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Abstract—Acquiring accurate dense depth maps is crucial
for accurate 3D reconstruction. Current high quality depth
sensors capable of generating dense depth maps are expensive
and bulky, while compact low-cost sensors can only reliably
generate sparse depth measurements. We propose a novel
multilayer conditional random field (MCRF) approach to
reconstruct a dense depth map of a target scene given the
sparse depth measurements and corresponding photographic
measurements obtained from stereophotogrammetric systems.
Estimating the dense depth map is formulated as a maximum
a posteriori (MAP) inference problem where a smoothness
prior is assumed. Our MCRF model uses the sparse depth
measurement as an additional observation layer and describes
relations between nodes with multivariate feature functions
based on the depth and photographic measurements. The
method is first qualitatively analyzed when performed on data
collected with a compact stereo camera, then quantitative
performance is measured using the Middlebury stereo vision
data for ground truth. Experimental results show our method
performs well for reconstructing simple scenes and has lower
mean squared error compared to other dense depth map
reconstruction methods.

Keywords-Dense depth map; Multilayer conditional random
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I. INTRODUCTION

Recent advancements in 3D imaging technology have
seen a drastic rise in using depth sensors for research and
commercial applications. Depth sensors generate depth map
images where each pixel represents the distance from that
point in the scene to the camera. Depth maps can help
solve many computer vision problems such as segmentation,
tracking, and object recognition[1]. Current high quality
depth sensors such as time-of-flight cameras or high res-
olution structured light scanners are expensive and bulky.
While recent innovations such as the Kinect (Microsoft
Corp.) have reduced the cost of depth sensors, there is now
a push to have depth sensors in a compact and portable
medium. Potential applications include 3D scanning with
mobile phones, navigating natural environments with robots,
or object recognition with surveillance drones.

Currently, there are few low-cost depth sensors available
in a small form factor. Existing solutions are stereopho-
togrammetric systems such as the Leap Motion Con-

troller (Leap Motion Inc. [2]) and DUO (Code Laborato-
ries Inc. [3]) that use two or more cameras to perform
stereophotogrammetry and obtain depth information of the
scene. However, the limitations of these systems are the
small stereo baseline and low quality camera sensors; these
limitations make stereo correspondence difficult and results
in many non-existent or erroneous matches. Hence, these
sensors are capable of only obtaining sparse depth mea-
surements. For applications such as 3D scanning, dense
depth maps are required and sparse depth measurements are
insufficient for creating high quality models. Hence to have a
system that is low-cost, compact, and capable of generating
accurate dense depth maps is highly desirable.

The main contribution of this paper is to introduce a
new method of generating dense depth maps using low-
cost compact stereophotogrammetric systems. The method
uses a novel multilayer conditional random field (MCRF)
model for labelling the dense depth map given the ob-
servations consisting of photographic measurements (image
intensity values obtained from the cameras) and sparse
depth measurements (from photogrammetry). The MCRF
extends the traditional CRF model by including the sparse
depth measurements as an additional observation layer with
missing observations due to sparsity. As well, the MCRF
model uses multivariate feature functions based on the
photographic and depth measurements to define unary and
pairwise relationships between the observations and labels.
Using the MCRF model, the dense depth map reconstruction
problem is formulated as a maximum a posteriori (MAP)
inference problem. The proposed MCRF model has the
advantage that additional observation layers and feature
functions, such as using multi-spectral measurements, can
easily be incorporated into the model. While the proposed
method is designed around stereophotogrammetric systems,
it can be applied to any depth sensor that provides depth
and photographic measurements (e.g., Kinect).

The organization of the paper is as follows: in Section II
we discuss previous work in depth map reconstruction and
dense depth map generation in stereo imaging. Following
that is the methodology in Section III, where we begin
by giving a general overview of our system and what the



expected input/outputs are. We then formulate the MAP
problem and the proposed MCRF. Section IV describes our
implementation on obtaining the desired dense depth map.
Section V explains the experiments that we run to evaluate
the proposed method and results are shown in Section VL.

II. RELATED WORK

This section presents previous work that can be divided
into two groups; the first group is methods related to depth
map refinement with smoothing filters and the second is
methods using probabilistic graphical models for inferring
image correspondences in stereophotogrammetry.

Most depth map refinement methods incorporate some
variant of a smoothing filter to fill in the holes of the
depth map. Previous work in hole filling is prominent in
depth image based rendering (DIBR) techniques for 3D
television applications[4], [5]. In DIBR, a single depth map
is used to render a left and right warped image. Chen et
al. [4] use an edge-aware averaging filter to perform hole
filling in the depth map and warped image. Lee and Ho [5]
use an adaptive smoothing filter that preserves depth edge
discontinuities. There have also been work done using cross-
bilateral filters where the depth and corresponding colour
images are used to maintain consistency in depth maps
generated from the Kinect and noisy stereophotogrammetric
measurements [6], [7], [8]. Vijayanagar er al. [6] use a
Gaussian-weighted bilateral filter based on neighbouring
colour similarity, then perform a post processing refinement
step based on SSID method to show decent edge preserva-
tion while smoothing over holes. However, these methods
would not be able to generate accurate depth values in areas
of the depth map where there are very sparse measurements
and large holes.

In stereophotogrammetry, the problem of dense stereo
correspondence (where each pixel is assigned a disparity
value) has been studied extensively and continues to be an
active area of research. Scharstein and Szeliski [9] give a
detailed taxonomy of dense stereo matching algorithms and
show that most stereo methods generally consist of four
steps: matching cost computation, cost aggregation, disparity
computation, and disparity refinement. In the past decade,
dense stereo correspondence matching algorithms have seen
success using probabilistic graphical models such as Markov
random fields (MRFs) for cost aggregation and disparity
computation. Using the MRF approach, pixels are connected
to its neighbours with pairwise relations and disparities are
inferred by minimizing an energy function across the image
with a smoothness assumption (i.e., similar neighbouring
intensity values should have similar disparities). Szeliski et
al. [10] performed a study comparing MRF-based stereo
correspondence approaches. Popular methods of optimizing
the cost function in the MRF are belief propagation [11],
[12] and graph cuts [13], [14]. More recent methods use
different ways to optimize the cost aggregation cost either

locally [15], [16], [17] or globally [18], [19]. Yoon and
Kweon [16] use an adaptive support weight search window
using color similarity and geometric proximity. Rhemann et
al. [17] make use of a box and guiding filter to generate spa-
tially smooth disparities while preserving edges. Yang [19]
proposed modelling the guiding image with a tree structure
and using minimum spanning tree (MST) to aggregate the
matching costs. Mei et al. [18] expand on this concept
but use a “Segment-Tree”, where pixels are first segmented
based on color similarity. Segmentation-based stereo is also
commonly used, where a plane is fit to segments of similar
pixel intensities [20], [21], [22].

The main difference between the proposed method and
dense stereo correspondence matching algorithms is that
the proposed method reconstructs a dense depth map from
available sparse depth measurements and the correspond-
ing photographic measurements, while the stereo corre-
spondence matching methods attempt to infer the dense
depth map directly from photographic measurements. One
potential advantage of the proposed method is that, by
decoupling the correspondence problem from the dense
depth map reconstruction problem, one can not only reduce
computational complexity but also incorporate sparse depth
measurements from difference sensor sources, particularly
beyond stereophotogrammetry. Again, the focus of the pro-
posed MCRF method is to reconstruct dense depth maps
from compact, low-cost sensors. Hence, in many cases the
photographic measurements may be noisy and in the case
of narrow baselines, much of the background has little to
non-existent disparity values. This makes correspondence
difficult in many dense stereo methods, especially ones using
global models.

III. METHODOLOGY

As mentioned earlier, the goal is to use the sparse depth
measurements and the photographic measurements to gen-
erate a dense depth map. The proposed system is shown
Figure 1 and described as follows. The depth sensor gen-
erates photographic and sparse depth measurements. These
measurements are the observations and input to the proposed
MCREF depth reconstruction method, which infers and out-
puts a dense depth map. The dense depth map can then be
used for example as a viewpoint in 3D reconstruction.

A. Problem Formulation and the MCRF

Given as inputs to the depth map reconstruction method
are 2 sets of observations: the photographic measurements
and the sparse depth measurements. Let the set of random
variables X ¢ and X ¢ represent these observations respec-
tively and X = [X©¢ X9. Let Y be the set of labels
representing the reconstructed dense depth map. Then, given
observations X we want to find the most probable depth
values in the inferred depth map Y. This is written as a
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Figure 1. Proposed system flow diagram. The stereophotogrammetric sen-
sor produces two images - the photographic and sparse depth measurements
- which are then fed into the MCRF depth reconstruction method to produce
a dense depth map.

maximum a posteriori (MAP) problem:

Y* =argmax P(Y | X) (D)
Y

where Y is the set of all possible states of Y and Y*
is desired the realization of Y which has the maximum
probability.

To solve this MAP problem we propose a multilayer
conditional random field (MCRF) approach. Each pixel in
the dense depth map is modelled as a node in an undirected
graph that follows the Markov property. The model structure
is shown in Figure 2. Underneath the labels Y (shown
as white circles) are the two observation layers: the depth
observations X ?(diamonds) and photographic observations
X¢(squares). A black-filled diamond represents that a depth
observation exists for that node while a grey diamond repre-
sents a missing observation. The photographic observations
are assumed to have no missing observations. The edge
e;r represents the influence of neighbouring nodes on the
center node/pixel y; € Y where |Y| = n, which is a
weighted combination of its neighbours y;, X 4 and X°.
The MCRF model extends the traditional CRF model by
adding an observation layer to account for the sparse depth
measurements. Using a Gibbs distribution, the resulting
MCREF distribution is expressed as:

cop( — (v, X1 X)) @

P(Y|X) = Z(lX)

where Z(X) is the normalization function and ¢ (-) is some
positive potential function. Comparing (1) and (2), it can be

Figure 2. One unit of a repeating pattern used in the MCRF model showing
the relationship between the depth map labels y; and its neighbour yj, depth
observation X l?i and photographic observation X {. Each node represents a
pixel of the photographic/depth measurements.

seen that the desired state Y* that maximizes the posterior
probability in (1) is the solution that minimizes the potential
function:

Y* = argmin (Y, X4, X¢) 3)

v

The potential function ) can be decomposed into unary
and pairwise potentials ,, and ,. The unary potential
1, defines the relationship between labels Y and depth
measurements X while the pairwise potential 1, defines
the relationship between each node in Y to its surrounding
neighbours:

PV, X) = aZzpu (yi, X% +BZZ% (yi 95, X7, X°)

i jJEN;
“)
« and (B are weighting parameters and N, is the set of
neighbours of node i. The unary potential v, enforces
how similar the inferred states Y should be to the sparse
observations X

i —xd|  zd is observed
bl Xy = § 1957 . 5)
0 otherwise

Because the goal is to minimize v (-), large differences
between the inferred state and its observations i.e. |y; —
x| are penalized. How much this penalty affects the final
solution is controlled by weight parameter « in (3); if the
initial depth measurements are very accurate then a should
be high otherwise it should be set low.

The pairwise potential 1, describes the influence of
neighbouring state y; on y; based on the observations X°:
Uy, X) = wali, ) (Aaf (i 03+ 2 (XF, X)) (-05)

(6)



where wy is a Gaussian weight based on the distance
between the neighbours. Here f is an inverse exponential
feature function
2

flxy,20) = exp% @)
where o is the pairwise multiplier and controls the range
of differences that affect the feature function. For large
differences between x; and x2, f(x1,x2) is small, and vice
versa. We use this function to give higher influence for
homogeneous regions in the photographic measurements,
where the assumption is a smooth patch in the photographic
measurements corresponds to smooth depth values at that
same patch. It is also used to maintain smoothness in
the inferred depth map in areas where the initial depth
measurements are rough . \ is a weighting parameter to
define the contribution of each variable considered in the
pairwise potential function. While here we only consider two
feature functions (neighbouring depth and intensity values),
the model can be extended to incorporate multiple features
(e.g. multispectral measurements). Generally, for £ number
of features, the pairwise potential is:

k
Up(yi, vy, X1 XF) = (ZAifi(Xi))(yi —y;)  (8)

IV. IMPLEMENTATION

This section describes the methods used to solve the
MAP problem formulated in the Section III. The algorithm
consists of two steps: first an initial solution is estimated
based on maximum likelihood, then the MAP estimation is
optimized through steepest descent.

A. Initial Estimate

Since missing observations in the sparse depth mea-
surements effectively have values of zero, it provides no
useful information and leads to slow convergence in the
optimization. Therefore, an initial estimate for the missing
observations is given for the dense depth map. This is done
by training a Naive Bayes classifier with depth-photographic
measurement pairs of the current frame. No prior informa-
tion is given into the classifier and so the initial solution is
a maximum likelihood estimate (MLE).

P(dli)  P(i|d) )

where d represents the depth estimate and ¢ represents
the photographic measurements respectively. A Gaussian
distribution is used to fit the training features.

B. Optimization With Steepest Descent Approach

To find the disparity map labels inferred by the MCRF
model, the potential function 1 is minimized with the
steepest descent approach[23], [24]. For each iteration, a
new state for the inferred depth map is calculated based on
the previous state and unary/pairwise relations. This process

is iterated until an arbitrarily chosen convergence threshold
is met.

V. EXPERIMENTAL SETUP

We evaluate our method using disparity maps obtained
from stereophotogrammetry. A disparity map is inversely
proportional to a depth map, therefore the two are treated the
same. The depth map reconstruction algorithm was imple-
mented in MATLAB, while stereo correspondence was done
using C++ and OpenCV. Two experiments were performed
to give qualitative and quantitative analysis.

A. Experiment 1

In the first experiment, data was collected using the
‘DUO’ stereo camera from Code Laboratories as the depth
sensor in our system. This camera was used for its com-
pactness and small form factor, with a baseline width of
around 3cm between the two cameras. The camera uses
infrared (IR) LEDs at 850nm wavelength for illumination
and the camera takes infrared measurements of the scene
to capture intensity images at 640x480 resolution. Stereo
correspondence was performed using the OpenCV sum of
absolute differences (SAD) block matching method [25].
Like many local correspondence algorithms, this method is
efficient but the resulting disparity map has many holes in it,
especially in regions with very little texture. Our dataset is
composed of IR and disparity measurement pairs of selected
objects and is shown in Figure 3. These disparity map and
IR measurement pairs were passed into our proposed depth
map reconstruction method to generate dense disparity maps.
Unfortunately, no ground truth data has been created yet
for this dataset, hence evaluation is done through qualitative
analysis on the re-projected 3D point clouds of the disparity
maps.

For comparison, we used a joint bilateral filter (JBF)
that uses the photogrammetric measurements to guide the
depth map smoothing. Introduced by Kopf et al. [26], the
JBF method has been used in many applications, one of
which is depth map refinement with many adaptations for
this purpose [6], [7], [8], [27] Our implementation of the
JBF was based on the code by Silva[28] which implements
the bilateral filter [29] using a guiding image.

B. Experiment 2

For numerical analysis, the 2006 Middlebury stereo vision
dataset [30] was used which provided rectified image pairs
and disparity ground truths. We ran stereo correspondence
on the images with the same matching algorithm used with
the DUO camera and then reconstructed the dense disparity
map using the proposed method. The JBF was again used
for comparison, along with the Markov random field (MRF)-
based global correspondence matching using expansion-
move graph cuts algorithm presented in [10], [14], [31], [32].
The source code for this method, along with the datasets, is
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Figure 3. IR and disparity map pairs obtained from DUO camera. The IR
image is taken from the left DUO camera.

available on the Middlebury stereo vision website[33]. Note
that the MRF method was not used in Experiment 1 because,
in general, global correspondence approaches are designed
to find a disparity value for every pixel in the image and
perform sub-optimally when no such correspondences exist
in part of the scene (such as the background in Figure 3).
The metric used to evaluate performance was mean squared
error relative to the ground truth.

VI. RESULTS
A. Experiment 1 Results

The point clouds of the scanned objects in Figure 3 are
shown in Figure 4. The first column shows the point clouds
of the initial sparse depth measurements, the second column
shows the results after applying the JBF [26], and the last
column shows the results after applying the MCRF depth
reconstruction method.

Visually, the MCRF method can be seen to correctly
infer the missing depth information of the scanned object.
Whereas it is difficult to identify the object from the initial
measurements, the additional dense points of the recon-
structed point cloud makes the object surface and shape
much more clear. Compared to the joint bilateral filter,
the MCRF produces more reliable points on the object
surface with more continuous surface transitions that reflect

Table I
MEAN SQUARED ERROR OF RECONSTRUCTED DISPARITY MAPS TO
GROUND TRUTH. THE LOWEST MSE FOR EACH DATA-SET IS SHOWN IN

BOLDFACE.

Data JBF [26] | MRF [10] | MCRF
Aloe 920 1020 768
Baby 179 825 173
Flowerpots 2309 2174 2413
Plastic 1082 6526 763
Rocks 710 618 493
Wood 732 1196 690
AVERAGE MSE | 988 2060 883

the surface characteristics of the object. This is seen more
clearly in Figure 5, which shows a zoomed in and more
detailed view of the point clouds.

B. Experiment 2 Results

Table 1 shows the mean squared error results of running
the proposed method (MCRF) against the MRF graph cut
minimization [10] and JBF [26] methods on some of the
image pairs from the 2006 Middlebury dataset [30]. The
comparison to the ground truth was performed from the
resultant 8-bit disparity map images. Figure 6 shows some
of the resulting disparity maps and the ground truth.

The proposed method shows lower average mean squared
error compared to the other two methods for most of the
data. This indicates the MCRF method is able to generate
comparable dense disparity maps to dense stereo methods.
The reconstructed dense disparity map is also seen to be
more stable for textureless regions.

VII. CONCLUSION

This paper introduced a new method for depth map recon-
struction using a novel multilayer conditional random field.
Experimental results with a compact stereophotogrammetric
camera system showed improvements in the re-projected
point cloud based on visual inspection. Quantitatively, the
Middlebury stereo dataset was used to show our method
exhibited lower mean squared error than the other methods
investigated for most of the data. Currently, the performance
of the proposed method depends on the quality and con-
fidence of the initial sparse depth measurements. Future
work will be to collect sparse but much more stable depth
measurements through feature matching. Further future work
include optimizing the rate of convergence and speed of the
dense depth map reconstruction method, as well as consider
including temporal information and multiview frames into
the MCRF model. Finally, additional features and obser-
vations can be included into the model, such as edges or
superpixels, to improve the quality of the reconstructed depth
maps.
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