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� Abstract
Precise information about the size, shape, temporal dynamics, and spatial distribu-
tion of cells is beneficial for the understanding of cell behavior and may play a key
role in drug development, regenerative medicine, and disease research. The tradi-
tional method of manual observation and measurement of cells from microscopic
images is tedious, expensive, and time consuming. Thus, automated methods are in
high demand, especially given the increasing quantity of cell data being collected. In
this article, an automated method to measure cell morphology from microscopic
images is proposed to outline the boundaries of individual hematopoietic stem cells
(HSCs). The proposed method outlines the cell regions using a constrained watershed
method which is derived as an inverse problem. The experimental results generated
by applying the proposed method to different HSC image sequences showed robust
performance to detect and segment individual and dividing cells. The performance of
the proposed method for individual cell segmentation for single frame high-resolu-
tion images was more than 97%, and decreased slightly to 90% for low-resolution
multiframe stitched images. ' 2010 International Society for Advancement of Cytometry

� Key terms
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ADVANCED techniques in digital image processing and pattern recognition can

potentially be applied to a large number of digital cytometry systems to improve our

understanding of cellular and intercellular events and to direct new discoveries in bi-

ological and medical research.

Hematopoietic stem cells (HSCs) form blood and immune cells and are respon-

sible for the constant renewal of blood. To produce new blood cells, HSCs proliferate

and differentiate to different blood cell types (1). To analyze stem-cell behavior and

infer cell features, the localization, segmentation, and tracking of HSCs in culture is

crucial. In our previous work we addressed cell detection/localization (2,3) and the

association of detected cells (4). Yet to infer the cell features, we need to outline the

boundaries of individual, touching, and dividing cells.

Previously, in vitro time-lapse video microscopy has been used to identify phe-

notypic traits associated with in vivo HSC functionality. Specifically, longer cell-

cycle times were correlated with the retention of HSC activity, and the presence

of lagging posterior projections (uropodia) was correlated with the loss of HSC

activity (5).

Various time-lapse studies were conducted on HSCs to provide information on

their morphology, migration, and localization. For example, individual immature he-

matopoietic cells were examined to determine the differences in migration mechan-

isms caused by the primitive nature of the cells (6). This helped to explain the loss

of phenotypic function during stem cell differentiation. Also a time-lapse video
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monitoring experiment was used to track HSCs and to identify

specific parameters related to their self-renewal division (7).

To classify HSCs to different groups, they must be

observed/tracked over time and their key features, including

cell size, shape, and motility, must be extracted (1,8,9). Man-

ual tracking of such data is an onerous task, and yet still

widely practiced, so automated methods are in high demand.

Cell segmentation in microscopic images as an object seg-

mentation problem remains an attractive and challenging

task due to the often corrupted or blurred images, high

noise, the presence of clutter, and the difficulties of adapting

and extending available image segmentation approaches (10–

13).

A variety of semi-automatic or automatic methods have

been proposed for cell segmentation. Geusebroek et al. (14)

introduced a method based on Nearest Neighbor Graphs to

segment the cell clusters. Meas-Yedid et al. (15) proposed a

method to quantify the deformation of cells using snakes. Kit-

tler and Illingworth (16), Otsu (17) and Wu et al. (18) have

used thresholding methods. The mean shift procedure method

was proposed by Comaniciu and Meer (11) for cell image seg-

mentation for diagnostic pathology. Watershed has been used

by Markiewicz et al. (19) for segmentation of bone marrow

cells.

Conventional segmentation methods perform poorly

when they are applied to Differential Interference Contrast

(DIC) cell images. We will show, later in this article, that

watershed as a conventional segmentation method cannot seg-

ment the DIC cell images. To solve this challenge, in this arti-

cle the cell segmentation problem is formulated as an inverse

problem, and a constrained watershed algorithm is proposed

to localize individual cells, outline their boundaries, and mea-

sure their features. In a typical inverse problem the model pa-

rameters are estimated based on the data, where here the cell

centroid is the cell model parameter to be estimated. The pro-

posed method has been successfully applied for modeling

HSCs and identifying their locations in DIC microscopic

images.

MATERIALS

Wild-type factor-dependent cell-Paterson1 cells (FDC-

P1, ATCC Number CRL 12103) were maintained in RPMI

(Hyclone, Logan) and 10% FBS, 4 mM L-glutamine, 13 peni-

cillin and streptomycin (Invitrogen, Carlsbad).

Cell imaging chambers were custom-made and loaded, as

previously described in Ref. (20) and summarized as follows.

A small strip (10 3 2 mm) of glass Fisher microscope cover

glass (22 3 50 mm) was washed with 10% NaOH and 1%

HCl, dipped in methanol, and dried under nitrogen gas. Glass

rectangular tubing (15 3 35 mm inner dimensions) was cut to

a height of 8 mm and glued to the cover glass, using Dow

Corning silicone medical adhesive, to serve as chamber walls.

Lids were cut and assembled from Fisher microscope slides to

loosely fit over the walls. After drying for 24 hours, chambers

and lids were autoclaved. Chambers were then rinsed in PBS,

and coated with 5% BSA and 100 lL/mL fibronectin at 48C

overnight. Studies with a variety of primary and cell lines have

confirmed that cells in this environment grow normally.

Cell suspension was spun down to approximately 1 mil-

lion cells/mL, and mixed 10:1 with a solution of PBS contain-

ing 10 lm diameter polystyrene beads at a concentration of

1 million beads/mL. Approximately 20 lL of this cell/bead so-

lution was pipetted into the gap chamber. The remaining cell

suspension was rinsed from the sides of the gap chamber by

PBS, and then 450 mL of PBS was added to fill the remainder

of the chamber. The polystyrene beads stop the glass strip

from compressing completely to the bottom of the chamber,

which then enforces a monolayer of cells in the imaging cham-

ber, allowing for unambiguous cell tracking over the course of

hours or days. During imaging, chambers were maintained at

378C, in a 5% CO2 humidified air environment.

Cells were imaged on an inverted microscope (Axiovert

200, Zeiss Germany). A custom-designed robotically con-

trolled stage allowed for multiple adjacent fields of view to be

captured as a mosaic. The focus was adjusted for each image

independently. Images were captured in a 5 3 5 mosaic at 3-

minute intervals using a digital camera (XCD-SX910, Sony,

Tokyo, Japan) for 6 hours. The focus was adjusted at 2 and

4 hours to account for focal drift.

METHODS

In our previous work (2), we characterized a typical cell

in a microscopic image as an approximately circular object

with a darker interior and a brighter boundary. The proposed

cell model works well to localize that specific HSC phenotype;

however, the performance of the algorithm drops if there are

significant illumination variations during DIC imaging, or for

HSC phenotypes that do not maintain a uniformly bright

boundary and dark interior.

Although our previous methods (2,21) perform well for

locating cells, they are not capable of accurately modeling

dividing cells or localizing individual cells in crowded cell

locations. As a result they may fail to locate multiple adjacent

cells and in turn are prone to generate erroneous results in

such cases. In Ref. (3), we showed that locating the cell centers

is essentially an inverse problem which can be addressed in the

form of a deconvolution problem. To solve the problem, we

proposed to find a set of cell shape parameters, solving the

inverse problem using an optimized ellipse fitting method,

considering each ellipse centroid as a cell center. The proposed

method effectively models dividing and crowded cells, and is

capable of modeling different cell types with changes in the

model parameters; however, by assuming a fixed, parametric

shape, the method is unable to segment cells having complex

shapes.

In this article we propose a method to outline the cell

boundary. As in Ref. (3), we consider cell segmentation as an

inverse problem, addressed as a constrained watershed

method. However, in contrast to the method presented in Ref.

(3), which localized cells by assuming a parameterized shape,

in this article we will solve the cell segmentation problem,

given previously localized cells.
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The schematic representation of the proposed method is

depicted in Figure 1. It has four stages: uneven background

correction, coarse segmentation, cell localization, and fine cell

segmentation. A preliminary version of watershed segmenta-

tion was addressed in Ref. (22), on which we build in this arti-

cle with a more robust version of constrained watershed with

contrast enhancement and correction for the uneven cell

boundary illumination caused by DIC imaging. The proposed

method can be also applied to down-sampled stitched images

with a resolution much lower than that of the original sub-

frames.

CELL SEGMENTATION

As part of an extensive research program to quantify cell

phenotypes, the ultimate goal of this project is to classify the

presence or lack of cell uropodia. To detect such uropods, it is

essential to accurately segment the cell boundaries. Conven-

tional segmentation methods perform poorly when they are

applied to DIC cell images due to the short range of gray level

intensities, spurious edges, and dividing and crowded cells.

Boundary/edge detection methods such as Canny (23) fail to

detect the boundary due to spurious edges inside the cell area.

Region segmentation methods (24) also fail to segment the

cell regions due to over- and under-segmentation. Even com-

bined region-boundary methods (25,26), which combine edge

detection and region segmentation, do not solve the problem

in their conventional forms due to dividing, touching, and

crowded cells.

Our proposed method is a watershed based approach.

Watershed, as a typical region boundary approach in its con-

ventional form (25–27), performs very poorly to segment cells

in DIC images. Our proposed approach therefore builds on

watershed, in which cells are first crudely segmented such that

a segment may represent one or more cells. Cell centers are

Figure 1. Schematic representation of the proposed method to localize the cells, to detect cell and aggregate boundaries, and to segment
individual cells.
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then localized using the original unprocessed image; with the

cell centers used as seeds for watershed, a detailed cell segmen-

tation is obtained. Each step is described in greater detail

below.

Correction for Uneven Illumination
Let I 5 (I1, I2,. . ., IK) be a set of K images, where Ik is the

image at time k defined on a fixed discrete grid D:

Ik ¼ Iijk i; jð Þ 2 Dj� � ð1Þ

Figure 2a (i) shows a typical stitched 1,280 3 960 image, con-

sisting of nine subframes, each downsampled from their origi-

nal size. It can be observed that the illumination is uneven

over each subimage, therefore a top-hat filter is applied to the

image Ik to correct the illumination changes:

Ith ¼ Ik � Ik o fsð Þ ð2Þ

where Ith is the filtered image, fs is the filter structuring ele-

ment, and (o) is morphological opening. The filtered image is

depicted in Figure 2a (ii) where the uniform background in-

tensity can be very clearly seen.

Edge Detection and Coarse Segmentation
A coarsely segmented image must first be generated

before proceeding to the segmentation of finer detail. To

achieve this, an edge image is generated by applying Canny

edge detector (23), E, to the background corrected image

frame Ith from Eq. (2):

ek ¼ E Ithð Þ ð3Þ

Cell areas are then coarsely segmented using morphological

operators, by dilating a disk M, having a radius of seven pixels,

as a morphological mask over the edge map

Sk ¼ ek �M ð4Þ

Morphological opening will then be applied to the dilated

image to remove those tiny regions considered unlikely to be

part of a cell:

Figure 2. (a) A typical stitched image formed by the stitching of nine subframes. i: Original stitched frame with nonuniform background

caused by uneven illumination. ii: Corrected image obtained by applying the top hat filtering to (i). (b) The application of edge detection
followed by morphological dilation. i: To the original stitched image in a (i). ii: To the corrected stitched image in a (ii).
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Ok ¼ Sk � O ð5Þ

A disk O having a radius of eleven pixels was used for mor-

phological opening in Eq. (5). The image Ok will be later used

to preserve portions of the magnitude image for fine segmen-

tation. With the coarse segmentation in place, we next to per-

form cell localization.

Cell Localization
Cell localization is an essential step in accurate boundary

segmentation. Our previously proposed cell detector, in Ref.

(2), was based on the attributes of a specific cell phenotype,

e.g. bright boundary and dark center. Here we propose a more

general approach in which the user may specify or generate a

cell template based on data. Let zk be the set of qk cell centers

in image frame k:

zk ¼ zik i 2 1; qk½ �j� � ð6Þ

A cell template is generated from ground-truth cell location

data, with the selected cells averaged to generate a cell template

h ¼ 1

Nc

XNc

1
Cn ð7Þ

averaging over Nc located cells. The cell template h is then con-

volved with the original image Ik to generate a correlation map:

Hk ¼ Ik � h ð8Þ

The local maxima identify peaks in the correlation map, therefore

to locate the cell-center candidates, we find the local maxima

Lk ¼ l Hk; dlð Þ ð9Þ

where l locates the largest local maxima in the correlation map

Hk, with a minimum separation of dl. Since the noise in the

image background will give rise to exceptionally weak max-

ima, the mostly likely cell centers are generated by threshold-

ing Lk to remove inconsequential maxima:

Zk ¼ T Lk; sð Þ ð10Þ

where T is a thresholding function, returning only those local

maxima in Lk whose values exceed threshold s. The threshold
s is set experimentally to minimize the number of misdetec-

tions and false alarms.

Constrained Watershed
Empirically we have found conventional watershed to

perform very poorly on cell images because of a failure to

separate grouped and dividing cells. Our proposed

approach is to seed the watershed approach by actually

placing dark spots at every detected cell center, forcing the

creation of watershed regions. In this way the local minima

direct the watershed method to converge toward the cell

boundaries.

To outline the cell boundaries, a gradient image of the

original image is obtained (Gk), its magnitude Mk is com-

puted, and those portions of the magnitude image corre-

sponding to the coarsely segmented binary image Ok will be

preserved by computing the pixel by pixel product of these

two images, Pk 5 Mk � Ok, considering each pixel in binary

image Ok to be either 1 or 0. The detected cell centers (see Cell

Localization) are then inverted and superimposed on the pre-

served magnitude image as local minima.

Let zk 5 {zk
i| i 2 [1, qk]} be the set of cell centers in cell

center map Zk consisting of qk centers. The set of points d 2 D

(where D is a digital grid) which are topographically closer to

a cell center zk
i than to any other cell center zk

j construct the

cell region R(zk
i) which is associated with the cell center zk

i.

The watershed of g is a set of points which do not belong to

any cell region and represents the cell boundaries W:

W gð Þ ¼ Dn [i2 1;qk½ �R zik
� �� � ð11Þ

In this way watershed partitions the superimposed magnitude

image by filling the imposed inverted cell centers (local

minima). The intent is that watershed catchment basins will

represent cell regions, and the watershed segmentation lines

demarcate cell boundaries.

RESULTS AND DISCUSSION

In this section we present the detection/segmentation

results generated by applying the proposed method. The

proposed algorithm was developed in Matlab and used for

cell segmentation in DIC images, applied to several hundred

frames from different data sets. To test the performance, the

automated cell segmentation was compared with ground

truth obtained from manual cell tracking, carried out by

operators trained on a sample data set. Manual tracking and

automatic segmentation were considered to match when a

manually tracked cell was contained within the bounding

box of a segmented cell. In the following tests, a single cell

template was used as correlation kernel; however, in future

work we plan to allow more flexible templates based on cell

type and shape.

A typical multiframe stitched microscopic image is

depicted in Figure 2a (i). The background-corrected image

using top hat filtering is depicted in Figure 2a (ii), where we

can clearly see the uniformity of the background intensity. As

is shown in Figure 2a, uneven illumination over the subframes

in the stitched image contributes greatly to the detection of

spurious edges, as shown in Figure 2b (i). In contrast, as seen

in Figure 2b (ii), there are no significant subframe boundaries

detected in the corrected image.

As is typical in watershed segmentation, we use the mag-

nitude of the gradient image to partition the image to different

segments. However, watershed in its conventional form per-

forms very poorly and segments dividing cells as a single

object. To overcome this shortcoming the proposed con-

strained watershed takes advantage of the detected cell centers

to direct watershed towards boundaries of connected cells.
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A high-resolution DIC image and its corresponding coar-

sely segmented image are depicted in Figures 3a and 3b,

respectively. An example cell template is depicted in Figure 3c

while the correlation map obtained by applying the cell tem-

plate to the original DIC image (Fig. 3a) is depicted in Figure

3d. The brightness of pixels in the correlation map show the

degree of positive correlation, with the brightest points most

likely to be cell centers, so the mostly likely cell centers,

depicted in Figure 3e, are generated by thresholding as in Eq.

(10). The magnitude of the gradient image Mk is preserved on

Figure 3. (a) DIC image. (b) Coarsely-segmented binary image. (c) Zoomed in cell template. (d) Correlation map (Hk) that is obtained by
convolving the cell template (c) and original image (a). (e) Cell center map (Zk) consisting of located cell centers obtained by finding local
maxima in Hk and thresholding. (f) Gradient of (a). (g) Located cell centers in (e) are inverted and imposed as local minima on gradient
image (f). (h) The boundary of segmented cells outlined by applying watershed to (g).
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the basis of the corresponding coarsely-segmented binary

image Ok, shown in Figure 3b. Then, the detected cell centers

(Fig. 3e) are inverted and superimposed on the preserved

magnitude image (Fig. 3f) as it is depicted in Figure 3g. At

last, the watershed method was used to partition Figure 3g.

The resulting segmentation, based on watershed, is depicted

in Figure 3h, where the corresponding cell boundaries are

outlined. As we can observe, cell boundaries are accurately

identified and segmented, both for individual and dividing

cells.

Figure 4. Comparison of conventional watershed and the proposed method. (a) Original image. (b) Application of watershed to the low
pass filtered image. (c) Application of watershed to the smoothed magnitude of gradient image. (d) Application of watershed to the coarse
segmented binary image. (e) Application of watershed to the product of binary segmented image and the smoothed magnitude of gradient
image. (f) The proposed method.
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The proposed method is also compared with the conven-

tional watershed segmentation. Figures 4b–4h show the appli-

cation of watershed to the smoothed original image, to the

low pass filtered magnitude of gradient, to the coarse segmen-

ted binary image, to the product of coarse binary image and

smoothed magnitude of gradient, and to the proposed

method, respectively. From the results depicted in Figure 4, it

is obvious that the conventional watershed fails to address the

DIC cell segmentation problem, while the proposed con-

strained watershed method not only detects the individual,

touching, and dividing cells, but also successfully draws the

outline of each cell.

Next, we applied the proposed method to a crowded cell

image, synthesized using a few DIC frames. Figure 5a shows

the coarse binary segmentation, with the correlation map in

Figure 5b. Outlined cell boundaries obtained by the proposed

method are shown in Figures 5c and 5d. As can be seen in

Figure 5, the performance of the proposed method is signifi-

cant, successfully detecting and segmenting individual, touch-

ing, and dividing cells.

Data sets A, B, C, and D are typical image sequences,

each of which consists of 100 image frames with approxi-

mately 1,000 cells. Data set E is an image sequence of 200

frames consisting of about 8,500 cells over the entire image

set. Figures 6a–6d show the performance of the proposed

method for individual cell detection and segmentation.

To quantify the cell detection performance, we counted

the number of correctly detected cells in each frame and

summed them over each data set, with the detection percent-

age shown in Figure 6a. To extract the cell centers from the

correlation map, the threshold was set to minimize the num-

ber of false alarms, implying a false alarm rate of zero. The

number of misdetections was counted manually for each data

set, with the percentage shown in Figure 6b. Subsequently we

manually counted the number of cells that were not segmen-

ted and computed the corresponding percentage, shown in

Figure 6c; we point out that the unsegmented set is a superset

of undetected set, i.e., comprising all undetected cells and

those detected cells which were not segmented. At the end for

each data set, we visually inspected and marked as bad those

Figure 5. Segmentation of DIC image with crowded cells. (a) Coarse binary segmentation. (b) Correlation map. (c) Outlining the cell
boundaries using the proposed method. (d) Superimposing the detected centers and outlined boundaries on the original image.
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segmented cells for which the outlined boundary was more

than 30% over- or under-segmented (Fig. 6d).

As can be observed in Figures 6a–6d, in the worst case

(data set D) more than 97.5% of cells are correctly detected

(Fig. 6a) while there are fewer than 2.5% undetected cells (Fig.

6b), 3.1% unsegmented cells (which includes undetected cells,

Fig. 6c), and 2.5% badly segmented cells (Fig. 6d). The cell

detection accuracy reaches 99.5% for data set E, for which

0.5% of cells are undetected, 0.6% unsegmented, and 0.25%

badly segmented cells, for 8,500 cells over 200 frames.

There are two types of unsegmentation error in the pro-

posed method:

I. Unsegmented cells with detected cell centers,

II. Unsegmented cells without detected cell centers.

As the centers of some unsegmented cells are indeed loca-

lized, and some detected cells are badly segmented, the average

cell center detection rate is higher than the cell segmentation

rate. The Type I error is improved in comparison with the past

work on this problem (22).

The research goal of this article is the large-scale seg-

mentation of cells. That is, although cell segmentation is the

image processing part of the article, the use of the segmented

cells is the key to the biology side of the research. To this end,

segmentation results can be used to potentially extract signif-

icant information about cell morphology, area, perimeter,

and orientation. Figure 7 shows the histograms of selected

features for more than 8,000 cells that were detected and seg-

mented in a DIC image sequence of 200 frames. As can be

observed, the cell area, perimeter, orientation, and eccentric-

Figure 6. The performance of the proposed method. The detection rate reaches 99.0% while the maximum unsegmented cell ratio is 3.1%,

and maximum bad segmentation ratio is less than 2.5%. (a) The percentage of detected cells for each data set. (b) Undetected cell percent-
age for each data set. (c) Unsegmented cell percentage. (d) Bad segmented cell boundaries.
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ity can all be quantified. We should stress that such informa-

tion is essential in the study of cell behavior. Our eventual

research goal is classifying the presence or absence of cell

uropodia for which cell detection and segmentation are the

first stage that is completed and presented in this article. To

detect such uropods, for example, the cell eccentricity could

lead to accurate classification. Our future work is conducted

to quantify the accuracy of uropodia classification using the

extracted features from the segmented images as the next

stage of this project. To achieve this we are in the process of

obtaining some sort of ground truth to be used to measure

the classification performance.

Figure 8 shows the application of the proposed method

to a typical stitched 1,280 3 960 image, a reduced-resolution

compilation of nine sub-frames. Detected cell boundaries and

cell centers are obtained by applying the proposed method,

shown in Figure 8b. As can be seen in the zoomed image of

Figure 8c, all cells are detected, whereas two are not segmen-

ted. The segmentation performance, correctly locating the cell

boundary, of the proposed method for these low-resolution

stitched images is over 90%, while the detection performance,

locating the cell centers by template matching, is more than

95%. This performance should be improved to the results of

the previous images by segmenting the cells in a stitched image

Figure 7. Many different cell features were measured and recorded after applying the proposed method. (a) Cell area, perimeter, orienta-
tion, and eccentricity of a typical uropodia. (b) The distribution (histogram) of cell area, perimeter, orientation, and eccentricity for more
than 8,000 cells that were detected and segmented in a DIC image sequence of 200 frames.
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without down-sampling, albeit at a significant increase in

computational time.

A second issue regards the false detection of stationary

objects as cell centers. Our experiments were done in a gap

chamber where polystyrene beads are used to hold up a layer

of glass just over the tops of the cells to reduce turbulence

around the bottom of the chamber. As we can observe in Fig-

ure 8b, some of the polystyrene beads appear as small black

circles with white centers and are detected as cells. These beads

are very small in comparison with the cells, and thus the falsely

detected centers would not affect the segmentation results;

however, these stationary objects can be removed by applying

a background estimation method. This may be especially im-

portant in such cases where the goal is the tracking of detected

cells, and where falsely detected cell centers decrease the per-

formance of tracking.

CONCLUSIONS AND DISCUSSIONS

The study of stem cells using digital microscopic image

processing is an important application in biomedical research,

enabling scientists to measure and extract stem cell properties/

features from large volumes of microscopic cell images. Cell

segmentation is an essential step in cell analysis, characteriza-

tion, and tracking. The method proposed in this article is not

cell-specific, and can be applied to different cell types.

In the proposed method, cell boundary segmentation is

addressed as an inverse problem represented in the form of a

constrained problem. In contrast with previous work, in this

article the segmentation problem is solved by optimally con-

structing cell regions associated with cell centers using an opti-

mized watershed method. This is a generic method, capable of

segmenting different cell types having arbitrary shapes.

The proposed method is capable of localizing the specific

cell types that have been used in our experiments, however to

adapt the method for the other cell types that may not have

circular shape, the proper cell template must be generated as it

is explained in Cell Localization. Further, the proposed

method can potentially be used for stem cell research; however

it has not been tested for segmenting cells in stem cell aggre-

gates, in particular for circumstances in which neighboring

cells significantly overlap with each other, and where cell mor-

phology may considerably change.

The proposed algorithm was applied to bright field cell

images, so in situations that cells are fluorescent (for example

by adding calceinAM) or where the user needs to distinguish

features across cells such as antibody stained cells, the proper

cell template(s) must be designed for the fluorescence range of

interest. In such cases, if the color stain would spill outside the

cell boundary or partially stain the cell area, the cell segmenta-

tion might drop in accuracy.

Our future work focuses on methods of background esti-

mation/subtraction, and on greater flexibility in cell template

learning using artificial intelligence techniques to extract or

generate the proper template from a cell template library.
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