neighborhood structure leads to a non-parametric model
containing of a histogram of 29 = 512 probabilities. The histograms can also be
normalized to generate probability mass functions.
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Fig. 8. Constrained sampling by annealing down to finite Tf and increasing α up to
infinity. Tf is chosen according to the critical phase, and the algorithm will stop when
the constraint in the energy function satisfies, i.e. G(Z) = 0. The variations in the
samples as shown in the left panel are 39% more than the variations in Fig. 3 obtained
by annealing to T = 0.

Algorithm 1. Constrained Sampling
1: Start with an initial random field Z(0)

2: Initialize T and α
3: while G(Z) �= 0 do
4: Update Z(i+1) from Z(i) according to Gibbs sampler
5: if T < Tf (the critical phase has not passed) then
6: Decrease T according to decrease rate
7: else
8: Let T ← Tf

9: end if
10: Increase α according to increase rate
11: i ← i + 1
12: end while

Fig. 9 shows 256 × 256 samples generated using constrained sampling.
We evaluate the generated artificial samples in terms of the following criteria

– How much the structures and morphologies presented in the results are con-
sistent with porous media

– How much the results are close to a typical random sample

For the first criterion, we have considered two different porous media models
learnt from the training sample sk at size 128 × 128 and evaluate the results
in terms of those models. We have evaluated the reconstructed images obtained
from constrained sampling and unconstrained annealing in terms of histogram
model. The evaluation shows that the error for unconstrained annealing (an-
nealing the unconstrained energy down to T = 0) in terms of histogram model
is 17%, while for constrained sampling it is 3%. The error for unconstrained
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(a) Reconstructed image by
annealing the unconstrained
energy down to T = 0

(b) Reconstructed image using
constrained sampling

Fig. 9. Images generated for porous media reconstruction using annealing down to
T = 0, and constrained sampling
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Fig. 10. How much the results are inconsistent to the original sample in terms of
chordlength model. The solid and dashed lines show dissimilarity to the chordlength
model for the constrained sampling and unconstrained annealing down to T = 0, re-
spectively. As the solid-line is closer to zero, the constrained sampling method generates
samples which are more similar to porous media samples in terms of chordlength model.

annealing in terms of chordlength model is 0.74%, while for constrained sampling
it is 0.06%. Fig. 10 shows how much the reconstructed samples are compatible
with the chordlength model learned from the original training sample.
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Fig. 11. Comparing the variations in the results in terms of standard deviation. Three
different methods have been studied here: (1) annealing the unconstrained energy func-
tion H down to T = 0, (2) annealing the unconstrained energy function H down to
Tf �= 0, and (3) constrained sampling. The standard deviation of the samples gen-
erated by each method is illustrated and compared to the standard deviation of the
original training sample. The standard deviation of constrained sampling is closer to
the original than the others.

For the second criterion, we study the variations in different samples gener-
ated by constrained sampling. The variation in samples generated by constrained
sampling is more than the other methods, as confirmed in Fig. 11. Although
there is variability in the results generated by annealing the unconstrained en-
ergy down to T = 0, the variability is due to quenching rather than sampling.
The proposed approach generate samples with 39% improvement in the variabil-
ity. However, there is still a difference between the original variability and the
proposed method variability.

5 Conclusion

In this paper, an approach for sampling from Gibbs probability distribution
is proposed which is based on generating samples from the constrained energy
function. The proposed approach is used for porous media reconstruction and
synthesis. The previous methods in the literature used for porous media recon-
struction is based on maximizing the probability distribution by annealing down
to zero temperature, since sampling at finite, non-zero temperature leads to re-
sults containing illegal structures and morphologies. These methods generate the
most probable realizations which are different from a typical random sample of
Gibbs probability distribution, and they can not reflect the scale-to-scale varia-
tions in typical samples of porous media. In the proposed method a constraint
term is added to the energy function to enable sampling at finite, non-zero tem-
perature while at the same time the generated samples do not contain invalid
illegal structures. According to the evaluation results, not only constrained sam-
pling generates samples with 39% more variation than the other method which
is based on annealing down to zero temperature, but also the samples are almost
ten times more consistent with the original real samples.
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