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Abstract:

The extraction of contours using deformable models, such
as snakes, is a problem of great interest in computer vision,
particularly in areas of medical imaging and tracking.
Snakes have been widely studied, and many methods are
available. In most cases, the snake converges towards the
optimal contour by minimizing a sum of internal (prior) and
external (image measurement) energy terms. This approach
IS elegant, but frequently mis-converges in the presence of
noise or complex contours. To address these limitations,
this poster address a novel discrete snake, which treats the
two energy terms separately. Essentially, the proposed
method is a deterministic iterative statistical data fusion
approach, in which the visual boundaries of the object are
extracted, ignoring any prior, employing a Hidden Markov
Model (HMM) and Viterbi search, and then applying
Importance sampling to the boundary points, on which the
shape prior is asserted.

Introduction

Locating the exact boundaries of objects has many
applications in object tracking, content based image and
video retrieval systems, robotics and biomedical
engineering. Energy minimizing splines, such as
deformable snakes or active contours, are the key
approaches in the computer vision literature for such
boundary extraction problems.

A deformable model or snake is an energy minimizing spline
which is mathematically represented as follows.
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By definition, the optimum boundary is the one which
minimizes total energy of the snake, whose closed form
solution is not trivial (essentially impossible because of
the clutter and complexity of the external energy term).
Therefore, in the absence of closed-form solutions,
iterative dynamic curve evolution methods are adopted to
minimize total energy numerically. The problems that are
not addressed in current literature are given below.

1.If initial snake is far from the object boundary, the
external force is not able to attract the snake towards true
boundary.

2.Final snake do not converge towards high curvature
concave and convex boundaries

3.standard snake algorithms do not guarantee
convergence and tend to be very sensitive to noise and
false weak edges

4.A key problem, not currently addressed in the literature,
IS that parameters a, 3, and y should really be functions
of position, since the degree of curve smoothness, and
the strength of the observed image gradient, can both be
strong functions of location, nevertheless all existing
methods considered these parameters to be constant.

Proposed Approach

Proposed approach decomposes the internal and external
energy and minimizes individual components which is
briefly described by these three iterative steps. Details on
each component follow.

Proposed approach decomposes the internal and
external energy and minimizes individual components,
which is briefly described by these three iterative
steps. Details on each component follow.

Viterbi Search:

The problem is modeled as a Hidden Markov Model
(HMM) and a Viterbi search is used to find the optimal
solution by dynamic programming. In the absence of
Image noise and shape prior, the Viterbi search will
identify all of the strongest local boundaries. The trellis
for HMM and Viterbi search is shown below.
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Figure 1: Trellis for hidden Markov model (HMM) and Viterbi search. Si. S» and Sz are the Hidden states of

HMM. ¥y ), ¥ {#a),- - . Y(f,) are the sequence ohservation of hidden states, a;i and b (Y (#5)) are the state

transition probability and emission probability respectively

Viterbi algorithm finds the path that maximizes the joint
probability with first order Markov assumption using
equation (4) and (5)
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Curvature guided importance sampling:

In general, the prior model of objects are defined by
constraints on its overall shape. Active contours
traditionally consider thin plate and membrane constraints
to constitute the prior model of the object which is not an
accurate hypothesis for high curvature object boundaries.
Therefore, the proposed method generates snake points
using importance sampling of the local curvature (K) along
the snake which will ensure more samples in high
curvature regions using equation (6), (7) and (8)
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Statistical estimation:

There are two reasons motivating an estimation step. First,
while calculating visual boundary using viterbi, shape
priors were not considered, however prior models of
shapes play a vital role with high measurement
uncertainty. Second, to directly incorporate complicated
shape model directly into the Viterbi approach is difficult,
even for second order constraint complexity. The new
approach computes the object boundary from the
observed image ignoring the prior model and then fuses
the measured boundary with the prior model statistically
using equation (10)
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Where L., Ly, Ly, and L, are elastic and
membrane constrains respectively The complete algorithm
IS demonstrated in Figure. 2 and algorithm. 1

Arclength(s) vs Curvature
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Figure 2: Illustration of one iteration of proposed method on a U-shaped object. (a) A circle (thick
line) shows the initial positions of the snake, the jagged line shows a potential snake solution, and the
small circles shows the nodes of Viterbi trellis. (b) The thick line shows the optimal snake after a Viterbi
search. (c¢) Curvature of the curve obtained using Viterbi search (X -axis Arc length, Y -axis Curva-
ture(K)). (d) small green circles are the particles generated using importance sampling on curvature of
optimal Viterbi snake. (e¢) The thick line shows the estimated snake as the initial snake to start the next
iteration.

Algorithm 1 Pseudo code of proposed method

I: t=0,e =00, €= 1(=10)

2: Initialize object boundary manually as vgg(s)

3: while e > ¢ do

4. Generate discrete search space 1, normal to vig(s)

5:  Find the best curve z;; using Viterbi search

6:  Compute curvature of z;, and perform impor-
tance sampling on it to generate more sample near
high curvature region. Consider each sample as

measurements(/\/)
7. Calculate z(t)
3: e=||2(t) — 2(t — 1)|]
9: V(t+1)0(5) = Z(t)
10: t=t+1

11: end while

Experimental Results
and Discussion

To authenticate the capability of the proposed method, testing
has been conducted on both original and published images.
Two synthetic binary images are tested, one with a V shaped
object and the other with a heart shaped object. The four
standard images are brain-web, disc on a complex
background, starfish, thin u-shape. The labels A, B, C, D, E
and F are assigned to V-shape, heart shape, ball in complex
background, brain, starfish and thin u-shape images,
respectively, as Iillustrated in Fig. 2. Experiments are
performed on 2.61 GHZ, 2GB DD RAM, AMD Athlon 64X2
dual core machine .

Figure 3: Column 1 the snake generated using the proposed method; column 2 to 5 shows
results using four other snake techniques. Yellow lines are final contours. First five rows (A,
B. C and D) show images obtained from. Last two rows (E and F) show two synthetically
generated images. The proposed method is the only one that can properly identify the object
boundary in each case. No other method works for more than four images. Some test had
solutions but did not converge to right solutions and some solutions were unbounded (DNC)

Results are shown in Figure. 3 and Table. 1. Figure. 3
lllustrates separate images for the initial contour, the solution
for the proposed method, and the solution for the four other
methods. Table. 1 shows the quantitative values of Mean
Square Error (MSE) and Execution Time (ET) of all five
methods. In the proposed method, parameters of the discrete
snake are guided by curvature and external force. As a result,
the proposed method works effectively for all six images
without adjusting any parameters. In contrast, the four
comparative methods are sensitive to fixed parameters and
no other method can effectively identify the necessary
boundary for all test images.

Table 1. Comparison table showing Mean Square ErrortMSE) and Execution Time (ET) in second of Proposed Method against
four other methods for different images. Text in bold letter indicates best performance among their peers for a particular image

Proposed Snake | Traditional Snake | DTF Snake | BF Snake | GVF Snake

MSE ET MSE ET MSE | ET | MSE | ET | MSE | ET
(A) | 0.89 14 1.4 91 110 | 42 1.4 93 1.1 112
(B) | 1.1 29 2.9 91 2.6 36 1.2 93 2.5 104
(C) | L5 4.5 1.55 36 DNC | 38 | DNC | 70 | 1.53 | 52
(| 1.8 3.5 1.83 47 2.1 46 1.9 42 | 1.85 | 73
(E) | 2.1 26 42 145 DNC | 40 | DNC | 119 | 351 | 171
(F) | 2.7 31 12 91 16 48 9.5 94 6 114

Sensitivity to Initial position:

Figure. 4 shows three different initial snake contours and
their successful convergence using the proposed method. In
contrast, the balloon force (BF) snake requires that the
Initial snake be placed fully within the solution boundary.
Also, the Traditional snake requires an initial snake close to
Its solution to encourage speed of convergence and
accuracy.
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Figure 4: Behaviour of convergence pattern of proposed snake on initial positions for

Sensitivity to parameter

Performance of existing contour extraction techniques
are dependent upon appropriate values of parameters
such as a, 3, and y. However, the proposed method
adaptively chooses parameters from curvature and
Image gradient according to the relation mentioned in
equation (13). |

la, B, A] o< p ox — (13)
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Sensitivity to noise
Figure 5 compares the proposed method to the other four
methods for a PSNR of 6 given a noisy image with a
diamond shape. Clearly, the proposed method is robust to

noise relative to its peers since the proposed method is the
only method to successfully identify the diamond.
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Figure 5: Performance of each method in presence of noise with o = 0.65, ¢ = 0.1, and PSNR = 6.
Only the proposed method works effectively in the noisy image.

Conclusion and Future Work

A novel discrete snake for accurate boundary extraction
regardless of noise and geometry of the object boundary is
designed and implemented. This discrete snake adjusts its
parameters iteratively as a function of the current snake
solution. The method is demonstrated to be robust to initial
parameter setting regardless of the nature of the image.
Convergence of proposed method is guaranteed empirically
and robustness to noise is shown experimentally. In the
future, parametric testing will be conducted to better
understand the contribution of each parameter to the final

solution.
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