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ABSTRACT

This paper proposes a novel correlated shrinkage
method based on wavelet joint statistics. Our objective is to
demonstrate effectiveness of the wavelet correlation mod-
els [1] in estimating the original signal from a noising ob-
servation. Simulation results are given to show the advan-
tage of the new correlated shrinkage function. In compari-
son with the popular nonlinear shrinkage algorithms, it im-
proves the denoised results.

1. INTRODUCTION

Recent work in wavelet statistics had led to a growing re-
alization that modeling wavelet coefficientsas independent,
or at best correlated only across scales, may be a poor as-
sumption. While recent developments in wavelet-domain
Hidden Markov Models [2, 3] (notably HMT-3S [4]) ac-
count for within-scale dependencies, we find empirically
that wavelet spatial statistics are strongly orientation depen-
dent [1], structures which are surprisingly not considered by
state-of-the-art wavelet modeling techniques.

We studied structure of the existing wavelet correla-
tions by: 1) findingthe wavelet sample covariance over a
large collection of real images, 2) adopting the standard 2-
D wavelet transform diagram to display the locality among
the coefficients,as is illustrated by Fig.1. Each panel is as-
sociated with one of the tree subbands, and illustrates the
correlation map for a given coefficient( � ) with its neighbor-
hood across subbands and scales. Details of this statistical
study, in addition to our development of the multiscale as
well as Markov random fieldmodels to describe the exhib-
ited wavelet neighborhood structure can be found in [5, 1].

Given the above observation of wavelet joint statistics,
this paper is focused on the development of a non-linear
correlated empirical Bayesian shrinkage algorithm, with il-
lustrations and evaluations of its estimation results.

2. INDEPENDENTWAVELET SHRINKAGE

Suppose a random field � is projected into the wavelet do-
main with a resulting coefficientvector � . The objective is
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Fig. 1. Wavelet (db2) correlation structures averaged over a collection of�������
real images. Each panel is associated with one of the tree subbands,

and illustrates the correlation map for a given coefficient( � ) with its local
neighborhoods across subbands and scales.

to estimate
	� , given the noisy observation 
 :


 � � ��
 
 ������� �������
���� ��� �!
�� 
��"�#�����$�&%"'� �
where 
 is assumed additive i.i.d. random noise. In general,
if the coefficients are assumed independent and normally
distributed, then the linear Bayesian estimate is optimum in
mean squared error sense

	���"�)(+* ���&, 
��.-/� %"'0% '0 ��% '� 
�� (1)

However, since the wavelet marginal prior is well-known
to be non-Gaussian, then (+* � , 
 - is a non-linear process.
One of the superior non-linear shrinkage methods, known

as BayesShrink [6], determines threshold 132"4�57698��;:�<=:?> for
each subband assuming a Generalized Gaussian Distribu-
tion (GGD) for the coefficients. Chang et al. [6] observed
that the threshold value 1 2"4�57698 is very close to the optimum
threshold. BayesShrink performs soft thresholding, with its
data-driven, subband dependent threshold. The results ob-
tained by BayesShrink visually look more appealing than
those obtained using VISUShrink and SUREShrink.
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(a) windowsize 2 (b) windowsize 6 (c) windowsize 30

Fig. 2. Plots of RMSE measurement for db2 BayesShrink as well as independent and correlated empirical Bayesian shrinkage, with thin-plate as the prior
and uniform averaging window sizes of 2, 6 and 30.

All of these shrinkage algorithms treat the non-Gaussian
coefficients as independent, however based on our obser-
vations of the wavelet joint statistics we propose a cor-
related shrinkage method whose non-linearity is approxi-
mated through an empirical Bayesian approach.

3. EMPIRICAL BAYESIAN ESTIMATION

The GGD prior for wavelets is, at best, a heuristic, or ap-
proximation. Different classes of images will necessarily
have different wavelet priors. It is, therefore, very difficult
to talk about or even formulate the optimum Bayesian esti-
mates, making an empirical approach attractive.

Given a vast number of @A�B�C��
��9D pairs, the optimum
Bayesian expectation can be formulated as a sample mean	���"�)(+* ���&, 
��E-/FHGJIAKMLN@7�POQ, 
�ORFH
��9D (2)

is a non-linear shrinkage, while @7�S�TD are independent.
To definethe joint Bayesian estimate, it must be noticed

that (+* � � , 
 -VU�)(+* � � , 
 � -
because the @A
 � D are not assumed independent because of
the correlation in the @A� � D [1, 5].

To solve the joint estimate one normally limits the atten-
tion to some neighborhood �

(+* � � , 
 -/F�(W* � � ,X@A
 O?Y[Z]\ � � D�- (3)

In principle (3) can be solved as before, using empirical
Bayes, but where we now take a sample mean over similar
neighborhoods

(+* � � , 
 -/FHGJIAKMLN@7��^/, 
�_`Fa
 O?Ycb �!�+^�d e Z �!� � d e]D (4)

where � � d e is the GgfEh element index in the neighborhood
of i . However, the required data grows exponentially with
neighborhood size and is impractical for all but the smallest
neighborhoods.

Instead, we can imagine combining (2) and (3), using
a linear method to take into account joint relationship, and
empirical Bayes to infer any needed non-linearity to finda
good estimate. The development of such an approach fol-
lows next.

4. CORRELATED SHRINKAGE

Our premise is that the wavelet coefficients are correlated,
thus a neighborhood structure must firstbe defined.

Based on the correlation map of Fig. 1, one can define
various different neighborhoods, of which only two struc-
tures are proposed here. For a coefficient � � belonging to
the wavelet coefficientsset � �j@A� h ��� kM�&� lMD we define

m ^n�EiC�P�o@ m`p �EiC���Aq7qAq � m ^ �.ir�sDt ^ �.ir�P�u@ t�p �EiC���Aq7qAqn� t ^ �.ir�sD
v�w l �.ir��xzy

y
{ v _X|Q�EiC��x y y{ v ' �EiC��x {y yy

y

where mQ} �EiC� is the ancestor of � � of ~ generations (scales),t�} �EiC� is the set of descendants of � � of ~ generations
(scales), and v�� �.ir� definesvarious sibling sets (on the same
scale as � � ). This allows us to propose two asymmetric
neighborhood structures:

� p �EiC�P�
������ �����
@ v�w l �EiC��� m p �.ir�sD Y � �N\ � h
@ v _X|Q�EiC��� m p �.ir�sD Y � �N\ � k
@ v _X|Q�EiC��� v�w l �EiC��� m p �EiC��D Y � �N\ � l

� ' �EiC���
������ �����
@ v�w l �EiC��� v ' �E�n�EiC�[��� v�w l �E�`�.ir�9��� m p �.ir�sD Y � �N\ � h
@ v _X| �EiC��� v ' �����EiC�[�s� v _X| �E�`�EiC�[�s� m p �.ir�sD Y ��� \ � k
@ v ' �EiC��� v _X| �E�n�EiC�[��� v w l �����EiC�[�s� m p �EiC��D Y ��� \ � l

where operators � , � , and � return diagonal, vertical, and
horizontal subband counterparts. With these hypothesized
structures in place, the remainder of this section develops
correlated wavelet shrinkage:

1. The given random field � is projected into the wavelet
domain with the resulting coefficient vector � . A
neighborhood system � is chosen.
 � �a� � ��
 �
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Fig. 3. The scale-dependent sample covariances we obtained for four-
level wavelet transform of the “Goldhill” image. The order of the entities
in each sample covariance is associated with that of the elements in ��� .

Let us form two neighborhood vectors:


 � � * 
��9�7@A
�O Y[Z]\ ���9D�-��� � � * � � �7@A� O?Y[Z]\ � � D�-��
2. If � � is assumed jointly Gaussian (as an approximate

assumption), an intermediate linear relaxing opera-
tion on the noisy coefficientsis

� � �)� 0 � d 5 �`� ��� p5 � � 
 � (5)

where we are only interested in� � � � � �9�7�P�H(+* � � , 
 � -
For every individual wavelet coefficient the quanti-
ties � 0 � d 5 � and � 5 � are obtained numerically (by sam-
pling).

3. The estimate
	� � is found via empirical Bayes	� � ��(W* � � , � � -/FaKM�?I7��K?��I?@7� O , � O F � � D

4. The computation of GJIAKMLN@ � D can be done in different
ways, such as uniform or triangular windowing.

A schematic display of our Correlated empirical
Bayesian Shrinkage (CBS) algorithm is�

corrupted local map empirical Bayes
���M�� � � � �`� 
 � � � �`� 	� � � 	�

(6)

5. EXPERIMENTAL RESULTS

To test the performance of the proposed CBS algorithm, it
was applied on a class of Gaussian Markov random fields,
as well as real images and the simulation results were com-
pared with that of BayesShrink and independent empirical
Bayesian estimate (2).
CBS and Gauss Markov Random Fields: Sample statis-
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Fig. 4. RMSE of the CBS method calculated at several scales as a func-
tion of the averaging window sizes. The optimum window size at each
scale ( � ) depends on the resolution as well as the additive noise level  M¡ .
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Fig. 5. RMSE comparison of BayesShrink and our CBS algorithm ap-
plied on a real image as a function of noise level and wavelet decomposi-
tion level ¦ . The proposed CBS always results in lower estimation error.

tics were found over a class of GMRF, including five tex-
tures (grass, pigskin, tree-bark, calf leather, and thin-plate).
The averaged sample covariance over all five fieldswas used
to obtain � in (6) with association of the neighborhoodstruc-
tures defined in Sec. 4. The non-linear uniform averaging
was then adopted to estimate

	� in (6).
Fig. 2 plots RMSE for BayesShrink as well as indepen-

dent and correlated empirical Bayesian shrinkage with var-
ious averaging window size, applied on a GMRF corrupted
with a large range of noise variances. As the window size
gets bigger, superiority of the proposed CBS becomes evi-
dent. The results were obtained by using the neighborhood
system � ' .
CBS and Real Images: The above framework was also

applied on several standard real images. For each test im-
age, the local covariances, i.e., � 0 � in (5), were calculated.
Fig. 3 displays the scale-dependent sample covariances we
obtained for four-level wavelet transform of the “Goldhill”
image. In this experiment � ' was used, i.e., the order of the
entities in each sample covariance is associated with that of
the elements in � ' . The striking consistency between the
plots in Fig. 1 and Fig. 3 is very interesting. These scale-
dependent local maps were substituted in (5), completing
the local estimation part.

The next subtlety was the notion of local averaging,
which was studied in this simulation. As is illustrated by
Fig. 4, the averaging window size depends on the resolution
as well as the additive noise level. The coarser the resolu-



(a) Noisy image, %/�]���$q§¥?� (b) BayesShrink, db2, RMSE=0.0603 (c) CBS, db2, RMSE=0.0558

(d) Noisy image, %/�]�)�Mq�¥�� (e) BayesShrink, db2, RMSE=0.0583 (f) CBS, db2, RMSE=0.0554
Fig. 6. The proposed CBS algorithm was successful to improve the artifacts appear in BayesShrink results and to depict more clear edges.

tion (i.e., the less information we have), the smaller is the
averaging window size.

Each panel in Fig 5 compares BayesShrink and our CBS
algorithm applied on a real image in RMSE sense with dif-
ferent wavelet decomposition level ¢ . It is evident that re-
gardless of decomposition level, the CBS works better. The
visualization by Fig. 6 shows the success of our CBS algo-
rithm in removing the artifacts appear in BayesShrink re-
sults and in depicting more clear edges.

6. CONCLUSIONS

In this paper, we proposed a new shrinkage scheme with
considerable improvement over the performance of the
well-known shrinkage methods. Our CBS algorithm adopts
joint statistics of the underlying image, resulting in a smaller
estimation error and better visualization.

The ongoing research direction is to challenge the no-
tion of non-Gaussianity for real images. The proposed CBS
will be further investigated for a large class of real images
with highly non-Guassian joint statistics and improvements
of our model-based algorithm over other shrinkage methods
with their GGD assumption for the coefficientsprior will be
studied.
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