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Abstract: In this paper
1
we investigate how Conditional Random Fields (CRFs) learn dynamics. To 

demonstrate the ability of CRF in learning dynamics, a discriminative probabilistic framework, 
Temporal Conditional Random Fields, is presented for the modeling of the object motion and 
tracking. The main drawback of generative models, such as HMM and MRF is that they can simply 
employ the relation between states without considering the relation between states and 
measurements, while discriminative frameworks can model any arbitrary relation between 
measurements and states. To facilitate such a powerful graphical model to learn the object motion, 
and to achieve a CRF-based estimation based upon the advantage of the discriminative framework, 
a set of graphical temporal relations is proposed for the object tracking, including feature functions, 
such as optical flow (calculated based upon consequent frames) and line field features. Based on 
temporal feature function, we show the ability of CRF in dynamic learning mathematically. As it is 
assumed that the object motion is nearly constant and that the current measurement is not available 
when TCRF estimates the target state, therefore, the changing of the object motion is addressed by 
utilizing a template matching in order to determine and then retrain TCRF. The proposed method is 
validated using synthetic and real data sequences. This shows that the TCRF estimation error is 
approximately zero. 

Keywords: Visual Tracking, Motion Dynamic, Discriminative Models, Conditional Random Fields, 
Potential Function 

1 Introduction 

Event modeling has attracted a large body of research during the past two decades. Due to the 
measurements that are corrupted or insufficient, the real event modeling is an ill-posed problem. To 
address this drawback some types of prior knowledge, regularization or constraint can be applied to 
make the problem tractable. Object tracking, image de-noising and surface reconstruction are the 
instances of the ill-posed problems. 

                                                      

1
The primary idea of this work was published at [1] 
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Our objective in this paper is to model the target dynamic for the purpose of object tracking. A 
significant number of heuristic and statistical methods have been proposed to solve this problem. 
The most common method is known as Kalman filtering. Kalman filter performs an optimum 
least-squares estimate in the presence of the Gaussian measurement noise. The Kalman filter and its 
variations predict the next object state by means of a predefined dynamic, followed by updating the 
predicted state using the new measurement. Within the context of the graphical modeling, the 
Kalman filter behavior is identical to that of Hidden Markov Models (HHM). This model is a 
generative approach modeling the joint distribution of measurements and labels. Markov Random 
Fields (MRFs) are also generative models, assuming the conditional independence between 
measurements when conditioned on labels (states). 

Generative approaches such as MRF, HMM and especially Kalman filter utilize a prior model 
i.e. state probability density. Therefore, they simply model the relation between states without 
considering the relation between the states and measurements. In other words, they estimate the 
joint probability of measurements and states based on the two probabilities of the prior model and 
likelihood model in which the relation of states between measurements are not considered. 

From a broader viewpoint, there exist various statistical approaches addressing such problems. 
According to the most well-known categorization in the context of Bayesian graphical modeling, 
these models are divided into generative and discriminative ones, depending upon their relaxation 
assumptions. The assumptions, characteristics, and computational complexity of each model lead to 
different applications for each framework. 

Generative models estimate the joint probability (relationship) of measurements and states. 
According to the Bayes theorem, this joint probability is equivalent to the product of the prior states 
probability and conditional probability of measurements, given the states. In other words, the 
modeling with generative structures requires the prior model, e.g. the Kalman filter needs a 
predefined dynamic. Modeling all dependencies using the conditional probability distribution of 
measurements given the state is, typically, highly complex; thus, all measurements are assumed to 
be conditionally independent, given the states. The conditional independence assumption relieves 
the heavy computational burden, considering the cost of reducing the accuracy of the modeling 
problem where the state measurement interactions cannot explicitly be ignored. 

Discriminative models such as Conditional Random Field (CRF), on the other hand, relax the 
independence assumption of the generative methods by directly modeling the conditional 
probability distribution of states given measurements. In this approach, it is not required that the 
prior model be exploited explicitly; that is, the discriminative model spots the prior model 
implicitly. The discriminative model tends to employ a log-linear model based on a number of 
energy functions which are weighed using some real values. 

Many image processing problems limit data for the purpose of generative modeling, leading to 
comparatively less accurate MRF models. On the other hand, the CRFs can solve a wider range of 
computer vision problems due to their explicitly modeling the conditional distribution more 
efficiently without any explicit requirement for the prior model. 

Considering the above-mentioned fact, our objective is how CRF can learn different dynamics. 
To illustrate the ability of CRF a new probabilistic approach to the object tracking is proposed based 
on CRF. The main objective of the proposed framework is the modeling of the interrelationship 
between past/current states and past measurements to learn the object dynamic and, therefore, to 
estimate the object state in the application of tracking. In a discriminative framework, a small 
number of frames are used to model the object motion by the Temporal Conditional Random Field 
(TCRF) framework. Following the learning of the TCRF state and the finding of weights 
corresponding to each feature function, the TCRF is used to estimate the next target state. 
Experiments indicate that TCRF can efficiently learn the target dynamic on-line and estimate the 
target state without any error should the target dynamic remain unchanged. 

This paper is organized as follows: Section 2 reviews the related literature. In Section 3 CRFs 
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are described and the TCRF method is proposed. Section 3 also shows how CRF can learn object 
dynamics mathematically. Section 4 explains the proposed framework a step at a time. Afterwards 
the experiments are discussed and the conclusion is presented. 

2 Related Work 

In this paper, TCRF, which is a target state estimator based on a statistical model of previous 
measurements and the previous and current state, is proposed. To the best of our knowledge, no 
research has been conducted in the field of the CRF visual tracking when the current measurement 
is not available. However, CRF has been utilized as an estimation tool in other fields. Taycheret al. 
[2] proposed human tracking based on a CRF, with a   similarity measure as the potential function. 
In [2] different poses are considered as states for tracking within a sequence of images, where the 
number of states has previously been determined.  CRFs were also applied to image-sequence 
segmentation [3, 4], where the random fields are modeled using spatial and temporal dependencies. 
Sigalet al. [5] use the two-layer spatio-temporal models for the component-based detection and 
tracking of objects in video sequences. Each object or component of an object is considered as anode 
of a graphical model at a given time and the graph edges represent the learned spatial and temporal 
constraints. Considering this, Ablavskyet al. [6] proposed a layered graphical model for the partially 
occluded object tracking. A layered image-plane represents motion around a known object that is 
associated with a pre-computed graphical model. Ren[7] proposed a framework to find all people in 
the archived films. The proposed framework finds people in low-quality images, motion blur, partial 
occlusion, non-standard poses and crowded scenes. His tracker performs one dimensional CRF 
(chain) to integrate information across frames and to re-score the tentative detections in trajectories. 

In [8] target silhouette is tracked on a video sequence. The proposed algorithm fuses different 
visual cues by using a conditional random field. The temporal color similarity, the spatial color 
continuity and the spatial motion continuity are the CRF feature functions employed in this work. 

Our objective here is to model the object motion in a simple yet general manner. It is assumed 
that the video frame rate is high; therefore, there is no abrupt change in the position and motion 
direction of the object along the consecutive frames. Initially the motion conditional distribution 
      is modeled by TCRFusing the previous frames, where the measurements are shown as 
 and estimated states as . Then the object position in the current frame can be estimated given the 
previous frames. TCRF is adapted to estimate the object state at time  when the measurement of 
 is not yet available. It was empirically observed that the estimation tends to have no error when no 
change occurs in the object motion. 

To address the object motion changing issue, following the state estimation and in case of the 
current availability, a heuristic procedure searches around the estimated coordinates to find the best 
matching sub-image with an extracted target template using the two last training frames. Should the 
TCRF estimation for time  have significant difference, as compared with the template matching 
coordinates, it is assumed that the changed target motion and the TCRF should be retrained with 
frames    and  . 

3 Temporal Conditional Random Fields 

This paper investigates the TCRFs with feature functions describing temporal relations 

between successive frames. Alternatively, our objective is to investigate how to use the CRF with 

dynamic motion learning. It must be pointed out that the object tracking has a vast literature, 

spanning many years. The purpose of this paper is not to contest that literature; rather, this paper 

aims a studying the effectiveness and potentials of the CRF methods in tracking, specifically in 

motion dynamic learning. Our goal is to study several can did a potential functions, and to assess 

their ability in the context of CRF tracking. This research indicates how the feature functions simply 

extracted from the field contribute to an efficient tracking by CRFs. 
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3.1 Conditional Random Fields 

The idea of a conditional random field was first proposed by Lafferty et al. [9]. It is a 
discriminative model that relaxes the conditional independence assumption of generative models by 
directly estimating the conditional probability of labels given measurements. 

The probability distribution in this Bayesian modeling approach is obtained based on the 
Principle of Maximum Entropy [10]. The basic idea of Maximum Entropy Models is to find the 
conditional probability of states given measurements by taking into account the largest possible 
conditional entropy states given measurements of the maximum consistency with the information 
extracted from training materials. This idea leads to a log-linear model with feature functions and 
weights corresponding to each function. Motivated by Maximum Entropy Models, CRF is 
introduced to directly model the conditional probability distribution of labels given measurements 
without considering the conditional independence assumption. 

Much like Markov Random Fields (MRF), CRF is an undirected graphical model with each 
node representing a random variable, and each edge measuring the relation and dependency 
between random variables. CRF is technically defined as an undirected graph       wherein each 
vertex    corresponds to each of the random variables representing a     and each   
 shows the dependency between two end point nodes (random variables) [11]. The set      is a 
CRF if each random variable    , when conditioned on    obeys the Markov property with 
respect to graph       where  is the observation and  is the label (target) variable. 

The general model formulation of CRFs is: 

        
 

    
                (1) 

Where          is a potential function corresponding to cliques    2
. Clique templates make 

assumptions on the structure of the underlying data by defining the composition of the cliques.}, 
     is normalization constant -- partition function -- with respect to all the possible values of 
target variable : 

                         (2) 

The potential function   is an arbitrary non-negative function of    and   . According to the 

Maximum Entropy Model
3
, potential functions are formulated as exponential functions of weighted 

features. Such a formulation is commonly used because it satisfies the strict positivity of the 

potential functions [10]. The log-linear model of (1) is formulated as: 

        
 

    
                     

    
         (3) 

                              

    

   

 

     

 

where            and       represent the     real-valued feature function defined on the clique 
  and its corresponding model parameter, respectively. The number of feature functions defined 
over clique   is determined by     , which has an arbitrary value for each clique  . 

After defining the CRFs and considering the fact that it has been applied successfully in 

                                                      

2 A clique   is a set of nodes    in , such that each pair             and      are connected by an edge in  . It 

would be mentioning that a single node is also considered a clique [12]. 

3 With incomplete information about a probability distribution, the best unbiased distribution is as uniform as possible by 

the available information. Then the best distribution is the one which maximizes the entropy given the constraints from the 

training material [10]. 
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various machine learning problems the TCRF, which utilizes 2D CRF to model the spatio-temporal 
relations between successive frames, is proposed. TCRF models the relation between successive 
frames according to a defined neighborhood in the spatial and temporal domain. In this paper, 
TCRF simply employs two consequent frames for training according to the first-order Markov 
assumption. By increasing the number of frames TCRF can learn different dynamic motions. 

3.2 CRF Evolution in Time 

Following the early CRFs, which consider simply the spatial relations between the random 
fields, Sutton et al.[13] proposed dynamic conditional random fields (DCRF) to capture the spatial 
relations between the neighboring nodes and the temporal relations across temporally separated 
frames [14]. One can interpret [15] DCRF as a kind of CRF that has repetitive structures and 
parameters over time. 

This study examines the temporal conditional random fields associated with the spatial and 

temporal feature functions which represent the relationship between nodes in the time domain as 

well as the spatial domain. Our objective is to model the temporal relation between the two 

successive frames in order to add the motion dynamic learning to the CRF framework. In other 

words, this research deals with the CRF ability of to estimate the target state without the 

corresponding current measurement in visual tracking. One frame is segmented using the trained 

TCRF model, as well as the previous state and frame as measurements. The relation between node 

states in temporal domain is modeled by incorporating some feature functions based on the labeled 

frame at time  and    . This means that the proposed framework can segment the frame at time 

   into the target and background merely by using frame at time  . 

The goal of tracking is to estimate   based on         and           . Therefore, the state 
     can be estimated by the CRF conditioned on     and       : 

                     
 

         
                                  

 
             

   (4) 

where        shows the binary label (foreground or background) of any pixel   within the frame 
   .     are the binary labels fields from the initial time to the time  , and        are the 
observations from the initial time to the time    . Feature function                        is 
an arbitrary function, where   is a set of neighbors for each node  . Figure 1 shows Eq. (4) 
graphically. 

According to the first-order Markov property, Eq. (4) can be rewritten as: 

                 
 

       
                              

 
             

  (5) 

The advantage of CRF is to select any arbitrary feature function based on application. Based on 
this virtue of CRF, any combination function of the measurements and labels can be exploited. 

The feature function can describe any arbitrary relation between measurements and states 
(labels). To generalize this statement, the feature function can describe any functionality between 
states and measurements. In other words, instead of using the measurements themselves, any 
desired function of the measurements can be utilized. This is an advantage of CRF, in which: 

                            
 
 is the general form of                        

A function of measurement     can be used when the primitive measurement   is not 
directly useful. Accordingly, the (5) is rewritten as follows: 

                 
 

       
                                 

 
             

  (6) 
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Our objective is to learn the target motion dynamic or to estimate the target state at time    

in the absence of the measurement at time     simply by using the measurement at time  . As 

mentioned above, CRF can utilize any function of the measurements. Also, when it is assumed that 

video frame rate is high and when there is no sudden dynamic change, the following approximation, 

eq.(7), can be obtained: 

Figure 1 In the general form, the tracking goal is to estimate the state     based on the 
previous states at time    and the observed measurements (     ). 

 

            (7) 

where function      belongs to the general family of      and generates    from     . Now 
        can be utilized as one of     : 

                 
 

       
                                 

 

 

 

           

  

                                        
 
             

          (8) 

where   is all configurations of     . According to (7),         is replaced by   : 

                 
 

       
                            

 

 

 

           

  

                                   
 
             

          (9) 

The right side of (8) is equal to              , therefore, it can be said that                 
is approximated by              . In the proposed TCRF, one frame is considered as a 

measurement used to estimate the next target state as shown in Figure 2. Since it has been assumed 

the frame rate videos are high, a simple relation between frames is sufficient to model an object 

motion. Therefore, based on (8)                can be approximated by using the proposed 

TCRF: 

                                   

  
 

     
                           

 
    

                       
  
    

        
   (10) 
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Our TCRF employs two kinds of feature function                 and                 as a 
single potential function and a temporal interaction potential function, respectively. Here    is a set 
of temporal neighbors for each node  . The interaction potential function utilizes pairwise cliques; 
thus, the TCRF definition can be generalized by using the neighbors of each node rather than a 
clique. The neighbors for each node are a combination of several cliques. 

Figure 2 TCRF estimates the state at time     based on the measurement and the state at time   

The goal is to study the effects of the different potential functions in modeling an object 

motion in the context of CRFs. As stated before, any arbitrary feature function can be applied to 

model the conditional probability of states given measurements. It is crucial that feature functions 

with maximum discriminative property be utilized. As mentioned above, any desired function of 

measurement can be employed when the primitive measurement is not available such as the 

motivation of this study. Since tracking problems are inherently temporal, the potential functions 

are required to be derived based on the motion features with some temporal dependency. The rest of 

this section explains the functions to be used in our TCRF framework. 

3.3 Feature Functions 

In this research we utilize different feature functions to model the object motion by CRF. Our 
studies show that to learn the target dynamic motion with TCRF, we need feature functions that 
indicate both the object motion direction and the object displacement with most discrimination. We 
examine our system with a number of feature functions and finally select the most appropriate ones. 
Our selection criteria are simplicity and effective of feature functions. 

3.3.1. Optical Flow 

The single potential function is described with two values showing the velocity of each pixel 
in both   and   directions in two adjacent frames which are estimated by optical flow [16]. 

Optical flow is an approximation of motion based upon local derivatives in a given the 
sequence of images [16]. This approximation specifies how far each pixel moves in two adjacent 
images. First assumption by optical flow is that any pixel intensity from one frame to the next obeys 
this property: 
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                                  (11) 

where        is the pixel intensity at position of      and at time   and            indicates 
2D velocity in plane. When we apply first order Taylor, velocities in two directions are obtained as: 

                    
  

  
   

  

  
   

  

  
     (12) 

Substituting (12) in (11) we obtain: 

  

  
   

  

  
   

  

  
       (13) 

We rewrite above formula to: 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
    (14) 

where      and       are pixel velocity in directions   and  , respectively. We consider these 
two values as single potential functions for each node of TCRF (pixel). By rewriting (14) one 
obtains: 

                   (15) 

Where         is the spatial intensity gradient.According to the section 4.1, optical flow is 

computed based on    (the current target state) and synthetic images (the next target state) which is 

created in MAP estimation. In other words, optical flow is a feature function which describes the 

temporal relation of between label nodes (state) of    and     . 

3.3.2. Line Field 

Line fields were first introduced by S. Geman and D. Geman [17], as a hidden binary model 
indicating the presence (state = 1) or absence (state = 0) of edges. Here, we define a slightly 
different form of the original definition given in [17]: 

                                              (16) 

where     is Kronecker delta function. We also exploit the duality of feature functions in order to 
reduce the similarity between the function value of each configuration in temporal relation 
neighbors and to reinforce feature functions be more discriminative. Duality is graphically depicted 
in Figure 3. The dual form of (16) is: 

                                                (17) 

where  and      are the neighborhood sets of  in fields     and   , respectively. 

3.3.3. Ising 

The Ising model [17] is a classic, very simple binary prior model. The CRF does not require a 
prior model, however the local, four-neighbor Ising model can be adapted and modified into the 
potential form as 

                                         (18) 

with the following dual form: 

                                           (19) 

Since label     is binary        and the object appearance is nearly equivalent in the 
consequent frames Ising function has negative value in object region and positive in background 
region. 
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Figure 3 Duality relation in the feature functions. (a) neighbors of gray circle at time   is in 
time    black circle). (b) shows neighbors for the gray circle at time    in time  . This 
forms of the neighborhood relation is used for the dual feature function. 

3.4 Training 

Maximum likelihood is a common method to estimate the parameters of CRFs. Training is 
done by maximizing log-likelihood   on the training data: 

                             
 
  

                       
  
  

        
            (20) 

Because the log-likelihood function      is concave, the parameters   can be chosen such 
that the global maximum is obtained and the gradient or vector of partial derivatives with respect to 
each parameter    becomes zero. Differentiating      with respect to parameter    gives: 

  

    
                                           

    

  

 

   

 

  

    
                                           

            (21) 

An exact solution does not exist, therefore, the parameters are determined iteratively using 
gradient descent. Our TCRF training is performed by Belief Propagation method [18]. The training 
of TCRF is not our concern in this paper. The TCRF is trained initially by two frames at time     
and    . Figure 5 shows the TCRF training schematically. 

3.5 Inference and Decoding 

After training the TCRF, given the observation   , evaluating probability of each random 

variable in represented graph is called inference and the task of assigning the output variable   

-determining states with maximum probability- is decoding. Eq. (22) and (23) show formal 

definition of inference and decoding, respectively: 

                               (22) 

                         (23) 

Because our proposed TCRF utilizes feature functions as well as their dual form, inference 
imposes a large computational burden. To overcome this problem, we assume that object motion 
does not have sudden change and TCRF considers a combination of inference and decoding with 
some modification that is explained next. 
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4 Tracking with TCRF 

Given a temporal potential function, the temporal CRF can be created to estimate object 

position in the future frames. After estimating the object position and true measurement arrives, a 

heuristic method (such as the template matching) searches near the estimated position to find the 

coordinates of the best matched candidate. The template matching is performed to address the 

changing of the object dynamic issue and determines the change of the object motion in case of the 

availability of the true measurement. Figures 5, 6 show the two stages of training and estimation by 

TCRF schematically. Should the estimated and matched coordinates be very different, it is assumed 

that the object motion changes. As a result the TCRF training is repeated using the two last frames. 

The diagram depicted in Figure 4 shows the proposed tracking model. 
 

 

Figure 4 Flowchart describes the proposed tracking system: should the estimation error be 
non-zero, TCRF is trained with the two last frames. 

  

4.1 MAP Estimation 

After training the TCRF, we use maximum a posteriori (MAP) to estimate the object position 
at time    . Since the TCRF models the object motion, the estimation is performed by evaluating 
the probability of the next target location around its previous position at time  . A set of synthetic 
images with a synthesized target are created. The synthesized target obeys a variety of dynamics, 
therefore, the probability of each image assessed by the TCRF. The estimated target position (in the 
frame    ) is found from that sample with the maximum probability. That is, the synthetic image 
that maximizes the TCRF probability shows the segmentation of the next frame as foreground and 
background. 
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4.2 Determination of change on object motion 

To overcome the object motion changing problem, a template matching procedure is utilized to 

specify a change in times of occurrence. Should the TCRF target estimated state be different from 

template matching estimated coordinate, this indicates that the object motion has changed and that 

TCRF must be retrained. It would be worth mentioning that template matching procedure is applied 

at a center that is specified by the TCRF estimated coordinate in the frame     searching and 

obtains the object position. TCRF simply uses the frame at time   as the measurement. In contrast, 

the template matching employs the frame     to estimate object target at time    . 

 

Figure 5 To train TCRF, the frame at time     is segmented into the foreground (black) and 

the background (white) to create the label     . The frame   (  ) and the segmented frame 

    (    ) are fed into the TCRF for training. 

 

5 Results and Discussions 

TCRF is initially trained with the first two frames. After that, TCRF can estimate the next 

target state at time     based on the current measurement and state. In time    , a template 

matching is performed to evaluate the estimation result of the TCRF and determines the object 

motion change in case of occurrence. The TCRF estimation error is nearly zero until the motion 

dynamic changes. TCRF is always retained using the two latest frames when the motion dynamic 

changes (i.e. update TCRF). 

In section 3.2 we show that how CRF can learn dynamic and therefore, predict next target state 

without the corresponding measurement. In this section we show this ability of CRF based on some 

examples. The proposed method is evaluated by both real and simulated data. To simulate the 

motion, a black disk was moved on a white background and rendered into the frames of         

resolution. One of the simulated motion dynamics is plotted in Figure 7(a), with the corresponding 
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TCRF estimation depicted in Figure 7(a). The results show that the TCRF estimation error is zero 

when the object velocity does not change; should the motion dynamic change, the estimation error 

will increase dramatically when the change occurs. Figure8 also shows the estimation result for 

another maneuver target motion. Obviously, the TCRF estimation error is zero except that when the 

object dynamic is changed as shown in Figure 8(a). Figure 8(b) depicts the Kalman filter estimation 

result. 

 

Figure 6 To estimate the next target state (    ), the frame at time   (  ), the label at this 
time and the synthesized images are used to estimate     . Section 4.1 describes how the 
proposed framework estimates the next target state. 

 

 

 

(a) A sample of a maneuvering target used to 

evaluate the proposed method. The object motion 

starts at the top right of the domain where the 

dashed lines show the center of the object at the 

different time slots. 

(b) Simulated Motion: The moving object (black 
circle) has a trajectory over 35 frames, starting 
at the top-right of the image. The blue dashed 
line shows the true trajectory, the red circles are 
measurements, and the green stars shows the 
TCRF estimated state. 

Figure 7 Simulated Motion: a maneuver target motion (a) and the TCRF estimation result (b). 
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(a) TCRF estimation result (b) Kalman estimation result 

Figure 8 Another sample of a maneuvering target used to test the proposed method. The object 

motion starts at right of the domain. (a) shows the TCRF estimation and (b) illustrates the 

Kalman filter result. 

 

A quantitative evaluation of the TCRF is shown in Table 1, where the estimation of the TCRF 
is compared with that of the Kalman filter. The strength of the TCRF becomes clear in regard to the 
fact that a simple potential function is able to produce credible estimations with an error much 
smaller than that of the Kalman filter. It is noteworthy that the Kalman filter input is the true 
position of the object, and that in our experiments we assumed no noise on the measurements of the 
Kalman filter, while the proposed TCRF input is intensity value of a complete a video sequence 
frame. Despite other predictors, TCRF considers and processes the noise implicitly and 
automatically. This makes this algorithm highly effective, where the estimation error is very 
important and the algorithm computational complexity is not vital. 

We examined quite a large number of feature functions. Our experiments indicate that not all 
selected features improve TCRF estimation. For this paper, only a combination of the reported 
features was utilized. 

Finally, we evaluated our algorithm performance on real data, selected from standard datasets. 
The three selected sequences are shown inFigure9-11. In each evaluated sequence the estimation 
ability of the TCRF in the absence of current measurement (top) is shown followed by heuristic 
template-matching when the true measurement is ready(bottom). 

As shown in Figure 9 background is changed along the time and intensity of the pixels changes 

in each frame with shadow. Therefore, our proposed TCRF can estimate the next object position 

with background varies. Because the TCRF learned the object dynamic, the presence of other 

objects do not effect on the estimation result. Our reason to chosen Figure 10 as benchmark of our 

algorithm is variation of face appearance. The animal face turns along frames, therefore, face 

appearance changes along time. The last experiment was done on a moving human. In Figure 11 

frame 6, man is in occlusion condition. As before, proposed TCRF works properly in this situation. 

In these experiments, it can be seen that the estimation of the TCRF and the resulting of the 
heuristic method are very nearly equivalent, meaning that the TCRF alone accomplishes the bulk of 
the tracking task. It is worth noting the robustness of the TCRF, in the sense that the first dataset has 
background changes over time (cloud shadow) and object appearance changes in the second dataset 
and occlusion scene in third dataset. 

6 Conclusion 

In this paper we proposed a novel modification to CRFs to make them suitable for the visual 

object tracking. The main objective of the paper is to illustrate how CRF can learn target dynamic 

that it is shown by motion estimation problem. The object motion is estimated using two 

consecutive frames (training phase) and the trained model is utilized to estimate the position of the 
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object in the following frames. The novelty of our algorithm stems from the fact that it exploits the 

temporal features (e.g. optical flow) in the CRF potential functions. This paper demonstrated the 

feasibility of temporal processing with CRFs, and specifically that the proposed TCRF is able to 

give credible tracking in the absence of the current measurement, an important property has not yet 

been studied for the CRFs. As stated before, TCRF assumes the object motion has constant velocity 

between two frames. Our primary experiments show TCRF also can potentially be used in non-rigid 

object and multiple object tracking. 

 

Real Sequence 1: the results from 3, 10 and 15 are shown.Top row: the TCRF estimation by the 
previous measurement and in the absence of current measurement. Bottom row: further 
template matching,on the basis of the estimation in the top row. The estimation stepalone 
accomplishes quite credible tracking, meaning that the template-matching update 
contributes relatively little to the tracking accuracy. (The examined dataset was obtained 
from www.cse.ohio-state.edu/otcbvs-bench). 

 

Table 1 MSE of the estimation for Kalman filter and our TCRF method examined with the 
different simulated motions. 

Simulation No.  TCRF  Kalman Filter 

Motion 1  0.8977  135.0659 

Motion 2  0.6739  1.5021 

Motion 3  0.6964  4.1154 

Motion 4  0.2759  1.3258 

http://www.cse.ohio-state.edu/otcbvs-bench
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Figure 9  Result similar to Figure9: Top row shows TCRFestimation in the absence of current 
measurement in the frames 3, 8 and 11. Bottom row shows the template matching results 
when the current measurement is ready. The object being tracked, the animal's faceis 
changing, since the face is turning. (This dataset was copied from 
www.vision.ucsd.edu/~bbabenko). 

Figure 10  Result similar to the previous Figures: the left column shows TCRF estimation 

without utilizing the current measurement in the frames 4, 6 and 12. The right column shows 

the template matching results. You can see in some situation like the second row, where the 

object is in occlusion condition, TCRF works as well as the previous. It is noteworthy that 

the frame number is assign in each shot. 
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