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Abstract-This paper presents an approach to the fusion of 

SSM/I (Special Sensor Microwave/Imager) data from different 
resolutions, based on the prior statistical information about the 
data. The result is an estimated field that lives in a finer scale 
than any of the measurements. We apply a Wavelet Transform 
that increases speed and decreases memory requirements by 
sparsifying and preconditioning the statistics. This approach 
makes feasible the use of reprogrammable FPGA 
implementations for onboard satellite data processing, which 
greatly enhances flexibility and, most importantly, reduces 
communication burdens by limiting the extent to which raw, 
unprocessed data are transmitted to the ground. 

 

I. INTRODUCTION 
 

In the remote sensing and satellite development 
communities, there is a push toward using reprogrammable 
hardware for onboard satellite data processing to enhance 
flexibility and, most importantly, to reduce communication 
burdens by limiting the extent to which raw, unprocessed data 
are transmitted to the ground.  It has thus become essential to 
develop faster and more efficient data manipulation 
algorithms compatible with FPGA implementations:  
algorithms using only basic mathematical operations and very 
limited memory.  Increasing interests in multi-sensor and 
multi-channel data fusion is ever more compelling in light of 
a variety of applications such as resolution enhancement.  
Such an enhancement on-board the satellite, coupled with 
global coverage, increases the power and flexibility of the 
deployed instrumentation, particularly in the presence of 
limitations such as missing data.  The goal, then, is the 
development of an approach to data fusion problems that seek 
to provide high resolution and global coverage, while 
eliminating drawbacks such as poor resolution or missing 
data.   In this paper we propose a multiscale stochastic data 
fusion method to realize this goal. 

In particular, we apply our algorithm to separate channels 
of the Special Sensor Microwave/Imager (SSM/I) radiometer.  
The SSM/I is a seven-channel, four-frequency, linearly 
polarized, passive microwave radiometric system which 
measures atmospheric, ocean and terrain microwave 
brightness temperatures at 19.35, 22.235, 37.0, and 85.5 GHz. 
It is flown aboard Defense Meteorological Satellite Program 
(DMSP) Satellites. Dual-polarization measurements are taken 
at 19.35, 37.0, and 85.5 GHz, and only vertical polarization is 
observed at 22.235 GHz. Spatial resolutions vary with 
frequency. Table I gives the frequencies, polarizations and 
temporal and spatial resolutions of the seven channels. 
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TABLE I 

SIZES OF THE 3-dB ANTENNA FOOTPRINTS AND THE APPROXIMATE SPACING OF 
THE MEASUREMENTS IN THE TRACK AND SCAN DIRECTIONS OF THE SSM/I 

CHANNELS (TAKEN FROM [1]). 

SSM/I Channel 3 dB Footprint (km) Approximate 
Frequency (GHz) Pol. Track Scan Spacing (km) 

19.35 V 69 43 25 
19.35 H 69 43 25 
22.235 V 60 40 25 
37.0 V 37 28 25 
37.0 H 37 28 25 
85.5 V 15 13 12.5 
85.5 H 15 13 12.5 

 
The sampling pattern is such that there is 12.5 km pixel 

spacing at 85 GHz and 25 km pixel spacing at the lower 
frequencies. Our algorithm fuses these different frequency 
data sets in a statistically optimal way, thereby achieving an 
enhanced spatial resolution while preserving the coverage. 
We utilize the statistics intrinsic to the field for this purpose. 
Moreover we then precondition the field to be estimated with 
the Haar wavelet, which results in computational efficiency 
and compatibility with FPGA hardware. 

 
II. PROBLEM FORMULATION 

 
The channel measurements are given by: 

,EGXY +=     (1) 
where G corresponds to the antenna gain function for all the 
channels, X is the actual antenna temperature field, and E is 
noise. Solving the least squares problem in a Bayesian 
framework and assuming gaussian distributions for X and E 
we have the estimation of X as: 

,)(ˆ 1111 YRGGRGPX TT −−−
+

−=   (2) 
where P and R are the a priori covariance matrices of X and 
E respectively, which have to be empirically estimated. By 
effectively preconditioning the estimation problem using a 
wavelet transform W we have, 

,WXX =            (3) 
and the corresponding estimation of X is:  

,ˆ 1111 YR)(GW))(GWR)(GW)((WPWX TTTTTT −−−− +=     (4) 
With a suitable choice of a wavelet several simplifications are 
possible and otherwise one relies on matrix inversions 
performed off-line (ahead of time). Alternatively a filter may 
be applied to the estimated field to make it as uncorrelated as 



possible so that the prior covariance matrix of the field X is 
Identity. This can lead to further simplifications. 
 

III. PRACTICAL CONSIDERATIONS 
 

We consider the actual antenna temperature field X, to live 
in a grid that is 4 times finer in horizontal and vertical 
directions than the highest resolution (12km for 85Ghz) of 
the available measurements. Thus the pixel size for X is taken 
to be 3.125x3.125 (km sq). 

The gain pattern for each footprint corresponding to each 
frequency is generally oval in shape and can be approximated 
by a jointly binomial pattern.  For example consider the 
85Ghz footprint. It has length of 13 km along scan and 15 km 
along track. This can be approximated with a 4x6 group of 
pixels in the finer scale of X. Fig.1(a) shows the 
approximated 85GHz footprint with total gain normalized to 
unity. Footprints for other frequencies are similarly obtained. 
The footprints for different polarizations of the same 
frequency are assumed to be similar. 

The data in both the coarser and finer grids are vectorized 
into a column vector. The gain matrix G for a single channel 
measurement will then transform the finer grid to the coarser 
grid based on the antenna footprint for that channel. For 
instance the gain matrix will convert a 4Nx4N field in the 
finer grid of X to an NxN field in the coarser grid of the 85 
GHz channels (for channels other than 85 GHz, the coarser 
grid will be N/2xN/2). The overall gain matrix can be 
generated on this basis. 
 

IV. ESTIMATING THE PRIOR COVARIANCE MATRICES  
 

The empirical statistics of the finest scale are used to 
obtain a prior covariance model of the field to be estimated 
(X). We observe the pixels of 85Ghz in the direction along 
scan. This direction has minimum overlap between pixels and 
hence serves as a good approximation to the actual field X. 
The portions of the 85GHz observed images are generally 
non-stationary with respect to the mean. Hence mean removal 
is carried out over windows before constructing the 
covariance matrices. Fig.2(a) shows the experimentally 
obtained covariance matrix from the 85GHz, with mean 
removal done over window sizes of 8x8. The anti-diagonal of 
the covariance matrix is found to nicely fit an exponential 
model as shown in Fig.2(b). 
With the exponential fit, and assumption of Isotropy, it is 
then straightforward to construct the covariance matrix P for 
the finer field X.  This was carried out and is shown in Fig.3 
for a field vectorized into a column vector. 

With the assumption that all measurement errors are 
uncorrelated, the corresponding Error covariance Matrix R is 
diagonal. Further assuming that for a particular channel all 
errors have equal variance, we have: 

,2 IR σ=    (5)  
For a particular channel the error variance can be 

interpreted as a weighting factor for that channel. Hence by 

keeping higher error variances for the lower resolutions 
(channels other than 85Ghz) we obtain a method for 
weighting  the various  channels. In other words, by assigning 
 
 
 
 
 
 
 

 
 
 

 

(a)    (b) 
Fig.1.     (a)--Antenna footprint for 85Ghz as seen in the finer scale of X with 
total gain has been normalized to unity. (b)-- Gain Matrix for 85Ghz for N=5 

i.e. observed data at 85GHz is a patch of 5x5 pixels. 
 

 
 
 
 
 
 
 
 
 

(a)   (b) 
Fig.2. (a)--Covariance Matrix for a row of 8 pixels in the along scan 

direction for 85Ghz-Horizontal Polarization. (b)--Fitting of the  
anti-diagonal to an exponential model A*exp(B|x|), with  

A = 26.5375 and B = -0.35398 
 

 

 
 
 
 
 
 
 
 
 

Fig.3. Generated Covariance Matrix for the fine field Y of size 20x20. 
 

lower error variances to the 85GHz channels, we determine 
our estimated field more from the higher resolution data (that 
the 85Ghz channels provide) than the lower resolution data. 

 
V. ESTIMATION WITH TWO CHANNELS 

 
A. Direct Method 

 
Consider the 85-H and the 37-H channels. For estimating 

the finer field based on the data of these two fields, we stack 
the data one above the other in a column vector and develop 
the corresponding gain and error covariance matrices for the 
combined data. We solve the estimation problem for two 
cases. In the first case we solve for the finer field X using (2), 

 



without preconditioning the estimated field by the wavelet 
transform. The estimated field for this image is obtained as 
shown in Fig.4. 

 

 
Fig.4. (c) is the estimated field at finer scale X by fusion of data from (a) & 
(b) using the Prior Covariance model P of X & Measurement Error Variance 
equal to 16 and 1 for the coarser fields of 37-H (a) and 85-H (b) respectively. 

 
Note that for performing these computations the size of the 

matrices is of the order of NxN, where N is the total number 
of pixels in the reconstructed field (N is equal to 1600 for the 
reconstructed field shown in Fig.4). 

 

B. Estimation using Wavelet Transform: 
 

By carrying out the cholesky factorization of the prior 
covariance matrix P of X, and taking the inverse of it, we 
effectively obtain a filter that makes the field X uncorrelated. 
That is by defining: 

,1 AF =−    and   ,PAA T =        (6) 
we have a filter F on X such that: 

,1 EXGFY f += −    where   ,FXX f =  (7) 

Thus the estimation problem now changes to: 
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+= where ,1−= GFG f (8) 
and I is the Identity matrix. 

Now with the prior covariance matrix of Xf being the 
Identity matrix we precondition Xf with the wavelet 
transform W1 where W1 gives the low frequency portion of 
the Haar wavelet W. Thus the estimation problem now is: 

,)())()((ˆ 111 YRGGRGIX TT −−−+=   (9) 
 

where   ,1 fXWX =   and   ,1

T

f WGG =    (10) 
with the prior covariance matrix on the preconditioned X’ 
still being the Identity matrix but now of size (NxN)/2 where 
N is the total number of pixels in the patch of field X. Thus 
we reduce the size of the matrices by a factor of 4 and 
increase the speed of computations, by removing the high 
frequency part of the Haar wavelet W. The size of the 
estimated data X  is also (NxN)/2. The actual field that is of 

size NxN is reconstructed by the following transformation, 
which can be performed at the ground. 

,1
1 XWFX T−=   (11) 

This method  when performed for  the  same  block of  data 
 
 
 
 
 
 
 
 

(a)    (b) 
Fig.5. (a) The inverse filter F-1=A obtained by cholesky factorization of P for 

40x40 patch of pixels in X. (b) shows one row of the Inverse Filter. 

 
Fig.6. (a) The estimated field as obtained after preconditioning with the 

wavelet transform. Except for some anomalies at the boundaries of the field 
the estimation is almost exactly same as the one done without 

preconditioning, but now is computationally efficient 
 
yields almost exactly the same results, which means that the 
high frequency component of the wavelet transform that we 
removed is not significant. 

 

VI. CONCLUSION 
 

This paper demonstrates how data fusion of 
multiresolution data can be carried out in a statistically 
optimal way. With experiments carried out on data from 
SSM/I channels we have shown that the computations can be 
carried out efficiently by employing the Haar wavelet with 
results that are similar to those without the preconditioning. 
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