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ABSTRACT

This paper examines non-linear shrinkage methods specif-

ically taking into account the correlation structure of the

multiresolution wavelet coefficients. In contrast to hidden

Markov trees, which model the relationship of wavelet vari-

ance from scale to scale, here we wish to take advantage

of coefficient correlation. A linear shrinkage based on the

LLS (Linear Least Square) estimator, employing a sample

correlation scheme, is tested and verified to have an aesthetic

denoising performance. Then, state-of-the-art independent

shrinkage functions are applied to exploit the efficiency of

such techniques and to introduce non-linearity into the algo-

rithm to compensate for non-Gaussianity of the wavelet statis-

tics. The performance of the non-linear shrinkage technique,

as used individually and together with the linear correlated

approach, are illustrated.

Index Terms— Wavelet joint statistics, non-linear shrink-

age

1. INTRODUCTION
A majority of works on wavelet analysis assume the wavelet

transform to be a perfect whitener. That is, the transformed

coefficients are independent. Recent studies however, rec-

ognize some correlation and prove to improve performance.

While these studies use some heuristics to choose a corre-

lation structure, we use empirical analysis of both real and

synthetic images to elicit the real structure. An illustration

of correlations seen in three wavelet coefficients (�) in three

subbands with other coefficients is presented in Fig. 1. The

correlations are averaged over 5000 real images so, the result-

ing correlation map gives a good measure whether there exists

correlation among wavelet transform coefficients of real im-

ages. We observed that not only is there strong linear depen-

dence among these coefficients, but there is also some struc-

ture in the dependencies [1]. Beside witnessing the familiar

intra-scale correlations (persistence property), we observed

other forms of dependencies. For example, vertical subband

coefficients tend to covary with their horizontal neighbors and

horizontal subband coefficients have dependency with their

vertical neighbors. In brief, there is much correlation across

scales, significant correlation within scale and less correlation

between orientations and the correlation structure is orienta-

tion dependent [1].

Therefore, an overall assumption for the correlations will

fail to fit the real structure. While hidden Markov trees model

the relationship of coefficient variances (as being at either

low or high state), we model the actual relationship of the

coefficient itself with other wavelet coefficients. The nov-

elty here, is that we use the correlation structure testified in

this correlation map to design neighborhood systems accom-

modating these relationships. Although larger neighborhood

systems may better fit the correlation structure, smaller ones

provide much faster algorithms. Thus, several varied size

neighborhood systems are implemented to address this trade-

off (Fig. 2).

In our previous work [2] we showed the virtue of a lin-

ear approach, Local Estimate. Although its performance is

quite satisfactory (even better than the acclaimed non-linear

BayesShrink), it does not conform to the fact that the marginal

distribution of a wavelet coefficient is heavy-tailed and is best

described by the mixture of a low-variance noise distribu-

tion and a high-variance signal distribution which is a con-

sequence of the compaction property of wavelet coefficients.

Local Estimate simply takes the marginal distribution to be

Gaussian (hence a linear estimate). Therefore, to combine the

efficacy of Local Estimate in considering correlations and the

advantage of non-linear methods in fitting the problem nature,

we applied non-linear methods to the output of the estimation

from Local Estimate.

To justify that we are making non-linear methods, plots of

denoised coefficients versus noisy ones (describing shrinkage

functions) are presented.

Given the above observation of wavelet joint statistics,

this paper is focused on the development of non-linear corre-

lated shrinkage algorithms, with illustrations and evaluations

of their estimation results.

2. INDEPENDENT WAVELET SHRINKAGE
Suppose a random field x is projected into the wavelet do-

main with a resulting coefficient vector w. The objective is to
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Fig. 1. Wavelet (db2) correlation structures averaged over a collection of

5000 real images. Each panel is associated with one of the tree subbands,

and illustrates the correlation map for a given coefficient (�) with its local

neighborhoods across subbands and scales [2].

estimate ŵ, given the noisy observation y:

y = w + ν ν ∼ N (0,Σν)
yi = wi + νi νi ∼ N (0, σ2

ν)

where ν is assumed additive i.i.d. random noise. In gen-

eral, if the coefficients are assumed independent and normally

distributed, then the linear Bayesian estimate is optimum in

mean squared error sense

ŵi = E[wi|yi] =
σ2

w

σ2
w + σ2

ν

yi (1)

However, since the wavelet marginal prior is well-known to

be non-Gaussian [4], then E[w|y] is a non-linear process.

2.1. Empirical Bayesian Estimation
The GGD prior for wavelets is, at best, a heuristic, or an

approximation. Different classes of images will necessarily

have different wavelet priors. It is, therefore, very difficult to

talk about or even formulate the optimum Bayesian estimates,

making an empirical approach attractive.

Given a vast number of {wi, yi} pairs, the optimum

Bayesian expectation can be formulated as a sample mean

ŵi = E[wi|yi] � mean{wj |yj � yi}. (2)

This is a non-linear shrinkage, while no dependency among

{wi} are taken into account.

To define the joint Bayesian estimate, it must be noticed

that

E[wi|y] �= E[wi|yi]

because the {yi} are not assumed independent due to the evi-

dence of correlation in the {wi} [1].

To solve the joint estimate we need to consider multiple

{yi} in some neighborhood N
E[wi|y] � E[wi|{yj ; j ∈ Ni}] (3)

where N needs to be selected appropriate to the wavelet re-

lationships, as illustrated in Fig. 1. In principle the joint es-

timate (3) can be solved using an empirical Bayes approach,

as in (2), but we now compute a sample mean over similar

neighborhoods

E[wi|y] � mean{wk|yl � yj ; l = Nk,m j = Ni,m} (4)

where Ni,m is the mth element index in the neighborhood

of i. However, the required data grows exponentially with

neighborhood size and is impractical for all but the smallest

neighborhoods.

Instead, we can imagine combining (2) and (3), using a

linear method to take into account the joint relationships, fol-

lowed by empirical Bayes inferring any needed non-linearity

to find a good estimate. The development of such an approach

follows in section 3.

2.2. SUREShrink
To overcome the problems of universal thresholding, adaptive

denoising based on minimizing Steins Unbiased Risk Estima-

tor (SUREShrink) was proposed [3]. SUREShrink is a scale

dependent thresholding scheme which combines the universal

threshold method with a scale-dependent adaptive selecting

scheme. This method estimates the loss E[(ŵi − wi)2] in an

unbiased fashion:

SURE(λ; y) = y − 2|{i : |yi < λ|}| +
d∑

i=1

min(|yi|, λ)2

(5)

where |.| shows the number of elements in a set.

For an observed vector y (the set of noisy wavelet coefficients

in a subband), find the threshold λSURE that minimizes

SURE(λ; y), i.e., λSURE = argminλSURE(λ; y). The

above optimization problem is computationally straightfor-

ward. This technique performs different global operations

across scales. However, no spatial adaptation is assumed

within each scale or each orientation.

2.3. BayesShrink
One of the superior non-linear shrinkage methods, known

as BayesShrink [4], determines threshold TBayes = σ2
ν

σw
for

each subband assuming a Generalized Gaussian Distribu-

tion (GGD) for the coefficients. Chang et al. [4] observed

that the threshold value TBayes is very close to the optimum

threshold. BayesShrink performs soft thresholding, with its

data-driven, subband dependent threshold.

2.4. ProbShrink
Probshrink as another independent approach, takes the same

prior for coefficients as BayesShrink (GGD) and estimates the
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probability of presence of signal of interest given an observed

yi to approximate the MMSE estimate of ŵi. Particularly,

ŵi = E[wi|yi]

� P (H1|yi)yi + 0

=
f(yi|H1)P (H1)

f(yi|H1)P (H1) + f(yi|H0)P (H0)
yi

The approximation in the above formula is due to the as-

sumptions that E[wi|H1, yi] = yi and E[wi|H0, yi] = 0. The

conditional density of yi is simply calculated from the convo-

lution of the prior distribution of noise-free coefficients with

the prior of noise (assumed zero mean Gaussian) which is the

product of assuming noise is independent of signal. Param-

eters of the real signal prior are numerically calculated from

the estimation of noise standard deviation, observation coef-

ficients’ standard deviation and observation coefficients’ 4th

moment in each subband.

Evidently, independent wavelet shrinkage is still at the fo-

cus of shrinkage developments. This paper aims to exploit

achievements of these independent shrinkages to boost up the

advantage of correlated wavelet shrinkage. The correlated lin-

ear phase is achieved in (6).

All of these shrinkage algorithms treat the non-Gaussian

coefficients as independent, however based on our obser-

vations of the wavelet joint statistics we propose a corre-

lated shrinkage method whose non-linearity is approximated

through an empirical Bayesian approach.

3. CORRELATED SHRINKAGE
To those familiar with the field of wavelet shrinkage, there are

two main disciplines in correlated shrinkage including tree-

based [5] and covariance-based methods [2, 6]. We follow

the covariance-based scheme.

Our premise is that the wavelet coefficients are correlated,

thus a neighborhood structure must first be defined.

Based on the correlation map of Fig. 1, one can define

various different neighborhoods. A typical neighborhood N2

as defined in [2] is used for the experiments below. We now

develop correlated wavelet shrinkage:

1. The given random field x is projected into the wavelet

domain with the resulting coefficient vector w. A

neighborhood system N is chosen.

yi = wi + νi

Let us form two neighborhood vectors:

y
i

= [yi, {yj ; j ∈ Ni}]T
wi = [wi, {wj ; j ∈ Ni}]T

2. If wi is assumed jointly Gaussian (as an approximate

assumption), an intermediate linear relaxing operation
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Fig. 2. Performance of an independent and some correlation-based wavelet

denoising methods in terms of RMSE. The results are obtained on fair condi-

tions where coefficient distributions are considered Gaussian. As is evident,

all covariance-based shrinkage approaches outperform the independent ap-

proach. As the neighborhood is extended, more correlation is taken into ac-

count and better estimation is achieved. In the extreme case, full covariance

gives the best achievable performance in the cost of high complexity [1].

on the noisy coefficients is

zi = Pwi,yi
· P−1

y
i

· y
i

(6)

where we are only interested in

zi = zi(1) = E[wi|yi
]

For every individual wavelet coefficient the quantities

Pwi,yi
and Py

i
are obtained numerically (by sampling).

Thus far we derived the Local Estimate output.

3. The final estimate ŵi is found via some non-linear

shrinkage method. For the case of ProbShrink,

ŵi = E[wi|zi] � P (H1|yi)yi

A schematic display of our Correlated Shrinkage algo-

rithm is
x

W−−−−→ w
Corrupted−−−−−−−→ y

⏐⏐�Local−map

x̂ ←−−−−
W−1

ŵ
State−of−the−art←−−−−−−−−−−−−−−−

IndependentShrinkage
z

4. EXPERIMENTAL RESULTS
The advantage of Local Estimate is verified on synthesized

GMRF images [2]. Here, we apply our proposed combina-

tional algorithms to a real image, Goldhill. The estimation

performance of the algorithms as a function of noise strength

is visualized in Fig. 3. As can be seen, all of the independent

approaches are significantly improved when used together

with a local estimator based on wavelet correlations. In

particular, the Correlated Empirical Bayes is more efficient

than the Independent Empirical Bayes. The performance of

SUREShrink and ProbShrink are also significantly improved.
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Fig. 3. Comparison of performance of different algorithms in different

noise σ in terms of RMSE. As expected, the combined Empirical Bayes,

SUREShrink and ProbShrink have improved performances over the corre-

sponding original methods.

Additionally, considering the best performing hybrid tech-

nique (Correlated ProbShrink) as an example, visual quality

of the denoised image is better than that of sole ProbShrink

(Fig. 3 and Fig. 4). There are evident blurring artifacts in

the ProbShrink image. Furtheremore, the mother wavelet

(Daubechies 2) reveals itself in the image because of some

sharp changes in the estimated wavelet coefficients due to the

independence assumption. Our proposed method’s denoised

image has yet another desirable aspect, namely better edge

preservation. Even fine edges as the window frames are pre-

served in the new method where as the individual independent

approach fails to feature these singularities. Fig. 4(b) depicts

the fact that the proposed approach, i.e., the combination of

Local Estimate in considering correlations and the non-linear

methods in fitting the problem nature, efficiently exhibits a

non-linear shrinkage performance.

5. CONCLUSIONS
In this paper, we proposed a new shrinkage scheme with

considerable improvement over the performance of the well-

known shrinkage methods. Our compound algorithm adopts

joint statistics of the underlying image, resulting in a smaller

estimation error and better visualization.

With this observations in place, the advantage of shrink-

age algorithms taking advantage of wavelet correlations have

been verified. In particular, there are some striking improve-

ments in Fig. 3 which merit further study. An interesting

research direction is to incorporate the correlation structures

of Fig. 1into promising HMT’s [5, 7, 8]. We shall use the

observed relations to adapt an efficient tree model (or graph

model as there are cyclic dependencies) for the correlations

between hidden states instead of the coefficients themselves.
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