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Abstract

Finding the surface of a volumetric 3D object is a
fundamental problem in computer vision. Energy min-
imizing splines, such as active surfaces, have been used
to carry out such tasks, evolving under the influence of
internal and external energies until the model converges
to a desired surface. The present deformable model
based surface extraction techniques are computationally
expensive and are generally unreliable in identifying the
surfaces of noisy, high-curvature and cluttered 3D ob-
jects.

This paper proposes a novel decoupled active sur-
face (DAS) for identifying the surface of volumetric
3D objects. The proposed DAS introduces two novel as-
pects which leads to robust, efficient and accurate con-
vergence. First, rather than a parameterized surface,
which leads to difficulties with complex shapes and pa-
rameter singularities, the DAS uses a conforming tri-
angular mesh to represent the surface. Second, moti-
vated by earlier successes in two-dimensional segmen-
tation, the DAS treats the two energy components sep-
arately and uses novel solution techniques to efficiently
minimize the two energy terms separately. The perfor-
mance of DAS in segmenting static 3D objects is pre-
sented using several natural and synthetic volumetric
images, with excellent convergence results.

1 Introduction

The job of identifying the surface of a three di-
mensional object in the presence of noise and back-
ground clutter has applications throughout medical
image analysis [2, 14], surface reconstruction [6, 12],
visual tracking [15] and motion estimation [17]. As
shown in Fig. 1, a surface extraction technique is es-
sential to segment and quantify important structures
of a volumetric image for successful diagnosis. Active
surfaces, the extension of 2D active contours to 3D,
are now primarily used to perform such surface extrac-
tion tasks. The key idea in active surfaces is to evolve

Figure 1. MRI of the brain [4]: producing a
3D segmentation of such data has countless
applications in diagnosis and treatment.

a deformable model [5, 8, 16] under the influence of
internal (prior) and external (measurement) energies
to capture the surface of a 3D object. Typically, the
internal energy that maintains surface smoothness is
defined using elastic / thin-plate constraints, whereas
the external energy that pulls the deformable model
towards the object boundary is usually defined using
an image gradient (or, possibly, other image metrics of
interest). Many approaches based on the original ac-
tive surface idea have been proposed, broadly falling
into two categories: parametric [8, 13, 16], and non-
parametric [1, 3].

All of these active-surface methods are direct exten-
sion of their 2D active-contours counterparts to the 3D
context. For parametric approaches, the 3D surfaces
are explicitly represented [8, 16] using a 2D regular
grid. There are two primary problems with such a rep-
resentation scheme. First to have a unique mapping
from 3D surface to regular 2D grid for all geometries
is not feasible. Second, even for regular geometries the
mapping is not unique and is not evenly spaced. Most
parametric surface approaches are not able to capture
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high-curvature surfaces in the presence of noise and
background clutter, without parameter tuning. On the
other hand, non-parametric active surfaces are robust
to initial solution and are capable of finding multiple
high curvature surfaces, however these methods are ex-
tremely slow and are not able to extract the discontin-
uous surface of a 3D object.

Many of the above problems — lack of robust con-
vergence in the presence of clutter, and high com-
putational complexity — are also present in two-
dimensional active contours. To address these prob-
lems in 2D, Mishra et al. [11] implemented a decoupled
active contour (DAC) which successfully identifies the
boundary of a single object in the presence of noise and
background clutter. The novelty of the DAC was to
separately address the external energy (measurement)
from the internal energy (prior). The method uses a
Viterbi search algorithm on the external energy to lo-
cate high-gradient boundary like features. Then, as a
separate step, the internal energy representing the non-
stationary prior is enforced on the measured boundary
using a Bayesian linear least square estimator.

Next, a fast decoupled active contour [10] (FDAC)
was developed, specifically anticipating the computa-
tional limitations of regular active contours, including
the DAC, in being applied to large, three-dimensional
problems. The FDAC replaced the Viterbi gradient-
finding step of DAC with an iterative, quasi-random
search, and the assertion of the prior model, accom-
plished as a Bayesian least-squares problem, was im-
plemented in a sparse conjugate gradient algorithm.

This paper extends the concepts of DAC [11] and
FDAC [10] from 2D to 3D and proposes a decoupled
active surface (DAS) for identifying the surface of a
volumetric 3D object. Unlike traditional active surface
based methods, instead of representing the 3D surface
using a regular 2D grid, DAS uses a conforming trian-
gular mesh to represent the 3D surface and employs a
decoupling co-ordinate descent concept to find an in-
termediate surface in the vicinity of the initial solu-
tion. The segmentation accuracy and computational
advantage of DAS compared to one existing paramet-
ric active surface based method are demonstrated using
several synthetic and natural 3D volumetric images.

The rest of the paper is organized as follows. We
begin Section 2 with a brief discussion on the theory
of parametric active surfaces, followed by identifying
the limitations of traditional approaches. The theory
and implementation of DAS are provided in Section 3.
Finally, the experimental results and the validation of
DAS claims are provided in Section 4.

2 Parametric Active Surface

An active surface is an energy-minimizing 3D
spline, represented using a regular grid v(s, r) =
[x(s, r), y(s, r), z(s, r)], whose total energy is expressed
as

E =
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The external energy creates an attractive force towards
the desired boundary, normally a region of high gradi-
ent:

Eext(v (s, r)) = − (∇Gσ ∗ I3)
2
(v(s, r)), (3)

Here ∇ is a derivative operator and Gσ is a Gaussian
kernel of bandwidth σ. By considering the active sur-
face to be deforming with respect to time, the solu-
tion to (1) can be presented using a set of linear equa-
tions [5, 8] as shown:

Ax + Fx = 0, Ay + Fy = 0, Az + Fz = 0. (4)

The iterative solution [5, 8] to (4) using an Euler-
Lagrangian formulation is found to be

xt =
(

I + AAT
)

−1 (
xt−1 − γFxt−1

)

(5)

and similar equations hold for yt and zt. The Matrix
A is a banded matrix that contains the internal energy
and I is an identity matrix. The convergence of the
traditional active surface using (5) is demonstrated in
Fig. 2(a) using a synthetic volumetric cube (red) with a
spherical initial solution (black). Boundary condition
enforcement is a complicated task in the traditional
representation schemes. As shown in Fig. 2(b), (c) and
(d), different boundary conditions lead to substantially
different solutions. Using free boundary and free pole
conditions in (5), we get a broken surface (Fig. 2(b)),
similarly free pole condition generates holes at both
poles of the converged surface (Fig. 2(c)). On the other
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(a) Initial boundary (b) Free pole and boundary (c) Constrained boundary and free pole (d)Constrained boundary and pole

Figure 2. Three examples (b, c and d) illustrating the limitations of traditional, parameterized active-
surface schemes. We start with an initial, parameterized spherical surface (a), seeking to converge

to the red synthetic cube. The partially-converged active surfaces after 500 iterations are shown in
panels (b), (c) and (d). Parametric models have difficulties with boundaries (b) and singularities at
poles (c,d).

hand, constrained boundary and poles lead to a bi-
ased internal force which creates a non uniform vertex
motion; that the vertices near the poles have a lower
velocity compared to other vertices can be observed
from (Fig. 2(d)).

In summary, the following three problems are preva-
lent with the conventional active surface based repre-
sentation scheme and solution technique:

• The conventional 3D surface representation
scheme v(s, r) = [x(s, r), y(s, r), z(s, r)] is not able
to handle complex geometries. Even for a sim-
ple geometry, such as for a sphere as shown in
Fig. 2(a), there exist one-to-many mappings from
the 3D surface to the 2D grid. Such a one-to-many
mapping scheme creates a biased internal force
(prior), resulting in non-uniform motion of the ver-
tex of the 3D surface. As shown in Fig. 2(d),
such a bias creates a weak attractive force near
the pole compared to other regions, resulting in
non-uniform vertex motion.

• The conventional active surface is a direct exten-
sion of 2D active contour to 3D and uses iterative
gradient descent technique to solve (1). Such an
iterative solver is very slow and prone to local min-
ima.

• There exists a delicate relationship between the
parameters in (1).

Most of the present parametric active surface based
segmentation methods, such as gradient vector flow
(GVFS) [16] and vector field convolution [8], have at-
tempted to solve some of these problems by increasing

the capture range of the traditional active surface by
diffusing the traditional gradient-based external force.
However, these modifications are not able to overcome
the problems of local minima and convergence speed.
A description of our proposed decoupled active surface,
which seeks to deal with these problems, follows next.

3 Decoupled Active Surface

A decoupled active surface is a random field (surface
spline) (v) represented using closed triangular meshes.
As shown in Figs.3and 4, the triangular meshes are rep-
resented using a set of surface nodes vi, i ∈ [1, q] and
triangular faces fj , j ∈ [1, f ], where vi = [xi, yi, zi]. We
use a conforming triangular mesh, where an edge of a
triangle is shared exactly by two triangles and a node
is connected to its first order neighbors. These con-
straints are necessary to keep the prior computation
step simple. The number of neighboring triangles of
a node is equal to the number of its first-order neigh-
bors. The number of neighboring nodes of a particular
node varies to facilitate the surface spline to be able to
accommodate to a wide variety of shapes. Given the
above surface spline representation scheme and an ob-
served volumetric image I3, we aim to find an optimal
surface spline v∗ by maximizing the posterior proba-
bility of the random field v:

v∗ = arg max (p (I3|v) p (v)) , (6)

where p(I3|v) and p(v) are the likelihood and prior
probability of v.
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Initial AS Measured Surface Sampled surface Converged surface

Figure 3. The three important steps of DAS: for a given initial surface (left), gradients are measured,
and the resulting surface resampled on the basis of curvature. Despite the presence of noise in this
example, the proposed iterative approach converged well to the desired cube, right.

In practice, we seek to obtain a discrete surface
v∗ using a non-iterative method that maximizes (6).
However, no analytic method is available to solve (6).
Therefore, instead of trying to solve the maximum a
posteriori (MAP) (6) problem directly, DAS solves (6)
in three steps using concepts analogous to those of the
decoupled active contour [11, 9]. First, an approximate
surface vm is extracted from the likelihood (p(I3|v))
using an iterative quasi-random search (IQRS) algo-
rithm [10]. Second, a non-stationary prior is secured
to capture high curvature boundary by relaxing the
prior penalty near regions of high curvature. Algorith-
mically, DAS achieves the effect of a non-stationary
prior by employing a curvature-based mesh re-sampling
scheme. Third, the prior knowledge about the surface,
p(v), is enforced with the measured boundary vm using
a Bayesian linear least square estimator.

To always find an ideal converged discrete surface
v∗ in a single iteration is not possible. Therefore, DAS
takes an iterative approach, constraining the search
space at time t based on the solution vt−1 from the
previous time step.

The three steps involved in DAS are illustrated in
Fig. 3. First, an initial spherical surface using a con-
forming triangular mesh is initialized around the object
of interest (Fig. 3 (a)). Second, DAS uses an iterative
quasi random search (IQRS) method [10] to find an
optimal surface without the prior, within a specified
search space (Fig. 3 (b)). The search space is defined
using a set of normals, as shown in Fig. 4. Third, DAS
uses an adaptive mesh re-sampling scheme to generate
a non-stationary prior to capture high-curvature sur-
faces. The adaptive re-sampling scheme is described
in Section 3.1. Fourth, similar to the DAC [11], DAS
uses a Bayesian linear least square estimator to fuse
the prior with the measurements.

Fundamentally, the surface nodes can be identified
iteratively using IQRS without updating. However, it
is not possible to incorporate complex shape priors and
noise variances into IQRS, both of which are essential
for reliable convergence, especially for noisy images.

3.1 Adaptive Mesh Re-sampling

The computational intractability of active surface
based methods is well documented [10, 8, 3] and it is
known that the computational complexity [10] of active
surface based approaches is proportional to the number
of active surface nodes q. Therefore, the practicality of
active surface based methods can be realized by explor-
ing methods that can help in reducing the number of
surface nodes without sacrificing accuracy.

To reduce the number of active contour nodes and to
capture high curvature regions of 2D objects, Mishra et
al. [11, 9, 10] used a curvature-based importance sam-
pling scheme to create more samples near high curva-
ture regions than uniform regions. DAS extends the
similar concept of DAC [11] from 2D to 3D for captur-
ing high curvature surface and at the same time sub-
stantially reducing the total number of surface nodes.
The curvature-based mesh re-sampling scheme follows.

The curvature k of a parametric 2D curve v(s) =
[x(s), y(s)], is defined as the rate of change of tangent
angle with respect the arclength s and can be computed
as:

κ =
xsyss − ysxss

(x2
s + y2

s)
3/2

. (7)

However, for a 3D surface, the curvature at a partic-
ular point varies as the plane through the normal at
that point changes. Therefore, there is no unique def-
inition of curvature for a 3D surface, so 3D curvature
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Figure 4. The 3D search space defined by a
set of normals (black) to an initial surface
(sphere). The sphere is triangulated using
conforming triangles. The goal is to con-
verge to the cube (green) inside the sphere.
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Figure 5. The principal and Gaussian curva-
tures of a cubic surface

is usually defined using principal and Gaussian cur-
vatures. The principal and Gaussian curvatures of a
cubic surface are shown in 5. In the context of our
application, we do not need an exact definition of cur-
vature, rather we want a technique that can measure
the perpendicular distance of a surface node from its
first-order neighboring nodes. To achieve this goal, we
first fit a plane with the first-order neighbors of a sur-
face node using a least-squares fitting algorithm, then
we compute the perpendicular distance of the corre-
sponding surface node from the fitted plane and we
consider that distance as a notion of curvature. We
repeat this procedure for all surface nodes to compute
the curvature of a given 3D surface. The curvature
profile obtained using the above approach for a cubic
surface is presented in Fig. 6(b).

We then re-sample the 3D surface based on the com-
puted curvature, such that the density of samples at

Table 1. Comparison table showing execution time in
seconds for the surfaces in Fig. 7, comparing DAS and
VFC [8]. The proposed DAS is more than an order
of magnitude faster than the competing approach.

DAS VFC

(A) 323 12853
(B) 579 13423

any point increases with the curvature of the surface.
The re-sampled cubic surface using the proposed re-
sampling scheme is shown in Fig. 6c). More samples
near the corners and edges of the cube can be observed
in Fig. 6(c).

4 Testing and Discussions

The capabilities of DAC [11] and FDAC [10] to seg-
ment 2D objects in the presence of noise and back-
ground clutter with fast convergence rates are pre-
sented in [11, 9, 10]. This paper generalizes the
DAC/FDAC concepts to 3D and validates the claims
of DAS using natural and synthetic 3D volumetric im-
ages. We compare the proposed DAS to the vector
field convolution [8] active surface. The performance
of DAS is validated on five natural and synthetic 3D
data sets. The five volumetric images depict a wide
range of characteristics including high curvature and
noise.

We implemented part of the code for VFC [8] and
downloaded rest of the code from [7]. All experiments
are performed on a P4 Intel 2.4Ghz processor, 1Gb
RAM using MatLab. The DAS’s ability to identify the
surface of 3D volumetric images is presented in Figs. 7
and 8.

As shown in Fig. 7, VFC could not identify the sur-
faces of both volumetric images (A and B). The un-
biased internal force created due to the conventional
representation scheme used in VFC smoothed the high
curvature portion of the U-shaped object. In contrast,
the DAS successfully identified the high curvature sur-
face of both the objects (A and B), using separated
measurement and prior steps, and also by enforcing a
lower force in high curvature regions.

The convergence time of DAS compared to VFC is
presented in Table 1. The convergence time of DAS is
clearly significantly lower than that of VFC. The ability
of DAS to identify the surface of noisy synthetic 3D
images is shown in Fig. 7 (second row) and in Fig. 8,
and in a real measured human tomogram in the top
half of Fig. 8.
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(a) Extracted surface without re-sampling (b) Curvature of the cube (c) Extracted surface with re-sampling

Figure 6. The re-sampling scheme. The cube, left is iterated without re-sampling, but ends up with
an excess of grid points in flat regions, and possibly a deficiency in regions of high curvature. The
right cube shows the mesh after resampling, based on the curvature as shown in the middle.

(a) Original volumetric image (b) DAS (c) VFC [8]

(A)

(B)

Figure 7. Boundary identification accuracy of DAS and VFC. We test on two surfaces: a U-shape
(A), top, and a noisy concentric hollow cylindrical volume (B), bottom. The proposed DAS (middle)
segments both objects successfully, however VFC (right) is ineffective for both objects.
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(a) Volumetric image (b) Identified surface using DAS

Figure 8. DAS successfully identified the throat using a human CT image (top), and the surface of a
hollow sphere in the presence 40 percent additive Gaussian noise (bottom).
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5 Conclusions

A decoupled active surface, an extension of DAC
and FDAC from 2D to 3D, for identifying the sur-
face of static 3D objects has been proposed and im-
plemented. The dramatic computational gain and su-
perior segmentation performance of DAS compared to
one published parametric active surface based method
have been demonstrated in this paper. The DAS’s com-
putational advantage over other parametric methods is
mainly due the use of the iterative quasi random search
as the non-iterative solver and conjugate gradient as
the Bayesian least square solver. The superior segmen-
tation performance of DAS in the presence of noise
and high curvature is due to the use of the novel con-
cept of separating the prior from measurement and the
incorporation of a non-stationary prior using a mesh
re-sampling scheme.

In the future, we seek to use DAS to find the tra-
jectories of moving objects in video, and to validate
DAS on a wide range of 3D data sets and comparing
the results with other published parametric and non
parametric methods.
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