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Abstract

The accurate detection of static object boundaries such as contours or surfaces and dy-

namic tunnels of moving objects via deformable models is an ongoing research topic in

computer vision. Most deformable models attempt to converge towards a desired solution

by minimizing the sum of internal (prior) and external (measurement) energy terms. Such

an approach is elegant, but frequently mis-converges in the presence of noise or complex

boundaries and typically requires careful semi-dependent parameter tuning and initial-

ization. Furthermore, current deformable model based approaches are computationally

demanding which precludes real-time use.

To address these limitations, a decoupled deformable model (DDM) is developed which

optimizes the two energy terms separately. Essentially, the DDM consists of a measurement

update step, employing a Hidden Markov Model (HMM) and Maximum Likelihood (ML)

estimator, followed by a separate prior step, which modifies the updated deformable model

based on the relative strengths of the measurement uncertainty and the non-stationary

prior. The non-stationary prior is generated by using a curvature guided importance

sampling method to capture high curvature regions. By separating the measurement and

prior steps, the algorithm is less likely to mis-converge; furthermore, the use of a non-

iterative ML estimator allows the method to converge more rapidly than energy-based

iterative solvers.

The full functionality of the DDM is developed in three phases. First, a DDM in 2D

called the decoupled active contour (DAC) is developed to accurately identify the boundary

of a 2D object in the presence of noise and background clutter. To carry out this task,

the DAC employs the Viterbi algorithm as a truncated ML estimator, curvature guided

importance sampling as a non-stationary prior generator, and a linear Bayesian estimator

to fuse the non-stationary prior with the measurements. Experimental results clearly

demonstrate that the DAC is robust to noise, can capture regions of very high curvature,

and exhibits limited dependence on contour initialization or parameter settings. Compared

to three other published methods and across many images, the DAC is found to be faster

and to offer consistently accurate boundary identification.

Second, a fast decoupled active contour (FDAC) is proposed to accelerate the conver-

gence rate and the scalability of the DAC without sacrificing the accuracy by employing

computationally efficient and scalable techniques to solve the three primary steps of DAC.
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The computational advantage of the FDAC is demonstrated both experimentally and ana-

lytically compared to three computationally efficient methods using illustrative examples.

Finally, an extension of the FDAC from 2D to 3D called a decoupled active surface

(DAS) is developed to precisely identify the surface of a volumetric 3D image and the

tunnel of a moving 2D object. To achieve the objectives of the DAS, the concepts of

the FDAC are extended to 3D by using a specialized 3D deformable model representation

scheme and a computationally and storage efficient estimation scheme. The performance

of the DAS is demonstrated using several natural and synthetic volumetric images and a

sequence of moving objects.
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Chapter 1

Introduction

Automatically identifying the exact boundary, known as a contour in 2D and a surface in

3D, of a 2D/3D object or the tunnel of a moving 2D object from a three-dimensional im-

age, in the presence of noise and background clutter, has many applications in biomedical

image analysis [1, 2], visual tracking [3, 4], content based image and video retrieval [5, 6],

robotics [7], image and video composition [8, 9], visualization [10, 11], surface reconstruc-

tion [12], deformable template matching [13, 14] and morphing [15–17]. For example, as

illustrated in Figs. 1.1, 1.2, 1.3 and 1.4, boundary extraction techniques are essential to

segment and quantify important structures of 2D/3D images for successful recognition or

diagnosis.

1.1 Overview of Challenges

Despite the fact that the boundary of an object in a 2D/3D image can be easily detected

using several low level edge detection techniques (such as Canny and Laplacian edge detec-

tors), precise continuous boundary identification needs specific high level knowledge. Such

a model based identification task can be achieved by using the concepts of deformable

model [20].

Developing a generic method to perform such boundary identification tasks is a chal-

lenging problem for three main reasons.
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Fig. 1.1: The walking image sequences of a man: identifying the tunnel of the walking man

has several applications in computer vision [18].

1. The observed 2D/3D images are acquired using different imaging devices under var-

ious imaging environments. These imaging techniques include fluoroscopy, projec-

tional radiographs, magnetic resonance (MR), positron emission tomography (PET),

computer tomography (CT) and ultrasound. The observed 2D/3D images collected

from different sources contain noise and background clutter. From an optimization

point-of-view, the noise and background clutter act as potential local minima and

existing methods are sensitive to such local minima.

2. Real-world objects have high curvature contours and surfaces. The state-of-the-art

boundary extraction methods are generally not able to identify high curvature regions

of a body.

3. Computational and storage burden hinder the practical application of existing bound-

ary extraction techniques.
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Fig. 1.2: MRI of a human brain: producing a 3D segmentation of such data has countless

applications in diagnosis and treatment.

Current boundary extraction methods and their limitations are described next.

1.2 Current Methods

Deformable model based boundary identification techniques, known as active contours or

snakes in 2D and active surfaces in 3D, have become popular after the seminal work of Kass

et al. [20]. The principal idea in deformable model based boundary extraction methods

is to minimize the sum of internal (prior) and external (image-based) energies to obtain

an optimum boundary [20–26]. The internal energy typically asserts a first- or second-

order or both first- and second-order smoothness constraints on the boundary, whereas the

external energy applies an attractive “force” on the boundary, typically towards areas of

high image gradient. Since the original development of active contour or surface based

methods [20–23], many variations have been developed, falling broadly into two classes:
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Fig. 1.3: A photo of a porcine functional spinal unit with the contrast agent (shown in

blue) injected into the intervertebral disc (left), peripheral CT image (right) of a slice.

These images are used to study the deformation of the functional spinal unit as a function

of compressive loads [19].

i) parametric deformable models [20–22, 27–34], and ii) non-parametric or geometric de-

formable models [35–47]. Parametric deformable models are usually modeled using an

explicit parametric model describing a contour or surface of a single 2D or 3D object.

Geometric active contours are implicitly modeled as a zero level set function in a higher

dimension and such methods are suitable for identifying boundaries of multiple objects.

Despite the large number of existing approaches, the parametric deformable models are

generally ineffective to handle the problems associated with image noise contamination,

complex high curvature boundaries, algorithmic parameter sensitivity, initialization sensi-

tivity, ineffective stopping criteria and slow convergence rate. Non-parametric approaches

are initialization independent and are able to handle high curvature regions and topology

naturally. However, non-parametric active contours are comparatively slower and more

sensitive to noise compared to parametric methods. Several faster techniques, including

sparse field [48], fast marching [49] and multi-scale [50, 51] techniques are available to ac-

celerate the computational performance of traditional geometric active contours. However,

the computational complexity of geometric active contours are proportional to the total

number of image pixels, while the computational complexity of parametric active contours
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Fig. 1.4: A slice of a video fluoroscopic image of a lumbar spine. Segmenting and tracking

the spine help to study spine dynamics.

are related to number of active contour vertices. The number of pixels in an image is much

larger than the number of active contour vertices. Hence, non-parametric methods use far

more computational resources compared to parametric methods. Whereas non-parametric

approaches segment a single object into any number of sub-objects since the deformable

boundary is not parameterized using a single deformable model, parametric deformable

models are able to find the single continuous boundary of an object from its sparse mea-

surement. As such, parametric deformable models are useful to find the boundary of a

single object. In contrast, the desired boundaries cannot always be identified by employ-

ing thresholding, region growing or non-parametric active contour approaches, as these

techniques often produce spurious edges and gaps, rather than a continuous curve, due to

their local and non-parametric nature.

Parametric deformable models, which use a global parametric model [20, 52, 53], are

a highly effective class in the computer vision literature for boundary extraction prob-

lems. Several modifications to the original parametric deformable idea [20] have been

developed [21–24,24,28,54,55]. Most [21,22,28,54] of these focus on modifying the exter-

nal energy to increase the capture range of the deformable model such that a deformable

model initialized far from the true boundary can be attracted towards the true boundary.

However, the non-convergence and computational issues of the original deformable model
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have been generally ignored.

Current deformable model based boundary extraction techniques are iterative in nature

and the iterative solution techniques are prone to being trapped at a local minimum and

are slow to converge. The outliers act as potential local minima and the real-world data

collected using various imaging techniques are not free of outliers. Therefore, the local

minimum trap is considered as the common reason of the failure of the present deformable

model based methods.

1.3 The Proposed Approach

In tackling these issues, this thesis introduces a novel parametric decoupled deformable

model (DDM), that shares the same formulation and origin of conventional deformable

models. However, instead of discretizing and iteratively minimizing the total energy, as in

most approaches, the proposed method alternately minimizes the external energy within

a specified region, then separately asserts the prior constraints to force the boundary to

satisfy required smoothness. The adaptivity of the technique to sharp corners is satisfied by

importance sampling [56] on the basis of curvature. Essentially, DDM finds the boundary

of a 2D/3D object within a specified solution space using following three steps.

• Step 1: identifies an approximate boundary, termed as the measured boundary using

an external energy and an inter-point constraint.

• Step 2: generates a non-stationary prior based on the curvature of the measured

boundary to capture high curvature regions.

• Step 3: finds an estimated boundary by asserting the non-stationary prior on the

measured boundary.

DDM is less sensitive to parameter tuning as the parameters are derived implicitly from

the image curvature and gradient.
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1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews in more detail

existing deformable model based boundary extraction techniques and comments on the

merits and drawbacks of each method. Chapter 3 formulates the boundary extraction

problem as a maximum-a-priori (MAP) problem using a Bayesian framework and develops

a concept, termed as decoupled deformable model (DDM), to efficiently solve the MAP

problem for identifying the boundary of an object.

Chapter 4 proposes a decoupled active contour (DAC), a DDM in 2D to precisely iden-

tify the boundary of a complex 2D object in the presence of noise and background clutter.

The performance of the DAC compared to one non-parametric and two parametric bound-

ary extraction techniques are clearly demonstrated in this chapter. Chapter 5 proposes a

faster approach, named as fast decoupled active contour (FDAC) while maintaining the

DAC’s segmentation accuracy and improving computational performance. As such the

FDAC is scalable to higher dimensions.

Chapter 6 develops a decoupled active surface (DAS), an extension of FDAC from 2D

to 3D, for identifying the outer surface of a static 3D object or the tunnel of a moving 2D

object. Finally, the summary and future direction of DDM is provided in Chapter 7.1.
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Chapter 2

Background Theory

This chapter provides a review of necessary background literature related to the work de-

veloped in this dissertation. Specifically, this chapter discusses the theory and limitations

of present deformable model based boundary (contour/surface) extraction methods. Since

the proposed research stems from the fundamental concepts behind parametric deformable

models, a detailed discussion of these models is provided. First, the mathematical formula-

tion of the parametric deformable model energy functional to identify the object boundary

is derived. Second, a brief overview of non-parametric deformable models is presented.

Third, the limitations of present deformable model based boundary extraction techniques

are discussed. Finally, the objectives of this thesis are outlined.

2.1 Deformable Model For Boundary Identification

Generally, the boundary is defined as a continuous border that separates two dissimilar

regions. The boundary of an object is often identified based upon either some region sim-

ilarity [57–59] or discontinuity criteria, however there is substantial overlap between these

two criteria [60, 61]. Among these two segmentation categories, the region discontinuity

(also know as deformable model) based segmentation methods [17, 20, 21, 34, 37, 43, 62–70]

have been gaining popularity due to their ability to represent an object using a physical

model.

Deformable models, popularly known as active contours in 2D and active surfaces in
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3D, are energy minimizing splines [20]. The deformable models evolve in a constrained

environment to achieve a certain goal by minimizing an energy functional Etot [20]. When

the goal is to identify the boundary of a 2D/3D object, the total energy of the deformable

model is expressed as a function of the observed boundary and some prior assumption

about the true boundary:

Etot = =(Eint, Eext). (2.1)

The external energy Eext (also known as attractive energy or stopping potential) represents

the measurement and pulls the deformable model towards the object boundaries. On the

other hand, the internal energy Eint (also know as shrinkage energy) attracts the deformable

model towards the prior.

As DDM is developed based upon the theory of deformable models and the performance

of DDM is evaluated against four state-of-the-art parametric deformable models and one

state-of-the-art non-parametric model, therefore a comprehensive review of the deformable

models is presented next.

2.2 Parametric Deformable Model

2.2.1 Mathematical Model Representation

Parametric deformable models are free form (there are no global constraints, except local

smoothness constraints) active models which can adapt themselves into various shapes.

As shown in Fig. 2.1, a parametric deformable model [20–22] in 2D is represented using a

continuous 2D parametric curve

v = {v(s)} = [x(s), y(s)], s ∈ [0, 1] (2.2)

or a discrete parametric curve

v = {vj} = {v(sj)} = [xj, yj] = [x(sj), y(sj)], j ∈ [1, q], sj ∈ [0, 1]. (2.3)

Similarly, as shown in Fig. 2.2, a parametric deformable model [20–22] in 3D is represented

using a continuous parametric surface

v = {v(a, b)} = [x(a, b), y(a, b), z(a, b)], a ∈ [0, 1], b ∈ [0, 1], (2.4)
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or a discrete parametric surface

v = {vi,j} = [xi,j, yi,j, zi,j], i ∈ [1, q], j ∈ [1, q], (2.5)

where the normalized arclength s parameterizes the continuous deformable model in 2D

and the parameters [a, b] parameterize the continuous deformable model in 3D. In discrete

space, the q vertices (vj) are used to represent the deformable model in 2D, and a q × q
grid is used to represent the vertices (vi,j) of the deformable model in 3D.

The parametric deformable model evolves in space or time to minimize the total energy

Etot of the parametric deformable model v. The total energy is expressed as a sum of an

internal energy Eint and an external energy Eext and mathematically written as:

Etot(v) = Eint(v) + Eext(v). (2.6)

[v(s = 0) = v(s = 1) = vj=1 = vj=q]

[v(s) = [x(s), y(s)] = vj = [xj , yj ]]

Fig. 2.1: A parametric active contour is represented using a random field v = {v(s)}, s ∈
[0, 1] in the continuous domain or v = {vj}, j ∈ [1, q] in the discrete domain. The term s is

the normalized arclength, j is an index, and x, y are the components of the random vector

v.
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[v(a = 0, b = 0) = v(a = 1, b = 1)
= vi=1,j=1 = vi=q,j=q]

[v(a, b) = [x(a, b), y(a, b), z(a, b)]
= vi,j = [xi,j, yi,j, zi,j]]

Fig. 2.2: A parametric active surface is represented using a random field v =

{v(a, b)}, a, b ∈ [0, 1] in the continuous domain or v = {vi,j}, i, j ∈ [1, q] in the discrete

domain. The variables a and b parameterize the 3D surface using a 2D regular mesh grid

of size q× q, i and j are discrete indices, and x, y and z are the components of the random

vector v. Such a grid based surface representation scheme is widely used in computer vision

literature to model 3D surfaces.

2.2.2 Internal Energy of the Model

The internal energy Eint(v), representing the prior, is a weighted sum of elastic and thin-

plate energies. The internal energy Eint(v) of the deformable model is written as

Eint(v) =

1∫
s=0

α
∣∣∣∣∂v(s)

∂s

∣∣∣∣2︸ ︷︷ ︸
elastic

+ β

∣∣∣∣∂2v(s)

∂s2

∣∣∣∣2︸ ︷︷ ︸
thin−plate

ds (2.7)
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in 2D and

Eint(v) =

1∫
a=0

1∫
b=0

(Eelastic (v(a, b)) + Ethin−plate (v(a, b))) da db (2.8)

in 3D, where

Eelastic (v(a, b)) = α1

∣∣∣∣∂v(a, b)

∂a

∣∣∣∣2 + α2

∣∣∣∣∂v(a, b)

∂b

∣∣∣∣2 (2.9)

and

Ethin−plate (v(a, b)) = β1

∣∣∣∣∂2v(a, b)

∂a2

∣∣∣∣2 + β2

∣∣∣∣∂2v(a, b)

∂b2

∣∣∣∣2 + 2β3

∣∣∣∣ ∂∂a
(
∂v(a, b)

∂b

)∣∣∣∣2 (2.10)

are the elastic and thin-plate energies of the deformable model in 3D. The parameters

α, α1, α2 and β, β1, β2, β3 are weight factors for the membrane and thin-plate energy

respectively. Furthermore, while these parameters may be a function of spatial location,

they are typically considered as constants in practice.

2.2.3 External Energy of the Model

The second term of (2.6), the external energy functional Eext(v), is computed by integrating

a potential energy function P along the deformable boundary v. The external energy

functional Eext(v) can be expressed as

Eext(v) =

1∫
s=0

P (v(s)) ds (2.11)

in 2D and

Eext(v) =

1∫
a=0

1∫
b=0

P (v(a, b)) da db (2.12)

in 3D. Typically, the parametric deformable model attracts the initial solution v = v0

towards the image boundary by enforcing a smaller potential in those regions. Therefore,

the potential energy P representing the measurement (observation) is made a function of

the magnitude of the image gradient g such that

P = −γ(g(I))2, (2.13)
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where

g(I) = (|∇I|) , (2.14)

or

g(I) = (|∇Gσ ∗ I|) , (2.15)

for some gradient ∇ of Gaussian (Gσ) with bandwidth σ, where I is the input 2D/3D

image, γ is the weight factor for the potential energy and “ ∗ ” is the convolution operator.

2.2.4 Deformable Model Evolution

Given the formulation for the internal and external energy, the next goal is to capture

the boundary of a 2D/3D object by minimizing the total energy of (2.6) using calculus

of variations. However, no closed form solution to (2.6) is known. Therefore, iterative

variational methods are employed in practice to find the steady state solutions of (2.6). The

deformable model v that minimizes (2.6), also satisfies the Euler-Lagrangian equation [20–

22]
∂

∂s

(
α
∂v

∂s

)
− ∂2

∂s2

(
β
∂2v

∂s2

)
−∇Eext (v) = 0 (2.16)

in 2D and

∂

∂a

(
α1
∂v

∂a

)
+

∂

∂b

(
α2
∂v

∂b

)
− ∂2

∂a2

(
β1
∂2v

∂a2

)
− ∂2

∂b2

(
β2
∂2v

∂b2

)
− 2

∂

∂a

(
∂

∂b

(
β3

∂

∂a

(
∂v

∂b

)))
−∇Eext (v) = 0 (2.17)

in 3D. To study the dynamics of the deformable model, (2.16) or (2.17) can be viewed as

a force balance equation [21,22]

Fint(v) + Fext(v) = 0, (2.18)

where the internal force is expressed as:

Fint(v) =
∂

∂s

(
α
∂v

∂s

)
− ∂2

∂s2

(
α
∂2v

∂s2

)
(2.19)

in 2D and

Fint(v) =
∂

∂a

(
α1
∂v

∂a

)
+

∂

∂b

(
α2
∂v

∂b

)
− ∂2

∂a2

(
β1
∂2v

∂a2

)
− ∂2

∂b2

(
β2
∂2v

∂b2

)
− 2

∂

∂a

(
∂

∂b

(
β3

∂

∂a

(
∂v

∂b

)))
(2.20)
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in 3D. The external force in 2D and 3D are given by

Fext(v) = −∇Eext (v) . (2.21)

The steady state solution of (2.16) and (2.17) is obtained by treating the deformable model

v as a function of time t and parametric space (s) or (a, b), i.e., vt(s) in 2D and vt(a, b)

in 3D. Assuming a small amount of drift ε∂v
∂t

is required to make the internal and external

force equal, (2.18) can be re-expressed as

Fint(v) + Fext(v) = ε
∂v

∂t
, (2.22)

where the term ε equalizes the units of right- and left-hand side. The equation (2.22) can

be interpreted as a form of gradient descent optimization technique [20–22]. The numerical

solution technique for (2.22) is provided next.

2.2.5 Numerical Solution Technique

Each component of (2.22) in 3D can be written as [20]:

Fint(x) + Fext(x) = ε
∂x

∂t
, (2.23)

Fint(y) + Fext(y) = ε
∂y

∂t
, (2.24)

and

Fint(z) + Fext(z) = ε
∂z

∂t
. (2.25)

Using a discrete formulation, the internal force for each component of v in 3D is given by

Fint(x) = Ax, (2.26)

Fint(y) = Ay, (2.27)

and

Fint(z) = Az, (2.28)

where the penta-diagonal banded matrix A represents the internal constraint. Employing

a finite difference technique, the solution for x can be derived as

ε
(xt − xt−1)

δt
= Axt + Fext(xt), (2.29)

14



xt = (I − %A)−1 (xt−1 + %Fext(xt−1)) , (2.30)

where % = δt
ε

. The solutions for yt and zt can be derived in a similar way. For a deformable

model in 2D there is no z component.

For the sake of completeness and to remind the reader that the parametric and non-

parametric deformable models are two separate concepts, a brief overview of the non-

parametric deformable model is provided next.

2.3 Non-Parametric Deformable Model

A fundamentally separate deformable model approach is formulated in geometric terms,

such as the geometric active contour/surface (GAC) of Malladi et al. [37] and Caselles et

al. [38]. The contour is described in the level-set framework of Osher et al. [71], which

allows curve splitting and merging to be handled more naturally than with a spline. In

level set formulation, the geometric deformable model v is represented by the zero level

set

v(t) = {(x, y)|φ(t, x, y) = 0} (2.31)

in 2D and

v(t) = {(x, y, z)|φ(t, x, y, z) = 0} (2.32)

in 3D of a level set function φ. The evolution of the level set function φ can be expressed

as
∂φ

∂t
+ Y |∇φ| = 0, (2.33)

where the speed function Y is derived from the observed data and the level set function

φ. Such data dependent speed functions cause a boundary leakage problem. To avert this

problem, Caselles et al. [35] and Siddiqi et al. [46] reformulate the level-set framework by

introducing gradient-weighted length and area terms to the total energy.

The traditional solution techniques [37] to (2.33) generate shocks [53], resulting in very

sharp and flat deformable models during the evolution process. To overcome these issues,

the level set function is re-initialized periodically to a signed distance function. The re-

initialization step of the level set formulation is a computationally expensive task. To avoid

the re-initialization step of the traditional level set formulation, Li et al. [53] proposed a
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new variational formulation which forces the level set function close to a signed distance

function.

To address the local minima issues of the level set based solution techniques, Cohen

et al. [72] proposed a minimal path approach to find the global minima associated with

the active contour. Mumford-Shah [73] and Chane-Vese [39, 40] developed another region

based active contour model which can be solved in a level set [71] framework. The Chane-

Vese model uses regional statistics as its stopping criterion, and so works efficiently even

if there are very weak edges.

Recently, Sundaramoorthi et al. [74] have identified the problems associated with geo-

metric active contour energy minimization techniques using Riemannian space. They have

reformulated a generic geometric active contour by redefining the notion of gradient using a

Sobolev type inner product, while using the level set methods as the evolution framework.

To reduce the computational complexity of the Chane-Vese model [39], Bresson et al. [36]

proposed a new global optimization method, the fast active contour (FAC), which is sim-

ilar to the Chane-Vese model but with a dual optimization method. Eric et al. [44] tried

a hybrid approach to improve the convergence speed and initialization robustness of level

set based active contour by combining k-means clustering with the level set framework.

Recently, a new category of deformable models has been proposed, motivated by the

laws of physics. Examples include the gravitational force active contour model [29], the

charged particle model active contour [43] (CPM), and the magneto-static active contour

model (MAC) [64]. The CPM considers each pixel to be a charged particle attracted by

electric fields generated from the image gradients, and claims to reduce snake initialization

sensitivity. Xie et al. [64] claim that the MAC is more effective at capturing complex

boundaries than the CPM. However, the computational and algorithmic complexities of

the MAC are relatively high.

2.4 Limitations of Deformable Models

The traditional parametric deformable model has six important limitations:

1. initialization sensitivity,

2. outlier sensitivity,

16



3. high curvature sensitivity,

4. poor scalability,

5. parameter tuning,

6. computational burden,

7. the non-parametric deformable models are mostly robust to the first five issues, but

these models have another issue that is the inability to identify the boundary of

broken objects.

Next, how these seven problems are addressed in current literature is discussed.

2.4.1 Initialization Sensitivity

The classical parametric deformable model is sensitive to the size and position of the initial

boundary, normally manually set, and often fails to converge or takes inordinately long to

converge. To avoid these issues, Cohen et al. [23], Xu et al. [21] and Li et al. [22] proposed

the balloon force (BF), gradient vector flow (GVF) force and vector field convolution (VFC)

force respectively to extend the influence of the external force. However, these methods

still suffer from lower convergence rates and increased noise sensitivity. Recently, a Poisson

inverse gradient (PIG) [54] based automatic deformable model initialization technique is

proposed to reduce initialization sensitivity of the traditional deformable models.

Since the proposed approach’s segmentation accuracy as a function of initialization is

compared with the modified external force based methods, such as BF [23], GVF [21],

VFC [22] and PIG [54] techniques in Sections 4.4, Sections 5.5 and Sections 6.6, a descrip-

tion of these compared methods are provided next.

Balloon Force (BF)

As shown in (2.22), in the absence of the external force Fext, the vertices of the deformable

model move by the influence of the internal force Fint. However, the sole purpose of the

internal force is to keep the deformable boundary smooth, not to provide external thrust

to the vertices of the deformable model. As a result, the vertices of the deformable model

17



move very slowly for those cases where the deformable model is initialized far from the

true boundaries.

To accelerate the convergence rate and to avoid the local minima, Cohen et al. [23]

introduced a dynamic balloon force:

Fballoon = ℘1n− ℘2
∇P
|∇P| , (2.34)

also known as inflation/deflation force. This balloon force drives the vertices of the de-

formable model towards the desired boundaries in the absence of the external force. The

terms ℘1 and ℘2 are two constants. To ensure that the balloon force is not overcoming an

edge point, the value of ℘2 is chosen to be slightly more than the value of ℘1. The sign of

℘1 determines the direction of the balloon force.

Given this formulation of the balloon force, the desired boundary is obtained using the

evolution equation

Fint(v) + Fext(v) + Fballoon(v) = ε
∂v

∂t
. (2.35)

Although the balloon based pressure force can avoid spurious edges, the balloon force

creates boundary leakage when the boundaries are broken. Determining the direction of

the balloon force is another common limitation of balloon force based deformable models.

Gradient Vector Flow (GVF)

To increase the capture range while addressing the issues of the balloon force deformable

model, Xu et al. [21] proposed a gradient vector flow technique (GVF) to diffuse the

gradient throughout the image. The gradient flow vector

FGV F = [FGV Fx ,FGV F y ,FGV F z ], (2.36)

is computed by minimizing the energy functional

EGV F =

∫ ∫ ∫  RT︸︷︷︸
regularization

+ DFT︸ ︷︷ ︸
data−fidelity

dxdydz, (2.37)

where the regularization term is expressed by

RT = µ
(
|∇FGV Fx|2 +

∣∣FGV F y ∣∣2) (2.38)
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in 2D or

RT = µ
(
|∇FGV Fx|2 +

∣∣∇FGV F y ∣∣2 + |∇FGV F z |2
)

(2.39)

in 3D, and the data fidelity term is expressed by

DFT = |∇g|2 (FGV F − |∇g|)2 (2.40)

in 2D and 3D, and g is the edge map derived from the observed image I, and the regular-

ization constant µ controls the smoothness of the gradient vector field. Given the gradient

vector flow field FGV F , the evolution of the deformable model can be written

Fint(v) + FGV F (v) = ε
∂v

∂t
. (2.41)

The GVF technique has the following drawbacks [22]: high computational cost, noise

sensitivity, parameter sensitivity and ambiguity between capture range and parameters.

Vector Field Convolution (VFC)

To address the issues associated with the gradient vector flow technique, Li et al. [22]

introduced a vector field convolution (VFC) based external force FV FC , where

FV FC = g ∗ K (2.42)

is estimated by convolving a vector field kernel K with an image edge map g. The vector

field kernel is given by

K = m× n, (2.43)

where m and n are the magnitude and direction of the vector field. Several formulations

for m and n are discussed in [22]. The evolution equation using vector field convolution

based external force is given by

Fint(v) + FV FC(v) = ε
∂v

∂t
. (2.44)

Although VFC is faster and less sensitive to noise when compared to GVF, the initialization

sensitivity of VFC in the presence of outliers still remains an issue.
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2.4.2 Outlier Sensitivity

Most deformable model based solutions are susceptible to outliers (local minima), many of

which are created by the presence of noise, background clutter and other invalid edge-like

features. Several techniques [21,22,75–78] have been proposed to improve the performance

of deformable models in the presence of outliers. Some of these methods employ dedicated

outlier detection techniques such as:

1. validation gates [76] to reduce the search space,

2. geometric and dynamic constraints [77, 78] to reduce shape and motion variability,

3. robust estimators [79, 80] to reduce the effect of outliers on final boudary/shape

estimation,

4. probabilistic data association filters and joint probabilistic data association filters [81]

to keep the track of the object’s shape and motion, and

5. stroke grouping and expectation maximization (EM) [75] to avoid the convergence

of the deformable model towards noise and background clutter.

However these methods to handle outliers are very time consuming, parameter dependent

and insensitive to high curvature boundaries. Further, these issues become more prominent

for active surface identification.

Alternatively, denoising models [36], multi-scale techniques and pre-smoothing filters [20–

22] have been incorporated into the active contour formulation. For example, as shown

in (2.15), to overcome noise and background clutter the external forces are usually com-

puted by first convolving the observed images using a smoothing kernel [20–22]. However,

typically the smoothing kernel smoothes the object boundaries along with the noise and

background clutter.

2.4.3 Inability to Capture High Curvature Regions

A key challenge in prior-model based parametric deformable models is capturing high

curvature (concave and convex) regions. Because the internal force of most prior models
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penalize curvature, the traditional external force is not able to pull the deformable model

towards concave regions.

To enable the deformable model to converge towards concave regions, the capture range

of the external force has been increased using distance force [28], balloon force [23], gradi-

ent vector flow force [21] and vector field convolution force [22]. However, as discussed in

Subsection. 2.4.1, these methods have their own advantages and disadvantages, and typi-

cally are not able to attract the deformable boundary towards very high curvature regions

due to the internal stiffness constraints.

Alternative methods [82, 83] have been proposed to capture high curvature regions by

defining another external force which weakens the internal force near high curvature regions

and strengthens the internal force near smooth regions. However, discriminating true high

curvature and false high curvature generated due to outliers is a challenging task. Hence,

decreased penalties lead to increased outlier sensitivity.

To nullify the effect of the internal constraints near high curvature regions in a clever

way, Wong et al. [32] proposed a segmented snake, which splits the snake into a number of

separated regions based on curvature, followed by later merging. Analogous to a weakened

prior, the split/merge snake is similarly sensitive to noise.

2.4.4 Parameter Tuning

There is a delicate balance required between the energy parameters α, α1, α2, β, β1, β2, β3

and γ, therefore parameter tuning is a common problem with deformable models [20–22].

The selection of appropriate parameters is generally tedious and image dependent, and the

parameter sensitivity precludes the use of such algorithms in certain applications.

2.4.5 Computational Burden

Parametric deformable models use iterative techniques to find the desired solution. There-

fore, the computational load of parametric deformable models primarily depend on three

factors:

1. the number of vertices,
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2. the convergence rate and the numerical stability, and

3. the termination criteria.

Number of Vertices

The computational and storage burden of one iteration of a deformable model is primarily

a function of the number of deformable vertices. To model a large size 2D object or a

moderate size 3D object a large number of deformable model vertices are required, thus

implying a huge computational and storage burden.

Convergence Rate and Numerical Stability

The convergence rate and the numerical stability of the deformable model mainly depend

upon the numerical stiffness of (2.6). In many cases, (2.6) is numerically stiff, which means

the iterative solution of (2.6) tends to be slow and worsens if the active contour is initialized

far from the true solution, implying a limited capture range.

To increase the convergence speed and capture range, most variations on the para-

metric deformable model have concentrated on altering the external energy, such as the

pressure based balloon force [23], distance transformed image gradient [28, 29], gradient

vector flow [21] and vector field convolution [22] of image gradient.

To improve the numerical stability and the convergence rate of the deformable model

based solution techniques, Amini et al. [52,84] first proposed the use of dynamic program-

ming to perform the active contour energy optimization, which has later been used more

broadly [1,85–87]. Williams and Shah [88] introduced a fast greedy approach to find global

minima of energy functionals.

Because completely unsupervised segmentations based on dynamic programming can

converge to unwanted solutions, Mortensen et al. [9] first introduced intelligent scissors

– a user-interactive dynamic programming based graph search method to locate exact

boundaries. Further, GrabCut [89], Lazy snapping [8] and Bayesian matting [90] are

introduced for user-interactive image segmentation as well.
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Termination Criteria

The deformable model evolves iteratively to minimize some energy functional, ideally stop-

ping once the global minimum is reached. Because of noise and image clutter, the energy

functional is not smooth, causing algorithms to be either trapped or delayed for many

iterations at local minima. To have a criterion by which the iterative solver is halted

is necessary, or global optimizers need to be developed such as those based on dynamic

programming [9, 52], simulated annealing [87], or graph search methods [89]. Leymarie et

al. [27] suggested a better termination criterion for deformable model with detailed analysis

of various parametric snake models for tracking applications.

Both the iterative solvers and global optimizers are slow to converge. Although de-

formable models might otherwise be a promising approach for image segmentation and

tracking, the slow rate of convergence precludes existing deformable models from being

considered in real-time applications.

2.4.6 Poor Scalability

Current deformable models [21,22,54] in 3D are direct extensions of 2D active contours to

3D active surfaces. However, such a direct extension from 2D to 3D is not always feasible

due to the following three reasons.

1. In many situations, to represent the 3-D surface of an object parametrically using

two parameters a and b is difficult.

2. Even for simple objects, such as a sphere, there is a one-to-many mapping from the

3D surface to the 2D parametric space. Also, there is the possibility of many-to-one

mappings for complex 3D objects.

3. Handling boundary conditions in 3D is a challenging task.

Alternatively, a conforming triangular mesh [34, 91–93] based deformable models have

been proposed for surface identification task. However, computing normal, curvature and

higher order derivatives in 3D are key challenges.
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2.4.7 Inability to Identify Broken Boundary

Non-parametric methods [35–37, 39] are effective at capturing high curvature regions and

are initialization independent. However, these methods are not able to identify the bound-

ary of a single broken object. Also, the computational load of non-parametric methods are

very high as compared to parametric methods. The computational load of non-parametric

methods are related to the number of pixels/voxels of an image, where as the computational

load of parametric methods depend upon the number of deformable vertices. The number

of deformable model vertices are much fewer compared to the number of pixels/voxels of

an image.

2.5 Objectives

The aim of the thesis is to develop a generic approach to identify the boundary of a 2D/3D

object. The new method (DDM) has the following six improvements compared published

parametric approaches.

1. Robustness to noise and background clutter.

2. Able to capture high curvature boundary.

3. Robust to parameter tuning.

4. Insensitivity to initialization.

5. Fast convergence rate.

6. Scalable to multiple dimensions.

Compared to non-parametric methods, DDM has a higher convergence rate and less sensi-

tivity to noise. To achieve these objectives, a decoupled deformable model (DDM) is for-

mulated in Chapter 3 to minimize the total energy of the traditional deformable model 2.1.

First, Chapter 4 develops a decoupled active contour (DAC), a DDM in 2D to accurately

and rapidly identify the boundary of a 2D object. The performance of DAC in achieving the

first five objectives is evaluated against three published methods using a wide range of 2D
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images. Second, Chapter 5 describes a fast decoupled active contour or FDAC to improve

the the computational efficiency and scalability of DAC. Finally, Chapter 6 proposes a

decoupled active surface (DAS), an extension of FDAC from 2D to 3D to identify the

surface of a volumetric 3D object or the tunnel of a moving 2D object.
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Chapter 3

Problem Formulation

Statistical methods based on a Bayesian formulation have been recognized as one of the

key concepts for solving several computer vision problems due to their ability to integrate

measured information from different sensors with the historical information about these

measurements [30, 94]. As discussed in Chapter 2, the boundary identification task using

deformable models can be modeled using statistical methods [30]. Therefore, this chapter

proposes a non-iterative coordinate descent technique to solve the parametric deformable

model energy formulation (2.6) in a Bayesian paradigm. The proposed approach aims to

address the limitations of present deformable model based methods and to achieve the

goals mentioned in Section 2.5.

As described in Subsection 2.2.1, the total energy Etot of the parametric deformable

model v = {v(s)}, s ∈ [0, 1] in 2D or v = {v(a, b)}, a ∈ [0, 1], b ∈ [0, 1] in 3D is expressed

as:

Etot = Eint + Eext. (3.1)

In a Bayesian framework [30], the total energy Etot, the internal energy Eint and the external

energy I of the traditional deformable model v can be expressed as the posterior P (v|I),

the prior P (v) and the measurement P (I|v) of a random field v, respectively. Therefore,

following the formulation of Gibbs random field [30,95,96] (GRF) the (3.1) can be expressed

as:

P (v|I) ∝ P (v)P (I|v) (3.2)
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with

P (v|I) =
1

Ztot
exp (−Etot) , (3.3)

P (v) =
1

Zint

exp (−Eint) (3.4)

and

P (I|v) =
1

Zext
exp (−Eext) , (3.5)

where the normalization constants Ztot, Zint and Zext are normalization constants. Theo-

retically, the true converged solution vc representing the boundary of a 2D/3D object can

be obtained by maximizing the posterior (3.2), P (v|I) (MAP problem):

vc = arg max
v

(P (v|I)) (3.6)

or minimizing (3.1), the total energy of the parametric deformable model.

However, the desired solution vc of (3.6) typically lies in a complex solution space

with a significant chance of being trapped in a local minimum, especially in the presence

of outliers. Further, no closed form solution of (3.6) is known. Hence, usually iterative

minimization techniques [20, 30, 95, 96] including simulated annealing have been proposed

to obtain the minima of (3.6). For illustration, the work flow of traditional iterative

minimization techniques to solve (3.6) is described in the top panel of Fig. 3.1 using a flow

diagram, where variational approaches [20,36,95,96] are adopted to find the final converged

solution vc, iteratively. Essentially, each iteration of these variational methods finds an

intermediate solution in the local neighborhood of the previous solution (ΩMAP (vp)). These

iterative methods are inherently slow and are local in nature. Therefore, a fast, large and

outlier robust method to solve the MAP problem is essential.

The complex, nonlinear nature of this MAP problem makes an optimal, non-iterative

method essentially impossible, however the key insight is that the two parts (prior and

measurement) of (3.6) can, in fact, be individually optimized in a non-iterative fashion

within a specified search space. Although the overall algorithm remains iterative, alternat-

ing between the external and internal criteria, each iteration converges far more rapidly

than the direct iterative solutions to (3.6).

Based on these ideas, this thesis proposes a decoupled deformable model (DDM) which

solves this MAP problem in two separate steps.
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Fig. 3.1: Demonstration of the work flow of the conventional methods and the new decou-

pled deformable model (DDM). The traditional techniques use iterative local variational

techniques to find a desired solution vc, iteratively. Where each iteration of these local

techniques obtain an intermediate solution vk+1 using a local solution space ΩMAP (vp) (top

panel). However, each iteration of the DDM (bottom panel) separates the prior from the

measurement and first, finds an approximate solution vmk+1 using a maximum likelihood

(ML) estimator from a large solution space ΩML(vp) as demonstrated in Fig. 3.2. Then,

DDM enforces a predefined prior P and noise statistics R into the approximate solution

vmk+1 using a statistical estimator Z. These two steps of DDM are iteratively performed

until a desired converged solution vc is obtained.

1. First, DDM applies a maximum likelihood (ML) estimator to find an approximate

solution vmk+1 in the vicinity (ΩML(vp)) of the previous solution (vp), by ignoring the

prior.

2. Second, DDM adopts a statistical data fusion technique to enforce a predefined prior

into the solution obtained from the first step.

These two steps of DDM are performed iteratively to find a converged solution vc as

described in the bottom panel of Fig. 3.1. DDM needs several iterations to find the desired

boundary of a complex and high curvature object and also to make the measured boundary
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less dependent upon the size of the search space.

The key differences between the conventional and the proposed approach of solving (3.6)

are demonstrated in Figs. 3.1 and 3.2, and are summarized below.

1. As illustrated in Fig. 3.2, each iteration of DDM uses a large neighborhood ΩML(vp)

compared the local neighborhood ΩMAP (vp) of traditional methods to find an inter-

mediate solution.

2. Each iteration of DDM uses a large ML estimator compared to the local variational

approach of the conventional techniques to find an approximate intermediate solution.

3. The ML solution space of DDM is simpler compared to the MAP solution space of

the conventional methods, as a result DDM is less likely to be trapped to a local

minimum compared to the conventional approaches.

4. Since, DDM uses a larger search space ΩML(vp) (Fig. 3.2) compared to the conven-

tional techniques, therefore, DDM is anticipated to take significantly fewer iterations

than the conventional techniques to converge to a desired solution.

Following the concepts of DDM, novel 2D/3D boundary identification methods are devel-

oped in subsequent chapters.
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vp

ΩMAP (vp)
ΩML(vp)

vp

Fig. 3.2: Search space of the conventional approaches and DDM. The local (left, ΩMAP (vp))

and the large (right, ΩML(vp)) search space of one iteration of conventional methods and

the proposed DDM are demonstrated. The search area (grey) is defined around a previous

solution (white curve) vp for both conventional approaches and DDM. To accelerate the

convergence rate and to avoid local minima, DDM uses a wider search area and a ML esti-

mator compared to the local search space and local variational techniques of conventional

approaches.
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Chapter 4

Decoupled Active Contour (2D)

Finding a method to consistently identify the accurate boundary of a 2D complex object

in the presence of noise and background clutter has been a challenging problem [75, 79],

and current boundary extraction techniques proposed for addressing this challenge have

shown a number of drawbacks as shown in (3.5) (Chapter 2.4). This chapter proposes

and implements the decoupled active contour (DAC), a DDM in 2D designed to tackle

the limitations of existing boundary identification approaches described in Section 2.4.

By addressing these limitations, decoupled active contour aims to achieve the first five

objectives specified in Section 2.5.

To validate the claims made regarding DAC in Section 2.5, the performance of DAC is

compared with three state-of-the-art segmentation algorithms [20,21,40] using three testing

strategies. The first test is a comprehensive quantitative segmentation accuracy evaluation

on the Weizmann database [97] (Subsection 4.4.4). The second test is a quantitative

evaluation of boundary identification accuracy and convergence speed using natural and

synthetic images (Subsection 4.4.5). The third test demonstrates the capabilities of DAC

through illustrative examples (Subsection 4.4.6). The experimental results show that DAC

is capable of achieving a dramatic improvement over existing parametric active contour

approaches across all five objectives involving high curvature, noise, parameter sensitivity,

initialization and speed. Furthermore, compared to non-parametric approaches, DAC can

achieve improved segmentation accuracy for single objects in the presence of noise and

background clutter with lower computational cost.

To achieve these objectives and to overcome the slow convergence rate of traditional
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parametric active contours an effective solution technique would be desirable. This effective

solver, known as DAC, is designed in this chapter following the concepts described in

Chapter 3. The DAC simplifies the optimization step by first ignoring the prior and

employing a maximum likelihood (ML) estimator to obtain a sub-optimal solution (vm)

that is consistent with the measurements, second generating a non-stationary prior to

satisfy high curvature (convex and concave) boundaries, and third by asserting the non-

stationary prior via a Bayesian linear least squares estimator.

The DAC method consists of three steps, illustrated in Fig. 4.1.

Step 1: Measurement. The measured boundary finding problem is modeled as an

HMM and a Viterbi search is used to find the solution by dynamic programming. In

the absence of image noise and shape prior, the Viterbi [98] search will identify all of

the strongest local boundaries. Details are developed in Section 4.1.

Step 2: Resampling. If active contour vertices are uniformly spaced on the curve, there

will be an excess of vertices in areas of gentle curvature and too few vertices in areas of

high curvature. To make a single algorithm work in both smooth and high-curvature

portions of a curve, a non-stationary prior is essential, which is accomplished by

placing more active contour vertices in high-curvature areas, weakening the prior, and

fewer in smooth areas, strengthening the prior. Therefore the curvature of the Viterbi

boundary is computed and importance sampled to generate non-uniform samples.

Details are developed in Section 4.2.

Step 3: Statistical Estimation. The non-stationary prior constraints need to be traded-

off against the strength and significance of the image gradients. The fused curve is

estimated statistically, as described in Section 4.3.

4.1 Step 1: Measurement

Although a large number of techniques [20–22,24,37,39,40] for object boundary extraction

have been proposed, most of these methods employ local iterative strategies to identify

the converged boundary. By using local iterative strategies, these methods often converge

to the wrong boundaries caused by local minima. To avoid such a scenario, DAC first
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Fig. 4.1: Flow diagram of DAC. The top left panel shows the initial boundary (white circle).

The three important steps of DAC: finding the measured boundary using an hidden Markov

model (step 1), generation of non-stationary boundary (step 2), and statistical estimation

(step 3) are shown. The stopping criterion is determined by measuring the error between

the current and previous boundaries. The final converged boundary is shown in the bottom

right panel.

computes a non-local approximate measured boundary by ignoring the prior. This section

introduces a practical solution technique to find the measured boundary vm based on the

following formulation:

vm = argmax
v

(P (Eext|v)) , (4.1)

where v is a random field and P (Eext|v) is the likelihood function of the random field as

described in Chapter 3. To efficiently solve 4.1, the measured boundary extraction problem

is formulated as an Hidden Markov Model (HMM) on a discrete space, which allows the

solution to be found using a standard Viterbi search [98]. The initial and important step

involved in HMM [99] is the generation of the solution or the search space or the trellis.

The generation of the trellis can be described as follows. To precisely locate the bound-
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ary of complex high curvature objects, it is essential to carry out the three main steps of

DAC for several iterations. Therefore, to avoid undoing the work done by previous itera-

tive updates, the search space needs to be constrained to seek an optimum in the vicinity

of vp, which denotes the solution obtained by the previous iteration. Generation of the

trellis begins by discretizing the random field v using a collection of q− 1 discrete straight

segments with q discrete locations (the head and tail of the active contour do not have to

be connected):

v0 = {vj} = {v(sj) = vj|wj=0 = (xj,0, yj,0) = (xj, yj)}, j ∈ [1, · · · , q], sj ∈ [0, 1]. (4.2)

The trellis or the search space is defined with reference to the initial solution v0.

wj = −2 wj = −1 wj = 0 wj = 1 wj = 2

vj = vj|wj=i=0 = [xj,i=0, yj,i=0] = [xj , yj ]

vj−1 = v(sj−1)

vj=1 = v(sj=1) = vj=q = v(sj=q)

vj=2 = v(sj=2)

vj+1 = v(sj+1)

vj|wj=i=2 = [xj,i=2, yj,i=2]

wj = i ∈ [−u
2 , · · · , u

2 ]

Fig. 4.2: Description of DAC terminology. sj ∈ [0, 1] where j ∈ [1, · · · , q] is the normalized

discretized arclength along the active contour; vj|wj=i = vj,i ∈ R2 is the position of a node

in (x, y) space. The jth normal is constructed at sj, with u + 1 possible values (small

circles) for the active contour at that normal. The index j varies along the deformable

model while the index i varies along the normals. A complete trellis is shown in Fig. 4.3.

As illustrated in Fig. 4.2, at each of the q discretized deformable model locations, a

set of u + 1 nodes are defined lying normal to the initial curve vj|wj=0, j ∈ [1, · · · , q]. The
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Fig. 4.3: Circular trellis (hidden Markov model (HMM)) with an initial active contour of

random field (v0) (dotted grey circle), one possible, albeit unlikely active contour (jagged,

dotted grey), normals (grey lines) and nodes (small circles along the normals). This trellis

present q normals with each normal containing u+ 1 number of nodes. Therefore, in total

qu+1 possible active contours (solutions) can be generated from this trellis using (4.4).

positions of the nodes of the trellis along the normals in 2D are computed as

vj,i = vj,i=0 + i× nj, j ∈ [1, · · · q], i ∈ [−u
2
, · · · , u

2
], u is even, (4.3)

where vj,i ∈ R2 is the position of a node in (x, y) plane. The positions of these node in a

1D manifold can be represented as

vj|wj=i = vj|wj=0 + wj × nj, j ∈ [1, · · · q], i ∈ [−u
2
, · · · , u

2
], u is even (4.4)

where the unit normal nj for node j is computed as

nj = [nxj,0 , nyj,0 ] =
[−∆yj,∆xj]

(∆y2
j + ∆x2

j)
1
2

, (4.5)
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where ∆xj = xj,0 − xj−1,0 and ∆yj = yj,0 − yj−1,0. As presented in Fig. 4.3, qu+1 number

of potential boundaries can be generated by varying the states wj = i ∈ [−u
2
, · · · , u

2
] of the

normals j ∈ [1, · · · , q].

As shown in Fig. 4.4, constant-length normals lead to the possibility of a self-intersecting

curve. To deal with this problem, an approach similar to the dual front propagation

(a) Constant length normals (b) non-crossing normals

Fig. 4.4: Left, constant length lines (black lines with circular grey nodes) normal to the

curve v (black) at the locations j ∈ [1, · · · , q]. Right, non crossing pruned normals obtained

from (a). Constant length normals cross with each other. As a result these normals can

create loops in the measured boundary. Hence, to avoid the unwanted loops in the measured

boundary the constant length normals are pruned iteratively as shown in (b).

technique [100] is initially tried, where a medial axis growing and shrinking technique is

used to generate a search space. However, such an approach is computationally expensive

and fails to grow normals outwards from the curve in areas of high curvature. Instead,

the length of the normals are iteratively tested and pruned until a set of non-intersecting

normals is obtained. A set of non-intersecting normals corresponding to Fig. 4.4(a) is

illustrated in Fig. 4.4(b).
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Fig. 4.5: First- and second-order trellis, where w1, w2, . . . , wq are the hidden states, and

ψ(wj) = ψwj=i,j are the observations. The second-order trellis, bottom, has a far higher

representation, storage, and computational complexity than the first-order trellis, top. In

both cases, u = 2.
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Given this set of non-intersecting normals, the exhaustive set of (u+1)q possible curves

over which to optimize may be represented as the possible transitions through an ordered

graph, as shown in Figs. 4.3 and 4.5. Let the jth state be expressed as

wj ∈
[
−u

2
, . . . ,

u

2

]
, j ∈ [1, · · · , q], u is even. (4.6)

This means that wj selects one of the u+1 evenly distributed nodes a given active contour

passes through at each of the q normals. Given a sequence of states

w = [w1, w2, . . . , wq], (4.7)

if the energy of this state sequence can be determined, then a basis to find the optimal w

can be found. Efficient solvers of such graph problems, such as the Viterbi method [98,99],

allow a cost to be associated with each state value wj, and with each state transition

wj → wj+1. To assert prior models with penalties involving more than two successive state

values (such as a penalty on curvature) is possible. For example a penalty on curvature

(second term of (2.7)) would require three successive vertices. To accomplish this, one of

two options are possible.

1. Let each state represent a pair of vertices, with the consequence that the size of the

graph explodes (see bottom panel of Fig. 4.5), or

2. Let the optimization of Eext be separated from the assertion of the prior and just use

a simpler graph (see top panel of Fig. 4.5). This is the proposed approach for DAC.

The HMM will therefore be limited to simple inter-point constraints. Since the active

contour prior is to be asserted later, at this point only the length of the active contour is

penalized, such that the state transition probability is represented by

P (wj, wj+1) =
1√

2πσs
exp

(
−‖∆v(wj, wj+1)‖

2σ2
s

)
=

1√
2πσs

exp

(
−
∥∥vwj − vwj+1

∥∥
2σ2

s

)
, (4.8)

where

vwj |wj=i = (xj,i, yj,i)
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represents the vertices along the active contour, and therefore ‖∆v‖ is the corresponding

arclength between two successive vertices on the active contour. The term σs represents

the spatial standard deviation and is computed from the distribution of Euclidian dis-

tances between all pairs of nodes between the jth and (j + 1)th normals. The transition

probability (4.8) discourages spiky boundary by limiting the perimeter of the deformable

boundary.

An alternate transition probability might be the integral of edge map weighted arclength

(
∫ vwj+1

vwj
ψds) between vwj and vwj+1

, where ψ = 1/(1 + g) is the edge map of the image.

This has the benefit of evaluating the edge map along each arc, rather than only at discrete

vertices, however computing the edge map information along each arc is a computationally

intensive process, and in practice is found to offer little to no benefit over the proposed

approach based on Euclidian distance.

Next, the state probability for wj must be related to the external energy (normally

related to the image gradient g) at the state location vwj , thus the state probability is

defined as

P (ψ(wj)|wj) =
1

σψ(wj)

exp

(
−ψ(wj)

σψ(wj)

)
(4.9)

where the measurement is defined as

ψ(wj) =
1

1 + g(wj)
(4.10)

and σψ(wj) is the standard deviation of the measurements along the normal j and computed

locally from ψ(wj). g is calculated as per (2.13). The observation probability (4.9) attracts

the nodes towards object boundaries.

At this point we have a first-order lattice (Fig. 4.5(a), top) with state and state-

transition probabilities defined. In principle, the optimum contour can be found by solving

the joint maximization

max
w1,w2,···wq

P
(
w1, w2, · · · , wq

)
. (4.11)

However, in practice there is no need to find the optimum, particularly because the

proposed algorithm remains iterative, and because (4.11) is only one part of the complete

criterion (4.12):

vc = arg max
v

(P (v|Eext)) . (4.12)
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Therefore, finding a sub-optimal path using the Viterbi algorithm [98], as described in

Algorithm 1 is preferable.

Since the Viterbi search [98] is a sub-optimal algorithm, it is dependent on both the

initial state w1 and the ordering of the vertices. In principle this dependence could be

removed by minimizing over all initial states and ordering, however experimentally added

little in terms of accuracy, but greatly in terms of computational burden. By increasing the

computational cost of the Viterbi method from O(u2q) to O(u2q2), where typically q = 300,

and where the Viterbi method accounts for approximately half of the total complexity of

DAC, this minimization slows the method by a factor of approximately 150. Given the

limited benefit and considerable cost, and given the robust convergence seen in the results,

a regular Viterbi [98] method is proposed to identify the measured boundary.

The state sequence wmj , j ∈ [1, · · · , q] resulting from the Viterbi optimization gives rise

to the sub-optimal curve

vmj = vm(sj) = (xj,wmj , yj,wmj ), j ∈ [1, q], sj ∈ [1, · · · , q]. (4.13)

4.2 Step 2: Resampling

Active contours generally consider stationary elastic and thin-plate constraints to consti-

tute the prior model of the object. Such a prior represents a poor hypothesis for complex,

high curvature objects because the degree to which prior smoothness should be asserted

varies with the boundary curvature.

For handling contours of high curvature, Wong et al. [32] proposed a segmented active

contour model, which follows a dual optimization approach, with a rough estimate obtained

using a classical active contour, followed by a recursive split and merge approach. Such an

approach to capture high curvature boundaries seems to be ad hoc.

In contrast, DAC approximates the smoothness of complex boundaries using stationary

elastic and rigidity constraints, but with non-stationary sampling intervals of the vertices

along the active contour, which will ensure more samples (with correspondingly shorter

active contour segments) near high curvature regions.

40



Algorithm 1 [vm] = Function Viterbi(v)

1: Create the 2D trellis using v as the initial solution;

2: Compute the initial observation probability P (ψ(w1)|w1) using (4.9);

3: Initialization: j=1, Θ(w1) = P (ψ(w1)|w1),Γ(w1) = {0} and w1 = [−u
2
· · · u

2
];

4: while j ≤ q do

5: Compute the observation (P (ψ(wj)|wj)) and the transition probability P (wj, wj+1)

using (4.9) and (4.8);

6: Θ (wj+1) = max
wj

(Θ(wj)× P (wj, wj+1))× P (ψ(wj)|wj);
7: Γ(wj+1) = arg max

wj

(Θ(wj)P (wj, wj+1));

8: j = j + 1;

9: end while

10: Termination: wmq = arg max
wq

(Θ(wq)) , v
m
q = (xq,wmq , yq,wmq );

11: j = q − 1;

12: while j > 2 do

13: wmj = Γ(wmj+1), vmj = (xj,wmj , yj,wmj );

14: j = j − 1;

15: end while

The curvature κ of a parametric curve v(s) = (x(s), y(s)) is defined as the rate of

change of the tangent angle and is expressed as

κ(s) =

∣∣∣∣∂2v

∂s2

∣∣∣∣ . (4.14)

From [101], (4.14) can be rewritten locally as

κ (s) =
∂x(s)
∂s

∂2y(s)
∂s2
− ∂y(s)

∂s
∂2x(s)
∂s2(∣∣∣∂x(s)

∂s

∣∣∣2 +
∣∣∣∂y(s)
∂s

∣∣∣2) 3
2

, (4.15)

where the derivatives are computed numerically using forward differences. Given the

Viterbi boundary vm, we can use discrete derivatives in (4.15) to compute the sampled

curvature κ = {κj} = {κ(sj)}, sj ∈ [0, 1]. For DAC, the vertices are resampled with a

sampling density proportional to the negative exponential of curvature:

∆v(sj) = ∆vj =
l1
σκ

exp

(
−|κ (sj)|

σκ

)
, (4.16)
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where ∆v(sj) = ∆vj = ‖vj − vj−1‖ is the discrete arclength of an individual segment of

curve v and σκ is the standard deviation of sampled curvature κ.

If we fix q, the total number of vertices, then the proportionality parameter l1 is set to

preserve the arclength of the curve.

Since arbitrarily high curvature is possible, leading to arbitrarily fine discretization, for

practical reasons the discretization interval needs to be limited as

∆vm(sj) =


∆vmax if ∆v(sj) > ∆vmax

∆vmin if ∆v(sj) < ∆vmin

∆v(sj) otherwise,

(4.17)

where
1

∆vmax

� q � 1

∆vmin

(4.18)

to generate q samples vm having a sampling interval of ∆vm(sj), where the conditions (4.17)

and (4.18) imposed on vm are satisfied using an ad hoc trial and error algorithm.

Fig. 4.6 illustrates the resampling procedure. The inverse relationship between curva-

ture and sampling interval are displayed in panels (b) and (c). The maximal and minimal

extents of the sampling interval are determined by the user.

4.3 Step 3: Statistical Estimation

Because of the complexity of introducing all but the most trivial shape priors into the

Viterbi boundary extraction, the calculation of vm have not permitted the assertion of a

meaningful prior. Therefore, to limit the computational complexity of the Viterbi step,

but to retain the assertion of a prior, a separate step of fusing a shape prior into vm is

required.

Because each element of v is, itself, an n-vector coordinate vmj = (xmj , y
m
j ), to talk

about the estimation of v is mathematically ambiguous. Therefore, the estimation of the

components x,y will be explicitly discussed. Let ve = (xe,ye) be the true and unknown

discretized deformable model vertices that need to be estimated, considering ve to be a
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s=0=1

(a) Example active contour
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(b) κ vs. s (c) ∆v(s) vs. s

Fig. 4.6: (a) A Viterbi boundary. (b) Absolute value of the curvature along the length of

the active contour. (c) Arclength of each segment. The circular dots identify six prominent

high curvature boundary vertices.
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random vector with the components of ve satisfying a normally distributed prior model Λ

with mean µ:

xe ∼ N(µx,Λ), (4.19)

and

ye ∼ N(µy,Λ). (4.20)

Assuming a linear relationship between the measured and true states, the extracted and

resampled measured boundary vm representing the measurements of ve can be expressed

as:

xm = Cxx
e + νx (4.21)

and

ym = Cyy
e + νy, (4.22)

where Cx = Cy = I are identity matrices, since each vertex entity is measured, and where

ν = [νx,νy] is the measurement noise, itself having statistics

νx,νy,∼ N(0, R). (4.23)

A Bayesian estimate [102,103] of v for each component of v can be obtained by minimizing

the expected error norm, such that

x̂ = µx +
(
R−1 + Λ−1

)−1
R−1 (xm − µx)

= µx +Kg (xm − µx) , (4.24)

and

ŷ = µy +
(
R−1 + Λ−1

)−1
R−1 (ym − µy)

= µy +Kg (xm − µy) . (4.25)

The term Kg = (R−1 + Λ−1)
−1
R−1 is the Kalman gain, weighting the measurement resid-

ual, while the noise covariance matrix R decides the uncertainty of the measured locations.

A detail derivation of (4.24) is provided in the appendix A.

The remaining task is to select µ, Λ and R, discussed in the next section.
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Algorithm 2 [Q] = GetQ(q)

for j = 1 : q do

` = k − 2 : k + 2;

Use circular boundary condition to accommodate boundary vertices;

Q(j, `) = [−β, α + 4β,−2α− 6β, α + 4β,−β];

end for

4.3.1 Bayesian Model Determination

The active contour literature [20,21,23,35] considers the constraints on boundary curvature

as the prior model of the object boundary. In practice, such prior models are obtained

using an extensive training approach [104]. However an unsupervised, broadly applicable,

and non-stationary prior is preferred.

In practice, the continuous integral of some function of v(s) is replaced with a discrete

norm over the sampled active contour v:

‖Ax‖2 + ‖Ay‖2 ≈
1∫

0

(
α (s)

∣∣∣∣∂v∂s
∣∣∣∣2 + β (s)

∣∣∣∣∂2v

∂s2

∣∣∣∣2
)
ds. (4.26)

Each row of A asserts some discretized constraint on x or y, where A is banded (here penta-

diagonal, for a second-order constraint). The inverse relationship between prior constraints

and prior covariance leads to the constraints A implicitly specifying the prior as

Λ =
(
ATA

)−1
. (4.27)

The total penalty
(
ATA

)−1
can be defined using a penta-diagonal matrix Q such that:

Q =
(
ATA

)
= Λ−1. (4.28)

Although the weighting factors α(s) and β(s) are treated as constants, a non-stationary

prior is acquired by placing the measured samples non-uniformly on the object boundary,

as will be explained in Subsection 4.3.2. The matrix Q containing the prior constraints is

computed using Algorithm 2. The deterministic portion of the prior model is the mean, µ.

One would normally consider µ = 0 in the absence of any specific deterministic knowledge

of the contour shape. However, µ can be used to create biases in active contour evolution,
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leading to expansion or contraction forces. The mean µ = (µx,µy) is defined as

µx = µcx + (1 + τ ) δx, (4.29)

and similarly for µy, where µc is the center of mass of vm, and δ is a circle of points with a

radius equal to the average separation of vm from µc. To avoid bias due to varying active

contour point densities, the shape center is normalized with respect to arclength:

µcx =


q∑
j=1

xmj |xmj+1 − xmj |
q∑
j=1

|xmj+1 − xmj |

 . (4.30)

The constant τ in (4.29) is a growth factor on the average radius, creating an expanding

force if τ > 0, and a contracting force if τ < 0, motivated from the balloon force active

contour [23].

With a prior model (µ,Λ) defined, the key question is the relative weighting of the mea-

surements versus the prior in (4.25), a weighting which is controlled by diagonal covariance

R, where

Rjj = r (vm(sj)) . (4.31)

For DAC, the variances are treated as a function of their respective image gradients, such

that the larger the gradient magnitude g (2.13), the more certain the measurement and the

closer R is to zero. The limiting cases of the measurement variance should be approximated

by

r(g) =


rmax if g = 0

rmax

2
if g = µg

0 if g =∞
, (4.32)

a relationship easily satisfied using

r(g) = rmax
f(g)

1 + f(g)
, (4.33)

where

f(g) =
1

σg

exp

(
−g − µg

σg

)
. (4.34)
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The rationale behind f is to scale r on the basis of the average gradient µg and standard

deviation of gradients σg along the observed boundary vm in the image. Because noise

pixels do not form a continuous boundary, therefore near a noisy region the value of g is

smaller, and that of σg larger, leading to a larger value of r, implying lower measurement

certainty.

The effectiveness of this gradient-sensitive measurement variance is demonstrated in

Fig. 4.7. In particular, Fig. 4.7(b) shows the convergence of the active contour by the

use of fixed R = I, meaning that this fixed R fails to discriminate between the gradients

generated by noise and by an object. In contrast, using the image-dependent R from (4.33),

the measurements are weakened in noisy regions, giving more weight to the prior, pulling

the active contour away from such regions, leading to the excellent convergence shown in

Fig. 4.7(c).

To better understand the role of measurement variance, Fig. 4.8 plots the measurement

noise variance (R) for images D, E, H, I, J and M of Figs. 4.10, 4.11 and 4.12; these images

are chosen for their varying contrast, non-homogeneity, noise, and background clutter.

For uniform contrast foreground and background images (H and J), r is similar to a step

function, because the distribution of image gradient magnitude follows a narrow band

(lower σg). For nonuniform contrast and noisy images (D, E and I), r changes towards a

inverted sigmoid function, due to a larger variance in the distribution of image gradient

magnitude. For background cluttered images (M), r is significantly different due to larger

values of the mean and variance of image gradient.

4.3.2 Non-Stationary Prior

The prior actually developed in Subsection 4.3.1 has constant α(s) and β(s), and is there-

fore stationary. An argument for a non-stationary prior is motivated in Section 4.2, leading

to the rationale for importance sampling. Here, this claim will be evaluated.

Recall from (A.1) the prior

x ∼ N(µx,Λ) ≈ N
(
µx, (A

TA)−1
)

(4.35)
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(a) Initial solution

(b) Solution for fixed R = I (c) Solution for variable R using (4.33)

Fig. 4.7: Demonstration of the role of measurement noise co-variance (R) in the conver-

gence of active contours in the presence of noise. Panel (a) shows the initial active contour

overlapping the square object of interest beside a noise cloud. Panel (b) shows the erro-

neous solution generated with fixed R = I. Panel (c) shows the correct solution using

variable R from (4.33). Because the calculated gradient is spatially averaged, gradients

near continuous (true) boundaries are stronger than those at discontinuous (noisy) ones.
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Fig. 4.8: Examples of measurement noise variance r(g) as a function of image gradient for

images D, E, H, I, J and M in Figs. 4.10, 4.11 and 4.12.

where A is a linear penalty term,

‖Ax‖2 ≈
1∫

0

(
α (s)

∣∣∣∣∂x∂s
∣∣∣∣2 + β (s)

∣∣∣∣∂2x

∂s2

∣∣∣∣2
)
ds (4.36)

such that A synthetically approximates the first and higher derivatives on the basis of

local differences. Correctly computing a discrete derivative requires taking into account

the sampling interval. However because the constraint, represented by A, is stationary,

and does not take the interval into account, therefore the effective result is to induce a non-

stationary discretization of the derivative, essentially meaning that α(s) is space-varying,

an increasing function of discretization interval.

The resulting phenomenon is illustrated in Fig. 4.9. Suppose we have sinusoidal mea-

surements, but a zero (flat) prior. For fixed values of α and β, as the number of mea-
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surement points increases the influence of the prior on the sinusoidal measurements drops,

implying a weaker prior. As the samples become sparser, the regularized curve flattens.

The net result is an inherently space-varying prior model, penalizing more strongly in areas

of low curvature, and less so in areas of higher curvature.

0 1
s

X
(s

)

 

 

Fig. 4.9: Illustration of regularization as function of the number of samples with constant

penalty factor (α(s), β(s)) and R. As the number of samples decreases the curve inherently

becomes more smooth as the prior is asserted more strongly.

The pseudo-code for the complete DAC approach is provided in Algorithm 3.

4.4 Testing and Results

This section describes the experimental dataset, methods compared, experimental setup

and demonstrates quantitative and qualitative evaluation of DAC compared to three pub-

lished methods.
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Algorithm 3 [vc] = Function DAC(v0)

1: k = 0, ASD = ∞, ε = 10−4, vek = v0;

2: while ASD ≥ ε do

3: k = k + 1, [vmk ] = Viterbi(vek−1);

4: Update vmk applying importance sampling on vmk following Section 4.2;

5: Estimate vek using linear Bayesian estimator (4.25) (Section 4.3);

6: ASD = GetASD(vek,v
e
k−1);

7: end while

8: Assign vc = vek;

4.4.1 Evaluation Dataset and Criterion

Three types of tests are established for evaluating the performance of DAC. Test “A”

(Weizmann database [97]) evaluates the average segmentation accuracy of DAC compared

to other methods. Test “B” (twenty-one natural and synthetic images) evaluates the

quantitative and measured boundary identification accuracy and computational cost. The

twenty-one images selected for Test “B” depict various characteristics: 1) complex back-

ground and object of interest with weak edges (Images A and D of Fig. 4.10, and R and

T of Fig. 4.20), 2) natural and synthetic high curvature images (Images C-H of Figs. 4.10

and 4.11, and N-Q of Fig.4.16), and 3) synthetic and natural, noisy and cluttered images

(Figs. 4.12 and Fig.4.16). Test “C” evaluates DAC capabilities mentioned in Section 2.5

through illustrative examples.

4.4.2 Methods Compared

The performance of DAC is compared to the traditional active contour (TS) [20], gradient

vector flow snake (GVFS) [21] and active contour without edges (ACWE) [40] using Chan-

Vese model. The current DAC implementation is designed for unsupervised segmentation

of a single complex object in noisy and cluttered environments. The theory behind DAC is

derived from traditional active contour concepts, so TS is considered for a base comparison.

GVFS increases the capture range making these approaches less sensitive to initialization.

Non-parametric active contour bases approaches [35–37,40] usually employ more global

information in defining object boundaries and can outperform parametric active contours.
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Therefore, ACWE [40], a region based approach that is able to capture high curvature

regions, is tested. Further, ACWE is designed to work on noisy images by employing a

smoothing model to extract the active contour, so ACWE provides a basis on which to

evaluate DAC’s noise robustness.

For completeness, a sample image is used to compare DAC to level set [37] (LS),

intelligent scissors (IS) [9], and greedy snake (GS) [88] methods. These methods have

characteristics that do not support extensive test comparisons to DAC. LS is designed for

multiple-object segmentation and over-segments the single-object images of this paper. IS

requires user interaction, whereas DAC and other methods are unsupervised. GS is tested

across all test images, but is unable to segment any image properly.

4.4.3 Experimental Setup

For comparison purposes, published MATLAB code for TS [20], the GVFS [21] and

ACWE [40] are downloaded from [105] and [106]. The codes obtained from these web-

sites are written for experimental research purposes without optimization. These codes

have been modified using MATLAB vector optimization to allow fair speed comparison

with DAC.

The initial location of the active contour is specified manually for all images in Test

“B” as shown in Figs. 4.10, 4.11, 4.12, 4.13 and 4.16, while for Test “A” the initial active

contour is always chosen as an ellipse. For DAC, TS, and GVFS, the snakes are initialized

with q = 250 discrete vertices. The suitable range of parameters for TS and GVFS are

chosen from [21]. Since ACWE is a region based approach, ACWE is initialized with a

closed circular area as shown in Figs. 4.10, 4.11, 4.12, and 4.16, and the optimal parameters

are chosen from [40]. For all methods but DAC, σs is set using the value provided in the

respective papers. For all experiments, DAC uses rmax = 2000, ∆vmin = 0.5 and ∆vmax = 8,

α = 1, β = 0.5, τ = 0, ε = 10−4 and σs = 0.5. For each normal, the number of nodes u is

automatically selected so that the normal touched no other nearby normal. The u nodes

on each normal are separated by one pixel. Experiments are performed on a 2.4 GHz, 1G

RAM, Intel P4 computer.
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Table 4.1: Single Segment Average F-measure score (mean ± standard deviation) of DAC,

GVFS [21] and TS [20] over 100 images and 94 images suitable for parametric methods.

These 100 images are collected from Weizmann database [97].

Algorithm Average F-measure score

Over 100 images Over 94 images

DAC 0.88±0.060 0.93±0.040

GVFS 0.75±0.120 0.80±0.10

TS 0.72±0.153 0.76±0.13

4.4.4 Test “A”: Segmentation Using Weizmann Database

This thesis evaluates the segmentation performance of DAC on the Weizmann database [97]

consisting of 100 images, each of which contains one foreground object, differing from the

background on the basis of intensity, texture, or other low level cues. The single object F-

measure score [97], a popular segmentation accuracy measure index, is shown in Table 4.1

along with its standard deviation. The F-measure score evaluates the performance of a

segmentation algorithm by assessing its ability to correctly segment an object relevant to

the ground truth from those that are not relevant to the ground truth.

From the results, the Weizmann database images are found to be not suitable for

ACWE [40], because of the variations in intensities of the foreground object. Therefore,

this thesis has not reported the F-measure score of ACWE. The methods tested here (DAC,

GVFS, and TS) only consider the grey level yet low level features are required to properly

segment six of the images. Therefore, the F-measure score [97] for all 100 images and for

94 images suitable for parametric methods is shown in two separate columns of Table 4.1.

Over the 100 images in the database, DAC provides higher accuracy relative to the other

two tested methods.

4.4.5 Test “B”: Boundary Accuracy and Convergence Speed

To measure the quantitative dissimilarity between converged boundary vc and true bound-

ary vt the average shortest distance (ASD) is used, defined as the average shortest distance
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A [107][256× 256] B [97][341× 256] C [108][341× 256] D [97][341× 256]
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Fig. 4.10: Four active contour methods applied to four different images. Row 1 shows the

test images along with the common initial active contour. Rows 2 to 4 show results using

three other active contour methods [20,21,40]. Last row plots the boundary found by the

proposed DAC. In each panel, the white line with black border shows the final contour.
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E [109][256× 256] F[370× 256] G[370× 256] H [105][341× 256]
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Fig. 4.11: Four active contour methods applied to four different images. Row 1 shows the

test images along with the common initial active contour. Rows 2 to 4 show results using

three other active contour methods [20,21,40]. Last row plots the boundary found by the

proposed DAC. In each panel, the white line with black border shows the final contour.
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Fig. 4.12: Four active contour methods applied to three different images. Row 1 shows the

test images along with the common initial active contour. Rows 2 to 4 show results using

three other active contour methods [20,21,40]. Last row plots the boundary found by the

proposed DAC. In each panel, the white line with black border shows the final contour.
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L[464× 256] M[260× 256]
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Fig. 4.13: Four active contour methods applied to two different images. Row 1 shows the

test images along with the common initial active contour. Rows 2 to 4 show results using

three other active contour methods [20,21,40]. Last row plots the boundary found by the

proposed DAC. In each panel, the white line with black border shows the final contour.
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Algorithm 4 [ASD] = GetASD(vc,vt)

ASD =
1

2q

√√√√ q∑
i=1

min
j=1,2···cn

(
‖vt(sj)− vc(si)‖2

)
+

1

2n

√√√√ n∑
j=1

min
i=1,2···q

(
‖vt(sj)− vc(si)‖2

)
.

(4.37)

of the converged boundary from the ground truth and ground truth from the converged

boundary and can be computed using Algorithm 4. The number of vertices on the con-

verged boundary (q) and ground truth (cn) are not necessarily equal.

The qualitative and quantitative results of DAC compared to ACWE [40], GVFS [21]

and TS [20] for both natural and synthetic images are presented in Figs. 4.10, 4.11, 4.12

and 4.13, and Table 4.2. Figs. 4.10, 4.11, 4.12 and 4.13 show separate images for the initial

contour and the final solution for all four methods. Table 4.2 shows the quantitative values

of ASD (4.37) and execution time (ET) for all four methods. Suitable test parameters

are chosen from the respective papers of all compared methods for as fair a comparison as

possible.

In Figs. 4.10, 4.11 and 4.12, DAC accurately detects the desired object boundary for all

images. Because of the non-stationary curvature-dependent prior (Λ) and image statistic

dependent measurement uncertainty R, DAC is able to differentiate between true high

curvature and the false high curvature (generated due to noise or background clutter) with

no parameter tuning. In Table 4.2, DAC is consistently significantly faster and with an

accuracy comparable to or significantly better than all compared methods.

ACWE successfully identified the region of interest for most images of Figs. 4.10, 4.11

and 4.12. As ACWE [40] employs a level set based curve evolution technique to solve the

Mumford-Shah model [73] with a piecewise constant approximation, such that the back-

ground and foreground can be represented using two constants. Therefore, ACWE model

does not use the gradient as the stopping criterion and instead uses intensity homogeneity

constraints. In the contrast, ACWE failed for images D, I, L and M because the region

of interest can not be described by a single constant (D), ACWE converges to a local

minimum generated by noise or clutter (I, M), and because the object of interest is not

properly closed (L).
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Table 4.2: Average shortest distance (ASD) in pixels and execution time (ET) in seconds

of DAC compared to three other methods using thirteen test images in Fig. 4.10, 4.11, 4.12

and 4.20. Bold and italic text indicate best and close to the best performance across all

methods for a particular image, respectively.

Average shortest distance (ASD) [pixels]

DAC ACWE GVFS TS

(A) 0.89 0.68 29.17 15.68

(B) 0.58 0.80 13.86 0.63

(C) 1.60 1.70 2.40 2.80

(D) 2.81 14.26 6.48 9.61

(E) 1.40 2.70 9.60 36.9

(F) 2.20 1.12 26.62 60.3

(G) 0.60 0.62 0.97 2.32

(H) 3.40 3.00 3.60 10.6

(I) 3.70 39.9 7.30 13.9

(J) 1.60 1.69 8.84 5.81

(K) 2.80 1.44 7.96 19.45

(L) 3.00 41.8 9.90 13.55

(M) 3.50 13.44 38.6 43.7

Execution time [seconds]

DAC ACWE GVFS TS

13 377 208 391

3 59 109 397

7 70 90 255

11 190 146 351

5 159 148 543

14 636 357 581

6 612 323 596

5 134 73 536

15 223 148 683

10 281 306 596

18 162 189 601

16 171 94 539

9 468 192 603

TS [20] failed to locate the true boundary for most images. TS uses an iterative gradient

descent optimization technique (same as for GVFS [21]); as a result, TS is sensitive to local

minima and has a slower convergence rate. Furthermore, TS uses local image gradient as

the external energy and, as a result, an initial solution far from the true solution may be

trapped or take a long time to converge.

To attract an initial active contour from a greater distance, GVFS uses a partial dif-

ferential equation based diffusion technique to spread out the external energy throughout

the image. As a result, GVFS is less sensitive to the initial solution and converges faster

compared to TS. The main cause for the failure of GVFS is twofold. First, the diffusion

function used for spreading the image potential does not work properly if the nature of the

gradient is not simple (Image A, B, D, E F and M). Second, high curvature boundaries
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Initial AC DAC IS [9]

LS [37] GS [88]

Fig. 4.14: Performance of DAC, intelligent scissors [9] (LS), level set [37] (LS) and greedy

snake [88] (GS) in a cluttered environment.

hinder the GVFS to converge towards the correct solution.

Finally, as a qualitative comparison to other methods, in Fig. 4.14 the segmentation

result of DAC is compared to level set [37] (LS), intelligent scissors (IS) [9], and greedy

snake (GS) [88]. IS is a user guided technique, therefore the segmentation accuracy of IS

depends upon the level of user interactions. Local minima generated due the background

clutter prevented the LS to converge towards the right solution. GS is sensitive to initial

solution and outliers, as a result it failed to identify the correct boundary of the circular

disc image of Fig. 4.14.

4.4.6 Test “C”: Evaluation of DAC Capabilities

This section experimentally assesses the DAC in terms of the first five criteria identified in

Section 2.5:

1. noise and background clutter,
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2. high curvature regions,

3. parameter sensitivity,

4. high curvature regions,

5. initialization sensitivity, and

6. stopping criteria and rate of convergence.

Robustness to Noise and Background Clutter

The performance of DAC in the presence of noise and background clutter is demonstrated

in Figs. 4.10, 4.11, 4.12 and 4.13 and Table 4.2 using natural and synthetic images. The

DAC accurately identifies the object boundary for all test images. Fig. 4.15 illustrates how

the proposed DAC differentiates between true high curvature and high curvature generated

due to noise. The first column of Fig. 4.15 shows two images, both having aspects of high-

curvature, either noise points (top panel) or the three vertices of a triangle (bottom panel).

DAC distinguishes between noise and true high-curvature segments in three ways:

1. Because the gradient is computed via convolution, as in (2.13), there is some degree

of smoothing, which reduces noise more than structure.

2. Because there is a minimum step size ∆vmin > 0, a given noise point will be felt by

zero, or at most one, measured vertices, whereas a curvature segment will be felt,

and constrained, by multiple measurements.

3. Finally, the computation of the measurement variance r in (4.34) leads to a prefer-

ence for curves along uniform gradients, rather than curves which encounter varying

gradient levels.

The limited number of measurements and greater value of σg allow DAC to pass through

vertices of noise and background clutter (image M of Fig. 4.13).
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Initial solution Intermediate solution converged solution

Fig. 4.15: Demonstration of DAC’s ability to handle false high curvature (top row) due

to noise and true high curvature (bottom row). Each panel shows the active contour,

superimposed on the image (or image gradient, in the intermediate case).

High curvature object boundaries

The ability of DAC to capture high curvature regions compared to ACWE [40], GVFS [21]

and TS [20] is tested on a set of five synthetic images in which a concavity is made tighter

and tighter, a problem of considerable difficulty for most parametric contours. Fig. 4.17

plots the ASD as a function of angle, and results for four of the images are shown in

Fig. 4.16. Only the ACWE and DAC perform well on this test set; the GVFS and TS fail

to capture the high curvature region as these are both parametric active contours that do

not incorporate a non-stationary prior to reduce the penalty near high curvature corners.

The DAC’s abilities to capture high curvature boundaries is demonstrated via natural

images (Test “B”) and the tests on the Weizmann dataset (Test “A”).
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Fig. 4.16: A test of convergence into a concave region, a challenging task for an active

contour algorithm. For the DAC, in last row, the dots plot the placement of sample

vertices illustrating the curvature-dependent sampling. Of the other three methods, only

the ACWE [40] performs similarly. The degree of convergence of the panels in this figure

is plotted in Fig. 4.17.
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Fig. 4.17: The ASD (Algorithm 4) as a function of V-angle for DAC, ACWE, GVFS and

TS from Fig. 4.16. The DAC and ACWE methods are similarly successful, although the

DAC outperforms at tighter angles.

Robustness to parameter selection

DAC uses a fixed set of parameters (α = 1 and β = 0.5 in (4.26)) for all of the images

in all of the experiments in this chapter. Although most existing methods [20, 21, 36, 40]

require the user to manually set a fixed prior and other parameters, a fixed prior is inappro-

priate for a non-stationary boundary, and image-dependent parameters are inconvenient

when working with varied images. The non-stationary prior inferred by the DAC from

importance sampling simplifies parameter issues significantly. Essentially, DAC translates

the problem of parameter tuning into the problem of seeking a good edge probability by

carefully choosing the measurement uncertainty matrix R and non-stationary prior Λ.

As discussed under Test “A”, DAC accurately and quickly identified the object bound-

ary for all of these diverse images without a single change to any parameter settings in all

cases.
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Contracting force (τ = −5) No external force (τ = 0)

No external force (τ = 0) Expanding force (τ = 5)

Fig. 4.18: Convergence pattern of DAC for a variety of initial positions given a U-shaped

object. For each case, DAC demonstrates insensitivity to initial active contour position by

converging to the correct solution in each case.

Robustness to initialization

Fig. 4.18 shows the convergence of four different initializations. Whether the active contour

expands or contracts is a function of the external mean µ (4.30) and (4.29). As shown in

Fig. 4.18, the term τ of (4.29) controls the expansion and contraction of DAC. In contrast,

the traditional active contour (TS) requires an initial active contour close to its solution

to ensure speed of convergence and accuracy [21]. Although GVFS increases the capture

range, the method is not able to find the correct boundary if initialized far from the true

boundary. These phenomena can be observed from Figs. 4.10, 4.11, 4.12, and 4.16. ACWE

is a region based approach, so it is not sensitive to initial positions.

65



Stopping criteria and convergence rate

The comparison of computational complexity is ambiguated by the difficulty of assessing

convergence in algorithms which converge very slowly. For all examples, as shown in

Table 4.2, DAC reached the ASD limit (ε = 10−4) quite quickly and so always terminated

on the basis of ASD convergence. The value of the ε is selected experimentally. For the

other compared methods, the slower convergence rate frequently led a simple threshold to

lead to early termination. Therefore, the convergence (termination of the active contour

evolution) for all images displayed in this chapter are tested manually.

A much more convincing demonstration, independent of stopping criterion, is shown in

Fig. 4.19, plotting ASD as a function of computation time. The convergence rate of DAC

is fast, roughly two orders of magnitude faster, compared to other methods as noted in

Table 4.2. Such an improvement in convergence rate offers potential for more advanced

segmentation tasks, such as real-time tracking or three-dimensional problems.

4.4.7 Parametric vs. Non-parametric Methods

Parametric and non-parametric methods of segmentation are fundamentally very different,

making any comparison awkward. Aspects of the trade-offs between the two approaches

are illustrated in images (R,S,T and U) of Fig. 4.20. Non-parametric active contours inher-

ently identify multiple object (R and S) and can capture high curvature boundaries, since

there is no explicitly modeled boundary. Similarly, non-parametric methods are robust

to non-uniform and low-contrast boundaries (R). In contrast, non-parametric approaches

can not handle discontinuous boundaries (S) and are usually computationally slower than

parametric methods.

The DAC make no claims regarding the superiority of DAC, or parametric methods

in general, over non-parametric ones. The claim is that for single-object segmentation in

the presence of clutter, DAC is able to outperform other parametric and non-parametric

methods, both in terms of convergence accuracy and computational complexity. Clearly

for multi-object images (R and S) and low-contrast settings (T), non-parametric methods

or parametric methods with multiple initialization are the more natural choices.
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Fig. 4.19: Convergence rate for different methods for brain image. Each method is able to

capture the true object boundary but with a different convergence rate. Red, white, and

blue lines (second row of Fig. 4.19) are the initial, intermediate and final active contour

positions respectively. The ASD from ground truth is shown in first row of Fig. 4.19.
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Fig. 4.20: Four active contour methods applied to four different images obtained from [21,

29,97,108,109]. Row 1 shows the test images along with the common initial active contour.

Rows 2 to 4 show results using three other active contour methods [20, 21, 40]. Last row

plots the boundary found by DAC. In each panel, the white line with black border shows

the final contour.
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4.5 Summary of DAC

A novel active contour method, the DAC, is designed for rapid and accurate boundary

extraction, despite image noise and complex object geometries. Each iteration of the DAC

is carried out in three steps: a Viterbi search to find the image gradients, importance

resampling to generate a non-stationary prior, and a Bayesian estimator to update the

boundary by incorporating prior shape constraints.

Validation of the DAC is demonstrated experimentally on noisy, cluttered natural and

synthetic images as well as a standard test database. DAC is demonstrated to be robust

to noise, requires no parameter tuning, is able to capture high curvature regions, and is

insensitive to initialization and has a much faster convergence rate than compared methods.

Of all of the parametric active contours tested for finding the boundary of a single object,

DAC is the only one which detected all boundaries accurately. The computational time of

DAC is lower relative to other parametric and non-parametric active contours.

One limitation of parametric approaches (such as DAC) is that each active contour

is designed to only find a single object. In contrast non-parametric methods are able to

identify multiple objects naturally.

Although DAC performed better compared to all examined approaches within the pro-

posed experimental setup, the scalability of DAC to 3D is the next stage of development.

Further, it is found that the computational and storage burden of DAC can be further re-

duced without sacrificing the accuracy by using alternative algorithms for the three steps

of the DAC. The next chapter addresses the scalability and computational issues of DAC

as a basis for the fast DAC or FDAC.
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Chapter 5

Fast Decoupled Active Contour (2D)

Despite the fact that boundary identification techniques have numerous applications in

visual tracking [2, 27] and medical image analysis [2, 4, 110], developing a technique to

identify the boundary of an object near real-time in the presence of noise and background

clutter has been elusive. This chapter introduces the fast decoupled active contour, or

FDAC, a fast variation of the decoupled active contour (DAC) for identifying the boundary

of a 2D object near real-time. The better computational and scalability performance of the

FDAC are compared with the DAC and with two other published methods. Furthermore,

the performance gained from FDAC facilitates for effective scaling from 2D to 3D.

5.1 From DAC to FDAC

To increase the convergence speed as well as to avoid the local minima traps typically

associated with active contours, DAC is developed and its performance is evaluated in

Section 4.4. As described in Chapter 4, DAC separates the prior from the measurements

and solves (3.6) by alternating between the measurements and the prior. Essentially, DAC

simplifies the active contour energy optimization step by first ignoring the prior and em-

ploying the Viterbi algorithm to obtain a sub-optimal solution near the neighborhood of

the previous solution that is consistent with the measurements, then generating a non-

stationary prior from the curvature of the measured boundary, and finally asserting the

non-stationary prior via a Bayesian linear least squares estimator. By using these three
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steps, DAC precisely identifies the boundaries of high curvature, noisy and cluttered ob-

jects with a lower computational burden when compared to state-of-the-art active contour

methods. However, the three steps of DAC still suffer from the following computational

and scalability issues:

1. As shown in Figs. 5.1 and 5.2, many long normals are required for identifying the

boundary of a large image (e.g., 1970× 1546 pixels). As a result, the computational

burden of the Viterbi search (O(u2q)) hinders the possibility of real-time solutions.

Furthermore, the causality and spatial order dependency of the Viterbi algorithm

(Fig. 4.5) complicates DAC’s extension to 3D. Here, the meaning of causality is that

the state of a current normal depends only on its previous normals. In 3D, the

definitions of “previous” and “next” are ambiguous.

2. The importance sampling step of DAC for generating the non-stationary prior is an

ad hoc iterative method, thus typically taking a longer time to generate a curvature

based sample distribution.

3. Solving the formulation

x̂ = µx +
(
R−1 +Q

)−1
R−1 (xm − µx) (5.1)

following the direct matrix inversion approach of DAC for a large number of active

contour vertices q (Figs. 5.1 and 5.2) is computationally demanding.

The three computational issues associated with DAC are illustrated using a large image

(e.g., 1970 × 1546 pixels) in Figs. 5.1 and 5.2. First, the inferior segmentation accuracy

of DAC due to fewer active contour vertices q is demonstrated in Fig. 5.1. Second, the

capability of DAC to capture high curvature regions of a large size object using a large

number of q is presented in 5.2. Finally, an increase in segmentation accuracy (lower

ASD) with the increase in active contour vertices q is shown in Fig. 5.3 using the large

image shown in Fig. 5.1. To address DAC’s computational demands, a fast decoupled

active contour (FDAC) approach is proposed in this chapter. FDAC shares the decoupling

idea of DAC; however, to reduce the computational burden of DAC as well as facilitate

for efficient extension into 3D, FDAC modifies the measurement (step 1), the resampling

(step 2) and the estimation (step 3) steps of DAC using the following three techniques:
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Number of active contour vertices q = 300

Fig. 5.1: Performance of DAC with fewer number of samples. DAC is not able to capture

the high curvature regions with fewer number of active contour vertices q. The identified

boundary is shown in black. The size of the image is 1970× 1546.
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Number of active contour vertices q = 2000

Fig. 5.2: Performance of DAC with a suitable number of samples. DAC is able to capture

high curvature regions by using an adequate number of samples. The identified boundary

is shown in black. The size of the image is 1970× 1546.
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Fig. 5.3: Quantitative segmentation accuracy of DAC with respect to the number of active

contour vertices q for the image shown in Fig. 5.1. The segmentation accuracy increases as

the number of active contour vertices increases, because a larger number of active contour

vertices are necessary to capture the finer details of an object’s boundary.

• Step 1: A fast approach to determine the measured boundary. An iterative

quasi-random search (IQRS) algorithm is used to identify high gradient measured

locations as a replacement for the Viterbi search of DAC.

• Step 2: An efficient technique to resampling. An uniform sampling scheme

based on the integral of the absolute values of the curvature of the measured boundary

is employed to generate a curvature dependent measurement as a replacement for the

importance sampling step of DAC.

• Step 3: A Fast approach to statistical data fusion. A conjugate gradient

algorithm is used to perform the Bayesian estimation step efficiently as a replacement
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for the computationally expensive direct matrix inverse method of DAC.

As with DAC, FDAC is an iterative approach. Therefore, to retain the result of the previous

iteration, each iteration of FDAC assumes vp, the solution from the previous iteration, as

the initial guess for the current iteration. As with DAC (Chapter 4), in each iteration of

FDAC, the measured boundary vm in the vicinity of vp is first determined using IQRS, a

non-stationary prior is generated by resampling the measured boundary to accommodate

high curvature regions, and finally, an estimated solution ve is found using the resampled

boundary vm and the non-stationary prior.

The measurements (Section 5.2), resampling (Section 5.3) and estimation (Section 5.4)

steps are explained next.

5.2 Step 1: A Fast Approach to Determine the Mea-

sured Boundary

In principle, the measured boundary can be obtained using the Viterbi search method

following the descriptions of Section 4.1. However, to improve computational speed as well

as to enhance the scalability of DAC, an iterative quasi-random search (IQRS) approach

is adopted. The search space or the trellis for the IQRS is defined in an identical way as

DAC, where an HMM is used. An exemplar trellis used in IQRS is illustrated in Fig. 5.4.

As presented in Section 4.1, given this trellis, in theory, the optimum contour or boundary

can be found by solving the joint maximization (4.11)

max
w1,w2,···wq

P
(
w1, w2, · · · , wq

)
. (5.2)

Realizing the difficulty in solving such a joint maximization problem, the Viterbi search

based suboptimal algorithm is implemented for DAC in Section 4.1 to find the measured

boundary vm by maximizing the likelihood distribution

vm = arg max
v

(P (Eext|v)) . (5.3)

However, the Viterbi algorithm is computationally demanding and scales poorly to higher

dimensional problems, as discussed in Chapter 6. Therefore, as an alternative to the
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Fig. 5.4: The circular trellis used in the iterative quasi-random search algorithm. The

inverse gradient of a noisy u-shaped object, the initial solution (dotted grey circle), as well

as the normals (lines with small circular nodes, u = 4) are shown to demonstrate the IQRS

algorithm. This noisy image is selected to illustrate the necessity of the two steps of the

IQRS algorithm (Figs. 5.5 and 5.6).

Viterbi search of DAC, an iterative quasi-random search (IQRS) approach is developed in

this section to efficiently determine the measured boundary. The main benefits of IQRS

over the Viterbi search are spatial ordering independency, lower computational cost and

easer extension to higher dimensions. For simplicity, one iteration of the IQRS algorithm

to identify the boundary of a 2D object is explained here.

The IQRS algorithm is simple and consists of two steps: i) initialization and ii) iterative

refinement.

Initialization: The initialization step of the IQRS method first computes the proba-

bility of all states wj ∈ [−u
2

: u
2
], j ∈ [1 : q] belonging to a current solution as

P (ψ(wj)|wj) =
1

σψ(wj)

exp

(
−ψ(wj)

σψ(wj)

)
, (5.4)

and then selects states with the highest probability of being on a current solution for the
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normal j as

wmj = arg max
wj∈[−u

2
:u
2

]

(P (ψ(wj)|wj)) , j ∈ [1, q]. (5.5)

The notation used in (5.4) is similar to the notation of (4.9). The initial boundary (grey,

dotted) obtained using (5.5) is illustrated in Fig. 5.5. This initial boundary is used as a

first guess for the iterative refinement step of the IQRS algorithm.

wm
j+1

wm
j−1

wm
j

Fig. 5.5: Description of the initialization step of the IQRS method using a noisy u-shape

object. The initial boundary obtained using (5.5) is presented in grey (dotted) color. The

terms wmj−1, wmj and wmj+1 represent the initial states of the normals j − 1, j and j + 1

as obtained by (5.5). These initial states wmj , j ∈ [1, q] are used as a first guess for the

iterative refinement step (Fig. 5.6) of the IQRS method to update the current state of the

normal j.

Iterative refinement: As with DAC’s Viterbi search, to avoid unwanted spiky nodes,

inter-point constraints between the neighboring nodes of the boundary are enforced in the

iterative refining step of the IQRS algorithm. One iteration of the iterative refining step

of IQRS follows.

First, a set of q quasi-random numbers qr are generated from a Sobol quasi-random

sequence [111,112]. A quasi-random sampling approach is used to allow samples with low

discrepancies to be drawn. Second, the inter-point constraint is enforced on a normal qrj

to refine its current state. The second step is repeated for all q normals. As described in

Algorithm 5, these two steps are repeated until convergence.
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Fig. 5.6: Iterative refinement step of the IQRS algorithm. Inter-point constraints between

the states wmj−1 and wj, and wmj+1 and wj (pointed by arrows) are computed using 5.8 and

5.8. These inter-point constraints (transition probability) and the observation probability

P (ψ(wj)|wj) are used to refine the current states (wj ∈ [−u
2

: u
2
], here u = 4) of normal

j (triangular nodes). While refining the normal j, the state of normals j − 1 (wmj−1) and

wmj+1 are kept fixed. This step is performed for refining all q normals.

The enforcement of these inter-point constraints is demonstrated in Fig. 5.6 using a

single normal j (triangular nodes). Where the current state of the normal (with triangular

nodes) wmj is updated as:

wmj = arg max
wj

(
P
(
ψ(wj)|wj, wmj−1, w

m
j+1

))
, (5.6)

which is equivalent to

wmj = arg max
wj

(
P (ψ(wj)|wj)P

(
wj, w

m
j−1

)
P
(
wj, w

m
j+1

))
, (5.7)

where

P
(
wj, w

m
j−1

)
=

1

Zb
exp

(
−
∣∣∣vwj − vwmj−1

∣∣∣) , (5.8)

and

P
(
wj, w

m
j+1

)
=

1

Zf
exp

(
−
∣∣∣vwj − vwmj+1

∣∣∣) . (5.9)
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Algorithm 5 [vm] = Function IQRS(v0, ε)

Generate the trellis using v0 as the initial solution;

k = 0, update v0 = {vwmj }, j ∈ [1, q] using (5.5);

repeat

k = k + 1;

Let qr = {· · ·}q be a sequence of q quasi-random numbers;

for k = qr do

j = qr(k), update the value of vwmj using (5.7);

end for

Assign vk = {vwmj }, j ∈ [1, q];

ASD = GetASD(vk,vk−1);

until ASD ≥ ε

vm = vk;

The terms Zb and Zf are two normalizing constants used to make P
(
wj, w

m
j−1

)
and

P
(
wj, w

m
j+1

)
as two probability distribution functions for normal j. The observation prob-

ability (P (ψ(wj)|wj)) encourages the current state of normal j to lie near high gradient

regions. The transition probabilities (P
(
wj, w

m
j−1

)
and P

(
wj, w

m
j+1

)
) prevents the current

state of the normal j from converging towards a wrong boundary by enforcing spatial con-

straints between the state wmj of normal j, and the states wmj−1 and wmj+1 of normals j − 1

(previous) and j + 1 (next).

The pseudo-code of the IQRS for identifying the measured boundary vm is provided in

Algorithm 5.

Given this measured boundary vm, a non-stationary prior is essential in the update

step to capture the high curvature regions of the measured boundary. The generation of

the non-stationary prior (Section 5.3) and the update step (Section 5.4) are provided next.

5.3 Step 2: An Efficient Approach to Resampling

The effectiveness of the non-stationary prior in capturing high curvature regions has been

demonstrated in Section 4.2. A curvature guided importance sampling method is employed

in Section 4.2 to generate more samples near high curvature regions and fewer samples near
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smooth regions.

However, the importance sampling technique described in Section 4.2 is an ad hoc and

computationally expensive method. Alternatively, curvature guided samples can also be

efficiently generated by performing uniform sampling on the absolute value of the curvature

weighted arclength of the measured boundary. Performing uniform sampling is typically

more straightforward when compared to the importance sampling step of DAC. The resam-

pling process based on the absolute value of the curvature weighted arclength is described

as follows.

Let κ = {κj}, j ∈ [1, q] be the curvature of the measured boundary vm. The curvature

κ of a sample boundary computed using (4.15) is illustrated in Fig. 5.7. Higher curvature

near corner regions can be noticed from the bottom panel of Fig. 5.7. Given this curvature

profile, the integral of the absolute value of the curvature times the arclength (kl(sj)) over

the normalized discrete arclength sj, j ∈ [0, 1] can be written in the discrete domain as

kl (sj) =

j∑
d=1

|κ (sd)|s (sd)

q∑
d=1

|κ (sd)|s (sd)

, (5.10)

with

sj =

j∑
d=1

∆vd

q∑
d=1

∆vd

(5.11)

being the arclength of an active contour at node j, where

∆vj = ‖vj − vj−1‖ . (5.12)

The curvature weighted arclength of the measured boundary of Fig. 5.7 is demonstrated

in Fig. 5.8.

Given this curvature weighted arclength kl, FDAC generates a set of uniform samples,

whose sample spacing ∆vu (s) and normalized arclength suj are given by

∆vuj =
kl (sj)

q
(5.13)
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Fig. 5.7: Curvature guided resampling. An exemplar high curvature object boundary (top)

and its corresponding curvature κ(sj) (bottom), with the top ten high curvature regions

illustrated using small circles. The curvature is computed using (4.15).
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Fig. 5.8: Steps involved in the resampling algorithm. The arclength (sj) vs. absolute

curvature weighted arclength kl(sj) of the object (top) and the generated samples (bottom)

by uniformly sampling the y-axis of the top panel figure are shown in Fig. 5.7, respectively.

More samples near high curvature regions can be observed (bottom). The mapping between

the top and bottom panels are illustrated using seven key points (grey circles and grey

squares).
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and

suj =

j∑
d=1

∆vud . (5.14)

Next, FDAC generates a new set of samples with normalized arclength sn from the

original sample’s normalized arclength s and the curvature weighted arclength kl using a

spline interpolation function Υ as

sn = Υ (kl, s, su) . (5.15)

The generation of these new samples sn is demonstrated using a synthetic example in the

top panel of Fig. 5.8. Figs. 5.7 and 5.8, which show that near high curvature regions, a wide

sampling interval in the curvature weighted arclength space maps to a narrow sampling

interval in original Euclidian arclength space, implying a higher sample density near high

curvature regions.

Third, FDAC updates the xm and ym component of the measured boundary vm as

xm
(
snj
)

= xm
(
snj−1

)
+ ∆v

(
snj
)

cos
(
θ
(
snj
))

(5.16)

and

ym
(
snj
)

= ym
(
snj−1

)
+ ∆v

(
snj
)

sin
(
θ
(
snj
))
, (5.17)

where

θ
(
snj
)

=

j∑
p=1

κ
(
snp
)
. (5.18)

Finally, to avoid generating extremely dense samples at very high curvature regions and

extremely sparse samples in smooth regions, FDAC employs an iterative sample insertion

and deletion strategy. The iterative sample insertion and deletion strategy enforces the

sampling interval to be between ∆vmin (the minimum sampling interval) and ∆vmax (the

maximum sampling interval). The updated measured boundary vm using this curvature

based resampling scheme is illustrated in the bottom panel of Fig. 5.8, where a large number

of samples can be observed near high curvature regions.

As described in Section 4.3, these non-uniformly distributed measurements on boundary

vm are used to estimate ve and account for a non-stationary prior.
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5.4 Step 3: A Fast Approach to Bayesian Estimation

The necessity of enforcing the non-stationary prior to refine the measured boundary using

a separate statistical estimation technique has been explained in Section 4.3. This section

mainly focuses on developing a computationally efficient method to solve the Bayesian

estimation problem. As described in Section 4.3, the linear Bayesian estimation of the x

and y components of the measured boundary vm using the smoothness constraint matrix

Q and the measured noise covariance R is given by

x̂ = µx +
(
R−1 +Q

)−1
R−1 (xm − µx) , (5.19)

and a similar expression holds for ŷ. The smoothness constraint matrix Q and the noise

covariance matrix R are sparse; hence, (R−1 +Q) is also a sparse matrix. Therefore,

instead of trying to find the inverse of (R−1 +Q), a conjugate gradient based method can

be employed to solve (5.19). To utilize the conventional conjugate gradient technique,

(5.19) is rearranged as (
Q+R−1

)︸ ︷︷ ︸
H

(x̂− µx)︸ ︷︷ ︸
xθ

= R−1(xm − µx)︸ ︷︷ ︸
b

, (5.20)

and simplified to

Hxθ = b. (5.21)

The algorithm presented in Algorithm 6 is then used to compute Q and the conjugate gra-

dient technique described in Algorithm 7 is employed to solve (5.21) efficiently. Another

advanced computational and storage efficient approach to solve large 3D statistical esti-

mation problem is provided in Chapter 6. Finally, the converged boundary vc is computed

using Algorithm 8.

5.5 Experimental Results

The segmentation accuracy and capabilities of DAC compared to three other state-of-the-

art methods has been demonstrated on a wide range of images in Section 4.4. The focus

of this chapter is to enhance the computational efficiency and scalability of DAC without

sacrificing the segmentation accuracy. Therefore, to avoid unwanted repetition and to
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Algorithm 6 [Q] = GetH(q)

for j = 1 : q do

` = k−2 : k+2, use circular boundary condition to accommodate boundary vertices;

Q(j, `) =
[
−β, α + 4β,−2α− 6β + 1

rj
, α + 4β,−β,

]
, where rj is computed us-

ing (4.33);

end for

Algorithm 7 [xθ] = Function CG(b,H)

k = 0, ε = 10−4, xk = b, $k = x0 −Hxk, ok = $k;

while ok ≤ ε do

ß = Hok;

λk =
$T
k$k

oTk ß
, xk+1 = xk + λkok, $k+1 = $k − λk ß;

ρk =
$T
k+1$k+1

$T
k$k

, ok+1 = ρkok +$k+1;

end while

xθ = xk+1;

ensure FDAC achieves similar segmentation accuracy as DAC, two sets of evaluations are

performed. First, the qualitative segmentation performance and quantitative CPU time of

FDAC compared to DAC and two other state-of-the-art methods (vector field convolution

(VFC) [22] and Poisson inverse gradient (PIG) [54] flow snake) is demonstrated using a

set of ten noisy and cluttered images. Second, the FDAC’s computational advantage over

DAC is evaluated analytically and experimentally using a large synthetic image, as well as

two natural images.

5.5.1 Experimental Setup

All the experimental results are obtained using the identical experimental setup as DAC.

For comparative analysis, published MATLAB code for Poisson inverse gradient flow snake

(PIG) [54] and vector field convolution based active contour (VFC) [22] are downloaded

from [113], and the parameters are chosen from the corresponding papers. The initial

location of the active contour is always specified using a circle of radius 0.4 ∗ (M +N) and

center at [0.5M, 0.5N ] for all methods, with the exception of PIG, whose performance is
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Algorithm 8 [vc] = Function FDAC(v0)

k =0, vek = vk, ε = 10−4, ASD =∞
while ASD > ε do

k = k + 1, vmk = IQRS(vek−1, ε), Update vmk following Section 5.3

H = GetH(xmk )

xek = CG(H, xmk ), yek = CG(H, ymk ), vek = [xek,x
e
k],

ASD = GetASD(vek,v
e
k−1)

end while

vc = vek

insensitive to the initial solution. The values M and N represent the number of rows and

columns of an image.

5.5.2 Experimental Dataset

Four natural images (starfish (A1), armed personnel control (B1), brain (E1) , and leaf

(F1)) and two synthetic images (u-shape (C1) and noise textured v-shape (D1)) images are

chosen for this set of experiments. The selected images cover a wide range of characteristics

such as contrast non-uniformities, noisiness and contrast in-homogeneities. Furthermore,

for validating the noise robustness of FDAC compared to other approaches, another four

synthetic images are generated by adding gaussian noise of variances 0.01 and 0.05 and

salt and pepper noise of variances 0.01 and 0.03 to the u-shape object. The u-shape object

is a standard image used by many parametric active contour methods to evaluate the

performance of their methods [21, 22, 54]. Therefore, this thesis has also extensively used

the u-shape object for evaluating the performance of FDAC. Finally, for evaluating the

computational CPU time of FDAC compared to other approaches, a large (1970 × 1546

pixels) synthetic image with complex boundaries (SCB) has been generated and used.

5.5.3 Segmentation Accuracy

The segmentation results of FDAC compared to PIG, VFC and DAC on four natural, two

synthetic, and four noisy images are presented in Figs. 5.9, 5.10 and 5.11. FDAC and DAC

are able to successfully identify the boundary of the objects for all images. This is due
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to the fact that both FDAC and DAC share the same decoupled prior and measurements

concept and exploit the image statistics for finding the object boundaries. Furthermore,

in the cases of FDAC and DAC, the internal energy not only depends upon the boundary

but also the image statistics, while for all other compared methods the internal energy is

derived only from the object boundary.

5.5.4 Robustness to Noise

The performance of FDAC in the presence of noise is demonstrated in Fig. 5.11 using

a synthetic image with additive Gaussian noise of variances 0.01 and 0.05, and salt and

pepper noise of variances 0.01 and 0.03. The FDAC and DAC [55] accurately identified the

desired boundary for all test images. VFC [22] claims to be robust to noise and performs

better than GVF [21]. However, VFC is typically not effective in discriminating between

the true gradient and the gradient due to the high noise or background clutter. Hence,

VFC found incorrect boundaries for images with higher noise variances (Fig. 5.11) as well

as images with background clutter (Fig. 5.11). PIG uses an additional automatic technique

to determine the initial solution near the desired solution. As such, PIG is less sensitive

to initialization and local minima. Furthermore, PIG implicitly smoothes the noise during

the course of computing the external energy field. Hence, PIG successfully identified the

boundary of most test images.

5.5.5 Convergence Test

FDAC uses the same decoupling concept as DAC, but employs more efficient measurements,

sampling and estimation schemes to reduce the computational and storage burden. To

compare the computational burden of one iteration of FDAC with one iteration of DAC,

an initial boundary with q number of vertices is chosen. FDAC replaces the Viterbi search

of DAC with the IQRS method and uses the conjugate gradient method to solve the linear

Bayesian estimation problem. Therefore, the computational cost of IQRS of FDAC with

the Viterbi search of DAC is first compared.

As IQRS of FDAC and the Viterbi search of DAC use the same trellis, the complexity

of IQRS and the Viterbi search for a trellis consisting of q normals with each normal

containing u nodes are O(iIQRSuq) and O(u2q), respectively. As described in Section 5.2,
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Fig. 5.9: The segmentation performance of FDAC compared to PIG [54], VFC [22] and

DAC [24] for two natural images and one synthetic image. Rows present methods and

columns present images. For all images and methods, with the exception of PIG which is

insensitive to the initial solution, the active contour is initialized using a circle of radius

0.4 ∗ (M +N) and center at [0.5M, 0.5N ]. FDAC and DAC successfully identified the true

boundary for all images.
88



D1[512× 512] E1[512× 512] F1[740× 512]

V
F

C
[2

2]
P

IG
[5

4]
D

A
C

[2
4]

F
D

A
C

Fig. 5.10: The segmentation performance of FDAC compared to PIG [54], VFC [22] and

DAC [24] for two natural and one synthetic images. Rows present methods and columns

present images. For all images and methods, with the exception of PIG, the active contour

is initialized using a circle of radius 0.4 ∗ (M +N) and center at [0.5M, 0.5N ]. FDAC and

DAC successfully identified the true boundary for all images.
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Fig. 5.11: The noise robustness of FDAC compared to PIG [54], VFC [22] and DAC [24]

on a synthetic u-shape object. The four noisy images are generated by adding gaussian

noise of variances 0.01 and 0.1 and salt and pepper noise of variances 0.01 and 0.03. Rows

and columns present images and methods. FDAC and DAC successfully identified the

true boundary for all noisy images. PIG successfully identified the boundary of all images

except J1.
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Fig. 5.12: The convergence plot of IQRS. The plot is obtained using different values of

minimum and maximum spacing over three images describing various features such as

noise, background clutter and different geometry. The number of iterations required for

the IQRS to converge to a desired solution as a function of the number of vertices q. The

minimum and maximum number of iterations for IQRS are fixed at 5 and 15.

IQRS is an iterative method and finding an analytical value of the number of iterations

iIQRS for IQRS to converge to a desired solution is an extremely difficult task. Therefore,

an extensive testing of IQRS’s convergence rate with several initial solutions having number

of vertices ranging from q = 50 to q = 2500 are conducted on several images consisting

of noise, background clutter and different geometry. The scatter plot of the number of

iterations iIQRS of IQRS with respects to number of vertices q is shown in Fig. 5.13. On

average, the number of iterations iIQRS required for the IQRS to converge is found to be

7.

Next, FDAC uses a conjugate gradient (CG) method to update the measured bound-

91



0 500 1000 1500 2000 2500
0

200

400

600

800

1000

Number of active contour vertices (q)

N
um

be
r

of
it

er
at

io
ns

(i
C

G
)

Convergence of CG

Fig. 5.13: The convergence test of the conjugate gradient method using similar experimen-

tal setup as Fig. 5.12. The number of iterations necessary for the CG method to converge

to a desired solution depend upon several factors, such as the number of active contour

vertices, measurements uncertainties, and the prior. A statistical analysis of this scatter

plot is presented in Fig. 5.14.

ary, as opposed to the direct matrix inversion method used in DAC. The complexity of the

proposed CG method is O(iCGq), where iCG is the number of iterations the CG method

takes to converge. The convergence rate of the conjugate gradient method used in FDAC

depends on several factors, such as the dimension of the matrix, regularization constant,

geometry of the active contour, and noise variance. Therefore, a scatter plot and a statisti-

cal quantitative analysis plot of the convergence of the CG method are shown in Figs. 5.13

and 5.14. An increasing trend in CG iterations can be observed for larger number of ver-

tices. As shown in Fig. 5.13, for all experiments, the maximum number of iterations for

the conjugate gradient method is fixed at 1000. To interpret the scatter plot of Fig. 5.13 is

a difficult task. Therefore, a statistical analysis of Fig. 5.13 is presented in Fig. 5.14. The

five lines from top to bottom of Fig. 5.14 demonstrate the maximum to minimum number

of iterations required for the CG method to converge to a desired solution as a function

of the number of active contour vertices under different scenarios. The average number of
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Fig. 5.14: Analysis of the computational complexity of the CG method. A statistical

interpretation of the scatter plot of Fig. 5.13 is demonstrated in this panel. Where the

five lines from top to bottom demonstrate the maximum to minimum number of iterations

required for the CG to converge to a desired solution as a function of the number of active

contour vertices under different scenarios.

iterations iCG required for the CG method to converge to a desired solution is found to be

70. Therefore, the complexity of the CG method (O(iCGq)) is less when compared to the

direct matrix inversion method of DAC.

The quantitative convergence time of FDAC compared to PIG, VFC, and DAC are

presented in Table 5.1. FDAC and DAC separates the measurements from the prior and

finds the object boundary iteratively. Due to the decoupled nature of the measurements and

prior, the FDAC and DAC took fewer iterations compared to VFC and PIG. On average,

FDAC is two orders of magnitude faster compared to other three methods. PIG employs

iso-surface approach on the poisson inverse gradient of the image to find the initial active

contour. As a result, PIG finds an initial estimate of the active contour very near to the

optimal active contour. Therefore, PIG took less number of iteration compared to VFC.

Although FDAC and DAC shares the same theory of decoupling the measurements from
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Table 5.1: Comparison table showing Execution Time (ET) in second of FDAC compared

to PIG [54], VFC [22], and DAC. Text in bold letter indicates best performance among

their peers for a particular image.

FDAC PIG VFC DAC

(A1) 7 253 513 12

(B1) 21 78 816 47

(C1) 4 32 114 7

(D1) 6 34 670 15

(E1) 13 25 163 33

(F1) 31 355 982 71

the prior, FDAC uses: i) a faster converging IQRS approach for measurements compared

to the Viterbi search approach of DAC, ii) faster uniform sampling on the integral of the

absolute value of the curvature compared to importance sampling approach of DAC, and

iii) an efficient implementation of conjugate gradient approach for update step compared

to direct matrix inversion approach of DAC. The average computational (over six images

of Figs. 5.9 and Figs. 5.10) gain of each step of FDAC compared to DAC is illustrated

in Fig. 5.15 using a bar plot. For large size images with large number of active contour

vertices, FDAC is faster than DAC and this phenomenon is presented in Fig. 5.16.

The convergence times of FDAC, DAC, VFC and PIG as a function of number of

active contour vertices are tested on a big synthetic star shape image (Fig. 5.1) of size

1970× 1546 pixels. From Fig. 5.16, it can be observed that the convergence time of FDAC

is significantly lower compared to DAC for large number of active contour vertices. VFC

and PIG both use identical external energies as well as an efficient energy minimization

technique. However, unlike VFC, PIG also uses an additional automatic algorithm to

determine the initial solution that is near to the desired boundary. Therefore, PIG is

insensitive to initialization and takes fewer iterations to converge when compared to VFC.

The efficient energy minimization technique and the effective initialization of PIG allows

it to achieve better convergence rates when compared to DAC for higher number of active

contour vertices.
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Fig. 5.15: A bar plot of the execution time (seconds) of the three steps of DAC and FDAC

over six images (Figs. 5.9 and 5.10). Each step of FDAC is faster compare to each step of

DAC. On average FDAC is 2-3 times faster than DAC.

Furthermore, the importance of the number of active contour vertices for capturing high

curvature region is demonstrated in Figs. 5.1, 5.2 and 5.3. Fig. 5.3 reports the increase

in segmentation accuracy with respect to number of active contour vertices using three

different images and different values of minimum and maximum spacing. The Figs. 5.1

and 5.2 show the segmentation result with two different sets of active contour vertices.

5.6 Summary of FDAC

A fast decoupled active contour (FDAC) method for accurate and fast image segmentation

is presented in this chapter. FDAC shares the same theory as decoupled active contour

(DAC), but employs faster computationally efficient iterative quasi-random search for mea-

surements, a uniform sampling on the integral of absolute value of the curvature of the

measured boundary for generating non-stationary prior, and an efficient conjugate gradient

based estimation technique to gain computational advantage over DAC.

The segmentation accuracy and convergence time of FDAC compared to other three

state-of-the-art active contour methods are reported on several natural and synthetic im-
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Fig. 5.16: The convergence rate of FDAC compared to DAC, VFC and PIG on a big

synthetic star shape image of size 1970 × 1546 pixels. FDAC is found to be faster than

other three methods with larger number of active contour vertices. A large number of active

contour vertices are required to capture high curvature boundaries, and this phenomenon

is presented in Fig. 5.3.

ages. On average, the convergence time of FDAC is found to be two orders of magnitude

faster when compared to three state-of-the-art published methods.

In principle, the FDAC architecture is highly scalable to multiple dimensions. How-

ever, adding a dimension to FDAC completely changes the representation scheme (data

structure) and complicates the computation of normals, curvature, and first and higher

order derivatives. Further, performing resampling in 3D is a much more challenging task

than in 2D. Therefore, the decoupled active surface (DAS), an extension of fast decoupled

active contour from 2D to 3D, is developed and implemented in the next chapter.
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Chapter 6

Decoupled Active Surface (3D)

The effectiveness of the DAC and FDAC to identify the boundary of a 2D object in the

presence of noise and background clutter is demonstrated in Chapters 4 and 5. Besides

the identification of 2D object boundaries, another important problem in computer vision

is the identification of the surface of three-dimensional static object or similarly of two-

dimensional objects over time.

As discussed in Chapter 2, active surface techniques [21–23] have been applied to such

computer vision tasks. In active surface techniques, a deformable spline surface model is

evolved based on the influence of internal and external (typically opposing) energies until

the model converges to the desired surface. Active surface models [21–23, 39, 40, 54] are

usually direct extensions of existing 2D active contour models to 3D active surface model.

As a result, similar to existing parametric active contour models (Section 4.4), current

parametric active surface models tend to be computationally expensive (Section 5.5), dif-

ficult to implement [39] and not able to effectively identify the surface of a 3D object in

the presence of noise, high curvature, and background clutter (Section 4.4). In contrast,

non-parametric [35, 37, 39, 53, 114] methods are inherently scalable to multiple dimensions

and are inherently able to identify multiple boundaries. However, the high computational

burden and the inability to identify the continuous boundary [96] of a single broken object

hinder the application of non-parametric active surfaces.

An example illustrating the tradeoff between a parametric and non-parametric active

surface models is shown in Fig. 6.1. The non-parametric active surface model identifies

97



(a) Volumetric image (b) Parametric surface (c) Non-parametric surface

Fig. 6.1: Example of the suitability of parametric active surfaces over non-parametric

active surfaces. (a) An image of a broken cube. (b) Parametric active surface finds a single

connected surface of the broken cube. (c) Non-parametric active surface identifies eight

separate surfaces.

eight separate surfaces (Fig. 6.1(b)) of a single broken cube, however, a parametric active

surface model finds a single continuous boundary around the broken cube.

In tackling these issues, this chapter primarily develops a decoupled active surface

(DAS) model, which extends the FDAC from 2D to 3D by modifying the FDAC repre-

sentation scheme, to identify the surface of a static 3D object or volumetric tunnel of a

sequence of moving 2D objects over time. The computational efficiency and outlier robust-

ness of DAS are demonstrated in Section 6.6.

6.1 Challenges in Moving From 2D to 3D

The limitations of active surface models are discussed in Section 2.4. To demonstrate the

primary issue of the current parametric active surface based methods, an example showing

the convergence of (6.1) (same as (2.22))

Fint(v) + Fext(v) = ε
∂v

∂t
, (6.1)

is shown for a synthetic volumetric cube with a spherical initial solution (black) in Fig. 6.2(a).

For traditional representation schemes which map a 2D grid to the 3D surface, enforcing
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boundary conditions is a complicated task, as shown in Fig. 6.2. Using free boundary

and free pole conditions in (6.1), a broken surface is generated (Fig. 6.2(b)). Similarly,

a free pole condition generates holes at both poles of the converged surface (Fig. 6.2(c)).

The use of constrained boundary and poles lead to a biased internal force which creates

a non-uniform vertex motion, such that the vertices near the poles have a lower velocity

compared to other vertices (Fig. 6.2(d)).

In summary, apart from the inherent 2D issues discussed in Section 2.4, the traditional

active surface techniques have the following four additional problems.

1. The conventional surface representation scheme described in (2.4) is not trivial to

model complex geometries (Subsection 2.2.1) due to the many-to-one mapping prob-

lem.

2. Even in cases where the geometry can in principle be represented, the 3D-2D mapping

creates a biased internal force, as shown in Fig. 6.2(d). This biased internal force

makes the active surface model ineffective in the presence of outliers.

3. The traditional active surface is a direct extension of an active contour from 2D to

3D and uses an iterative gradient descent approach to solve (6.1). Such an iterative

solver is slow and sensitive to local minima.

4. There exists a delicate relationship between the weights (parameters) contained inside

the terms of (6.1).

Similar to parametric active contours (Section 2.4), recent parametric active surface meth-

ods, such as gradient vector flow (GVFS) [21], vector field convolution (VFC) [22] and

Poisson inverse gradient (PIG) [54] have attempted to solve the initialization sensitivity

and inability to converge towards concave regions problems by increasing the capture range

of the traditional active surface. Typically these methods increase the capture range of the

deformable model by diffusing the conventional gradient-based external force. However,

these modifications are not able to overcome the problems of local minima and convergence

speed. Detailed descriptions of several parametric and non-parametric active surface based

boundary extraction techniques can be found in [96]. The extension of the FDAC from 2D

to 3D is described next.

99



0
20

40
60

80
100

0

50

100
0

20

40

60

80

100

(a) Initial boundary (b) Free pole and boundary

(c) Constrained boundary and free pole (d) Constrained boundary and pole

Fig. 6.2: Three examples (b, c and d) illustrating the limitations of traditional, parameter-

ized active-surface schemes. The algorithm start with an initial, parameterized spherical

surface (a), seeking to converge to the synthetic cube. The partially-converged active sur-

faces after 500 iterations are shown in panels (b), (c) and (d). Parametric models have

difficulties with boundaries (b) and singularities at poles (c,d).
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6.2 From FDAC to DAS

Moving from FDAC in 2D to DAS in 3D is a non-trivial problem due to the necessity of

a dedicated data structure to represent DAS. This is because in 2D space the neighboring

vertices of a vertex in FDAC or DAC can be defined as its “previous” and “next” vertices.

However, for DAS, such an assumption is not valid. Therefore, this section first describes

a representation scheme suitable for DAS.

As shown in Fig. 6.3, a decoupled active surface v (2.5) is defined using conforming

triangular meshes. These meshes are represented using triangular faces T = {tk}, k ∈ [1, t]

and vertices v = {vj}, j ∈ [1, q]. The relationship between the faces and vertices are defined

using two containers T V and VT such that:

T V(tk) = {vak, vbk, vck} (6.2)

and

VT (vj) = {tdj, tej, tfj · · · }, (6.3)

where T V and VT define links for moving from a face to vertices and from a vertex to

faces, respectively. Given these two containers T V and VT , the neighboring vertices of a

vertex vj can be defined as

Ω(vj) = setdiff(unique(T V(VT (vj))), vj), (6.4)

where “setdiff” and ‘are two boolean operators. The “setdiff” operator is used to find

the difference between two sets, and the “unique” operator is used to delete the repeated

elements of a set. To demonstrate this representation scheme, an exemplar conforming

triangular mesh based deformable model is illustrated in Fig. 6.3 using q = 12 number of

vertices and t = 20 number of triangular faces. Given this triangular mesh based represen-

tation scheme, as illustrated in Fig. 6.4, the measurement, resampling and estimation steps

of DAS are carried out in a similar manner as the FDAC. However, performing these three

steps in 3D is difficult and need special consideration, as FDAC and DAS use different

representation schemes. The description of these three steps, measurement (Section 6.3),

resampling (Section 6.4) and estimation (Section 6.5) of DAS follows.
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Fig. 6.3: Left, a spherical deformable model is represented using conforming triangles.

Right, a portion of the left sphere is shown at a magnified scale for better visualization.

The face and vertex normals are illustrated using arrows.

6.3 Step 1: Measured Surface Determination

The iterative quasi-random search method developed in Section 5.2 can be applied to

identify the measured surface of a 3D object by modifying the 2D trellis to accommodate

for the 3D surface representation scheme. As described in Sections 4.1 and 5.2 the formation

of the 2D trellis is initiated using a set of normals. However, computing the surface normals

at the vertices of the 3D surface using (4.5) is not obvious. Therefore, as shown in the

right panel of Fig. 6.3, the normals pointing to a face ntk , k ∈ [1, · · · , t] is first computed

as

ntk =
(vbk − vak)⊗ (vck − vba)
|(vbk − vak)⊗ (vck − vba)|

, (6.5)

and then a normal nj pointing towards a vertex vj

nj =

∑
k∈VT (vj)

ntk

cj
(6.6)

is computed by averaging the face normals ntk incident to the vertex vj, where |·| and ⊗ are

the norm and cross product operators, respectively and the term cj represents the number

of neighboring vertices of vertex vj.
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Initial AS Measured Surface

Sampled surface Converged surface

Fig. 6.4: The three important steps of DAS: for a given initial surface (left), gradients are

measured, the resulting surface is resampled on the basis of curvature, and then smoothness

prior is enforced into the resampled surface. Despite the presence of noise in this example,

the proposed iterative approach converged well to the desired cube, right.
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Given these vertex normals nj, j ∈ [1, · · · , q], the 3D trellis is created using the formu-

lation developed in Section 4.1. Then, the iterative quasi-random search (IQRS) method

developed in Section 5.2 is employed to find the measured surface as discussed below.

This development follows the IQRS formulation proposed in Section 5.2, the states

wmj , j ∈ [1, q] having maximum probability along the normals nj, j ∈ [1, q] are first com-

puted as:

wmj = arg max
wj∈[−u

2
:u
2

]

(P (ψ(wj)|wj)) , j ∈ [1, q]. (6.7)

Second, following the description of the IQRS approach of the FDAC (Section 5.2), a

spatial inter-neighboring constraint is enforced iteratively to overcome unnecessary peaky

surface vertices. Given this likeliness constraint, the state of the normals wj, j ∈ [1, · · · , q]
are updated as:

wmj = arg max
wj

(
P
(
ψ (wj) |wj,Ω

(
wmj
)))

, (6.8)

which is equivalent to

wmj = arg max
wj

(
P (ψ (wj)|wj)P

(
wj,Ω

(
wmj
)))

, (6.9)

where

P
(
wj,Ω

(
wmj
))

=
1

Zb
exp

− ∑
v∈Ω

(
vwm
j

)
∥∥vwj − v∥∥

 . (6.10)

The term Zb is a normalizing constant to make P
(
wj,Ω

(
wmj
))

a probability distribution

functions for normal j. The pseudo-code for IQRS is provided in Algorithm 5.

The converged boundary vm using IQRS is assigned as the measured boundary. As

described in Section 4.3, a non-stationary prior is essential in the update step to capture

high curvature surfaces. The generation of the non-stationary prior using curvature based

mesh resampling (Section 6.4) and the estimation technique (Section 6.5) are provided

next.
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Fig. 6.5: The principal and Gaussian curvatures of a cubic surface.

6.4 Step 2: Generation of the Non-Stationary Prior

in 3D

High curvature regions (corners, edges) of a surface can be captured by relaxing the prior.

This has been accomplished in Sections 4.2 and 5.3 via an importance sampling step in 2D,

placing a greater density of samples near regions of high curvature. However, computing

the surface curvature and performing the importance sampling in 3D are two challenging

tasks. The description of these two tasks follows.

6.4.1 Curvatures in 3D

The curvature κ of a parametric 2D curve v(s) = [x(s), y(s)], s ∈ [0, 1] is defined as the

rate of change of tangent angle with respect to the arclength s. However for a 3D surface

the curvature at a particular vertex varies as the plane through the normal at that point

changes, therefore there is no unique definition of surface curvature. As shown in Fig. 6.5,

the curvature of a 3D surface is usually defined using principal and Gaussian curvatures.

However, for DAS’s purposes an exact definition of curvature is not needed; rather what

is needed is some measure of triangulation error, such that additional triangles are placed

near edges and corners. For this purpose, the pseudo curvature κj can be computed first by

using a least squares algorithm to fit a plane to the first-order neighboring vertices Ω(vj),
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followed by the computation of the perpendicular distance from surface vertex vj to the

least squares fitted plane. The mathematical formulation to compute the pseudo curvature

κj, j ∈ [1, q] follows.

Let a plane a1x + a2y + a3z − 1 = 0 be approximated to fit Ω(vj), the neighboring

vertices of the vertex vj = [xj, yj, zj]. In this problem, the number of vertices (linear

equations) are more than the number of variables (a1, a2, a3). Hence a linear least squares

algorithm is employed to find the necessary plane. The algorithm assumes the set of

neighboring vertices Ω(vj) = [vbk, vck, · · · ]T of the vertex vj lies on the hypothetical plane

a1x + a2y + a3z − 1 = 0. The plane that passes through Ω(vj) can be defined using a set

of linear equations as:  xbk ybk zbk

xck yck zck
...

...
...


 a1

a2

a3

 =

 1

1
...

 . (6.11)

Using vector and matrix notation these set of linear equations can be rewritten as

Π B = 1, (6.12)

where B = [a1, a2, a3]T . Using linear least square fitting algorithm B is given by:

B =
(
Π ΠT

)−1
ΠT1 (6.13)

The perpendicular distance of the vertex vj from this plane is given by:

κj =
a1xj + a2yj + a3zj − 1√

a2
1 + a2

2 + a2
3 + 1

, j ∈ [1, q] (6.14)

The pseudo curvature of a synthetic cube computed using (6.14) is demonstrated in

Fig. 6.6(b). Having computed κ at all vertices, the curvature based mesh resampling

scheme is provided next.

6.4.2 Surface Resampling

The surface resampling step of DAS is necessary for three primary reasons.

1. To generate a curvature based non-stationary prior to capture high curvature sur-

faces.
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(a) Extracted surface without resampling (b) Extracted surface with resampling
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(c) Curvature of the cube

Fig. 6.6: The resampling scheme. The top left cube (a) is iterated without resampling, but

ends up with an excess of grid points in flat regions, and possibly a deficiency in regions

of high curvature. The top right (b) cube shows the mesh after resampling, based on the

curvature as shown in the bottom panel (c).
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Algorithm 9 Function MeshResample1

1: while j ≤ q do

2: Compute the pseudo curvature κj using (6.14);

3: if κj > κth then

4: Get the edges e(j) that are connected to the vertex vj;

5: Get the longest edge length ll and the index i corresponding to ll from the length

l(ei(j)) of all edges;

6: if ll > lth then

7: As shown in Fig. 6.8(c), bisect the edge ei(j) by inserting a new vertex, and

then update VT and T V ;

8: end if

9: end if

10: j = j + 1;

11: end while

2. To lower the computational complexity by reducing the total number of surface ver-

tices by fewer samples in smooth regions.

3. To maintain numerical stability of the surface evolution process by avoiding the

formation of unwanted triangles.

To achieve the first and second goals, Algorithm 9 generates the resampled set of vertices

using the curvature κ such that faces with curvature exceeding a threshold κth are con-

sidered for subsampling, and then resampling is performed along the longest edge of that

face. To achieve the third goal, DAS refines two types of problematic triangles (thin and

fat) that are generated during the surface evolution process.

As shown in Fig. 6.7(a), the triangles whose longest to the shortest edge length ratio

are Th1 and the largest to second largest edge length ratio are between Th2 to Th3 are

termed as tall triangles. Other triangles that are not tall triangles but have the length of

the longest edge length greater than Th4 are considered as fat triangles. A fat triangle

is illustrated in Fig. 6.8(a). Due to excessively large segment length, both tall and fat

triangles can lead the deformable model to an unstable state, if not refined at an earlier

iteration. Hence, the thin and fat triangles are refined. The refining process is carried out

using two operations: triangle splitting and mesh closing as described in Algorithms 10
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(a) A tall triangle (b) Splitting (c) Closing

Fig. 6.7: Demonstration of the splitting and closing operations of a tall triangle. Left, a

tall triangle. Middle, splitting of a tall triangle creates two open vertices (vop and von).

Right, backward (light grey) and forward (dark grey) closing operations are performed to

close the open vertices. The original surface vertices and segments are marked in black,

while the newly inserted vertices and segments are marked in grey.

and 11, and shown in Figs. 6.7 and 6.8. As shown in Figs. 6.7(b) and 6.8(b), the splitting

of a tall triangle generates two open vertices and the splitting of a fat triangle generate an

open vertex. Where, an open vertex is a vertex which creates a hole in a boundary if not

tied to its neighboring vertices appropriately.

The splitting and closing operations of a tall triangle are demonstrated in Fig. 6.7.

Where, the longest and the second longest edges of the tall triangle are bisected by inserting

(middle panel) two new vertices (von and vop) and then these two open vertices are closed

using a backward and a forward closing operations (right panel). Similarly, the splitting

and closing operations of a fat triangle are demonstrated in Fig. 6.8. Where the largest

edge of the fat triangle is bisected (middle) by inserting a new vertex (vo) and then the

open vertex is closed using a closing operation (right). Finally, The algorithm to refine all

fat and thin triangles is described in Algorithm 12.
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Algorithm 10 Function Split(ti)

1: if ti is a thin triangle then

2: As shown in Fig. 6.7(b), insert two new vertices one at the middle of the longest

(oep) and another at second longest oen edges of the triangle ti, respectively;

3: Update the containers T V and VT ;

4: CloseMesh(oep);

5: CloseMesh(oen);

6: else

7: if ti is a thick triangle then

8: As shown in Fig. 6.8(b), insert a new vertex ov at the middle of the longest edge

oe of the triangle ti;

9: Update the containers T V and VT , TRAVERSED(tk)=1;

10: CloseMesh(oe);

11: end if

12: end if

On the other hand, reducing the number of vertices is a far more difficult operation

as such a process needs re-triangulation [34, 115]. Therefore, DAS is initialized with a

deliberately small number of vertices, with further vertices added as needed, but never

removed.

Finally, the DAS’s mesh resampling scheme is illustrated using a synthetic cube in

Fig. 6.6. More samples near the corners and edges of the cube can be observed in 6.6(b).

6.5 Step 3: Bayesian Estimation in 3D.

Two different techniques to fuse the non-stationary prior with the measured boundary

using a Bayesian estimation approaches are demonstrated in Sections 4.3 and 5.4. The

primary focus of this section is to propose a computationally and storage efficient conjugate

gradient technique, and an approach to compute the prior constraints Q in 3D to solve the

Bayesian estimation problem. Based on the formulation developed in Section 5.4 (pp. 84),

an estimate of each component [xm,ym, zm] of the measured surface vm can be expressed
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Fig. 6.8: Demonstration of the splitting and closing operation of a fat triangle. Left, a fat

triangle. Middle, splitting of a fat triangle creates an open vertex (vo). Right, a closing

operation is performed to close the open vertex. The newly inserted vertex and edges are

marked in grey.

as:

Hxθ = bx, Hyθ = by, Hzθ = bz, (6.15)

where

xθ = (x̂− µx) , yθ = (ŷ − µy) , zθ = (ẑ− µz) , (6.16)

bx = R−1 (xm − µx) , by = R−1 (ym − µy) , bz = R−1 (zm − µz) (6.17)

and

H = (R−1 +Q), (6.18)

where R and Q are the measurements uncertainties and prior constraints matrices. The

values of xθ, yθ and zθ can be computed using the conjugate gradient technique proposed

in Algorithm 7.

To solve (6.15) using conventional conjugate gradient method proposed in Algorithm 7

involves a matrix (H) and a vector b multiplication and such a multiplication needs large

computational as well as storage resources for solving a 3D problem. For example, a

moderate size 3D object requires q = 5000 vertices to represent its surface, and as a result
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Algorithm 11 Function CloseMesh(e)

1: Get the non traversed triangle tk connected to the edge e

2: if tk is a thin triangle then

3: Split(tk)

4: else

5: if ti is a fat triangle then

6: Close the mesh as shown in Fig. 6.8(d), TRAVERSED(tk)=1;

7: Update the containers T V and VT ;

8: end if

9: end if

Algorithm 12 Function MeshResample2

1: Assign TRAVERSED = {0};
2: for k = 1 : t do

3: if TRAVERSED(tk)== 0 then

4: Split(tk), TRAVERSED(tk)=1;

5: end if

6: end for

the size of H becomes 5000× 5000. However the prior constraints (Q) is a sparse circulant

matrix and the noise covariance (R) is a diagonal matrix. Hence, H = (R−1 +Q) is also

a sparse circulant matrix. As a result, H can be completely and sparsely specified by only

two vectors: h and r as shown below

H = circulant(h) + diag

(
1

r

)
, (6.19)

where r is the diagonal of the matrix R and h is a kernel of the prior constraints Q. The

measurements uncertainty matrix R (rj, j ∈ [1, · · · , q]) is computed using (4.33).

Next, the goal is to compute Q (h) on an irregular triangular mesh. As described

in Subsection 2.2.2 (pp. 12), in the context of traditional active contour and surface, the

internal energy (prior) is defined using an elastic (first order derivative) and thin-plate

(second order derivative) energies. But, the first and higher order derivatives are not well

defined for an irregular triangular mesh. However, a true definition of derivatives is not

necessary for practical discrete implementation; instead a technique to compute the penalty

on the slope and the curvature of a curve/surface is required.
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Algorithm 13 [xθ] = Function MCG(b)

ε = 10−10, x0 = b, $0 = x0 −ϕ(x0), o0 = $0, k = 0;

while |$k| > ε do

ι = ϕ(ok)

λk =
$T
k$k

oTk ι
, xk+1 = xk + λkok, $k+1 = $k − λk ι;

ρk =
$T
k+1$k+1

$T
k$k

, ok+1 = ρkok +$k+1, k = k + 1;

end while

xθ = xk;

To compute these two penalties, DAS proposes a pseudo definition of the second ∆2

and the fourth ∆4 order synthetic derivatives of a discrete entity x as:

∆2xj =
1

cj

∑
x∈Ω(xj)

(x− xj) (6.20)

and

∆4xj =
1

cj

∑
∆2x∈Ω(∆2xj)

(
∆2x−∆2xj

)
, (6.21)

where Ω (xj) and Ω (∆2xj) represent the x and ∆2x values of the neighboring vertices of

the vertex vj, and the term cj representees the number of neighboring vertices of the vertex

vj.

Essentially, the ultimate goal is to estimate xθ, yθ and zθ. A conjugate gradient (CG)

approach is proposed in Section 5.4 (pp. 85) to estimate these quantities, where the CG

method first computes the large matrix H using Algorithm 6 (pp. 85) and then uses the

pre-computed H to compute Hb. However, this product Hb can be computed efficiently

without unnecessarily storing the large matrix H by using a modified CG technique as

described in Algorithm 13.

The modified CG method uses a function ϕ(b) (Algorithm 14) to dynamically com-

pute the product Hb without storing H. Essentially, for each vertex (vj, j ∈ [1, · · · , q])
the Algorithm 14 generates a non-zero band of the matrix H as described in (6.19) and

computes the product Hb for the corresponding vertex using (6.22).

The modified algorithm to estimate the components [x,y, z] of the measured bound-

ary vm is presented in Algorithm 13. Finally, the three steps of DAS are provided in

Algorithm 15.
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Algorithm 14 [ι] = ϕ(x)

for j = 1 : q do

Compute ∆2xj using (6.20) and ∆2xj using (6.20);

Compute

ιj = α∆2xj + β∆4xj +
xj
rj

; (6.22)

end for

Algorithm 15 [vc] = Function DAS(v0)

k = 0, vek = vk, ε = 10−4, ASD =∞;

while ASD > ε do

k = k + 1, vmk = IQRS(vek−1, ε);

xek = MCG(xmk ), yek = MCG(ymk ), zek = MCG(zmk ), vek = [xek,x
e
k, z

e
k], ASD =

GetASD(vek,v
e
k−1);

end while

vc = vek;

6.6 Testing and Results

The advanced capabilities of the DAC and the FDAC to segment 2D objects in the presence

of noise and background clutter have been demonstrated in Sections 4.4 and 5.5. The DAS

extends FDAC concepts to 3D and validates its claims using one natural (ES, Fig 6.11),

four synthetic 3D volumetric images (AS, BS, CS and DS, Figs 6.9 and 6.10) and two 2D

moving image sequence (FS and GS, Figs 6.12 and 6.13). The seven test cases involve

typical characteristics of high curvature and noise. The proposed DAS is compared to

a level set based hybrid [114] (LSHYB) active surface method. The code for LSHYB is

downloaded from [116].

LSHYB integrates the object boundary and region information and uses a level set

frame work to find the boundary of an object. LSHYB is considered as an effective hybrid

active surface technique [114]. Therefore, the performance of DAS is compared to LSHYB.

All experiments are performed on a P4 Intel 2.4Ghz processor, 1Gb RAM using Mat-

lab. The parameters for LSHYB are adopted from [114]. For DAS the parameters:

κth = 1, lth = 8, α = 0.1 and β = 0.01 are used for all test cases. DAS is initialized with a
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spherical initial surface and LSHYB is initialized with a zero level set.

6.6.1 Qualitative Segmentation Result

A standard established 3D database for quantitative error analysis is not available and

creating manual ground truth for 3D surfaces is a non-trivial task. Therefore, a qual-

itative analysis of the surface identification performance of DAS and LSHYB is pro-

vided. The DAS’s ability to identify the surface of 3D volumetric images is presented

in Figs. 6.9, 6.10, 6.11, 6.12 and 6.13.

Original DAS LSHYB [114]

A
S

B
S

Fig. 6.9: Surface identification accuracy of DAS and LSHYB. The test is conducted on two

surfaces: a U-shape (AS; top left), and a Bunny (BS, bottom left). Both DAS and LSHYB

segment these two objects successfully.

Fig. 6.9 compares the performance of DAS (middle column) and LSHYB (right col-

umn). Non-parametric methods are better in capturing high curvature regions compared
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Original DAS LSHYB [114]
C

S
D

S

Fig. 6.10: The DAS successfully identified the outer surface of a hollow cylinder (top) and

a sphere (bottom) in the presence additive Gaussian noise (σ = 0.4). As expected, LSHYB

performed poorly in the presence of noise.

to parametric methods, therefore, LSHYB, a non-parametric method, identifies the high

curvature boundaries of images AS and BS.

Though, DAS is a parametric model, it successfully identifies the high curvature bound-

aries of the images AS and BS using separated measurement and prior steps, and also by

enforcing a lower force in high curvature regions. The high-curvature tolerance of DAS

is illustrated most clearly in the sharpness of the top and bottom surface edges in image

(AS).

The performance of DAS and LSHYB to identify the outer surface of a human head in a

volumetric MR image is presented in Fig. 6.11. DAS successfully identifies high curvature

regions (e.g., the ears, nose and eyes) in the MR image. As with non-parametric methods,

LSHYB poorly identifies the outer surface of the human brain in the presence of the noise.
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Volumetric image (ES)

DAS LSHYB [114]

Fig. 6.11: Image (ES): a human MRI scan. The DAS successfully identified the outer

surface of the MRI of the brain. The DAS’s ability to capture high curvature regions (ears

and nose) can be observed. LSHYB poorly identified the outer surface of the human MRI

due to the presence of noise.
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Finally, the ability of DAS to identify the tunnels of two walking men in two spatio-

temporal sequences [117] are demonstrated in Figs. 6.12 and 6.13, respectively. In both

cases, DAS successfully identified the human walking tunnels.

6.6.2 Robustness to Noise

The robustness of the decoupled deformable model in 2D has been demonstrated in Chap-

ters 4 and 5 using illustrative examples. This chapter shows the ability of DAS (a decoupled

deformable model in 3D) to identify the surface of noisy synthetic 3D images. The effec-

tiveness of DAS to perform in the presence of noise (Gaussian, σ = 0.4) is demonstrated

using two synthetic images (CS and DS) in Fig. 6.10 and a real measured human tomogram

(ES) in the top panel of Fig. 6.11.

DAS successfully identifies the outer surfaces of the volumetric images in the presence

of noise. In contrast, LSHYB (a non-parametric active surface method) fails to identify

the true surfaces for all noisy volumetric images. As non-parametric methods do not use a

parametric model, therefore, non-parametric methods are typically more sensitive to noise

compared to parametric methods. However, non-parametric methods are insensitive to

initial solution and inherently handle multiple topology.

6.6.3 Convergence Speed

The convergence time of DAS compared to LSHYB [114] is presented in Table 6.1. The

computational complexity of LSHYB (a non-parametric method) is a function of number

of voxels. In contrast, the computational complexity of DAS (a parametric method) is a

function of number of active surface vertices. Further, the mesh resampling step of DAS

reduces the number of vertices significantly by putting fewer vertices near smooth regions.

Therefore, as shown in Table 6.1, the convergence time of DAS is significantly lower than

that of LSHYB [114].

6.6.4 Summary of DAS

A decoupled active surface model based on the extension of the FDAC from 2D to 3D is

proposed and implemented for identifying the surface of a volumetric 3D object and the
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Fig. 6.12: Image GS: Image sequence of a moving 2D object (PETS 2007 dataset [117]),

namely a man walking (top panel). The DAS successfully identified the desired tunnel

traced by the walking man (bottom panel). For clarity, the tunnel and three slices in x−y,

y− t, and x− t planes are presented in the bottom panel. The black object is the walking

man.
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Fig. 6.13: Image HS [18]: Image sequence of a moving 2D object, namely a man walking

(top panel). At first sight, it seems two people are walking. However, only one man is

walking along the time axis (t-slice). The other look alike man along the x-axis (x-slice) is

the cross section of the human as it appears along time. The tunnel is shown using green

(face color) and red (edge color) colors.
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Table 6.1: Comparison table showing execution time in seconds for the surfaces in

Figs. 6.9, 6.10 6.11, 6.12 and 6.13 comparing the DAS and the LSHYB [114]. The DAS is

more than two order of magnitude faster than LSHYB.

LSHYB [114] DAS

No. of vertices q ET Initial no. vertices Final no. vertices ET

AS 14900 1980 642 1961 323

BS 21284 2383 642 3684 187

CS 18910 2542 642 2432 297

DS 78888 3323 1281 1842 123

ES 499044 15623 1281 4987 315

FS - - 2562 7096 512

GS - - 2562 9748 539

tunnel of a moving 2D object. The dramatic computational gain and better segmentation

performance of DAS compared to one published parametric active surface based method

have been demonstrated in this chapter. The better segmentation performance and success

of DAS in the presence of noise and high curvature is due to the use of the novel concept

of separating the prior from measurements and the incorporation of a non-stationary prior

using a mesh resampling scheme.
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Chapter 7

Summary and Future DDM Research

This chapter summarizes the work of this thesis and provides further directions to extend

the work described in this thesis.

7.1 Summary of DDM

Decoupled deformable model (DDM), a novel approach to minimizing the total energy

of the active contours/surfaces by separating the prior from the measurement has been

designed and implemented. First, the concepts of the DDM is applied in 2D to develop

a decoupled active contour (DAC) to precisely identify the boundary of a single object

in the presence of noise and background clutter. To carry out the boundary extraction

task in 2D, each iteration of the DAC is performed in the following three steps. i) A

Viterbi search is performed to find measured boundary from the image gradients. ii) An

importance resampling step is performed to generate a non-stationary prior to capture high

curvature regions. iii) A Bayesian estimator is applied to update the measured boundary

by incorporating prior shape constraints.

The objectives of DAC are validated experimentally on noisy, cluttered natural and

synthetic images, and on an established database compared to three published methods.

DAC is demonstrated to be robust to noise, requires no parameter tuning, is able to capture

high curvature regions, and is insensitive to initialization. The convergence rate of DAC is

two orders of magnitude faster than the compared methods.
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Second, a fast decoupled active contour (FDAC) is proposed to reduce computational

burden and to enhance the scalability of DAC to 3D by using more advanced measurement,

resampling and estimation schemes than DAC. Tests comparing FDAC to three published

methods have been performed using both natural and synthetic images. FDAC’s compu-

tational speed is approximately two to three times faster than DAC’s and two orders of

magnitude faster with comparable or reduced error when compared to two other methods.

FDAC’s dramatic reduction in computational load allows the use of additional vertices

to improve identification in high curvature boundary regions. The computational gain of

FDAC over DAC stems from the use of an iterative quasi-random search approach to iden-

tify boundary-like features, a uniform sampling on the integral of the absolute value of the

curvature of the measured boundary to generate a non-stationary prior, and an efficient

conjugate gradient technique to assert the prior model.

Third, a decoupled active surface (DAS) is designed by implementing the three steps

of FDAC in 3D. First, a conforming triangular mesh based representation scheme is imple-

mented to represented DAS in 3D. Second, a curvature guided surface resampling scheme

is implemented to reduce the computational cost and to capture high curvature regions.

Finally, a modified storage efficient conjugate gradient technique is implemented to update

the measured boundary. Experimental evaluations to validate DAS’s claim have been per-

formed using several natural and synthetic volumetric images. DAS is demonstrated to be

robust to noise, is able to capture high curvature surfaces and have a higher convergence

rate compared to parametric methods.

Finally, based on the experimental evaluation of this thesis, a qualitative performance

rating table summarizing the capabilities of several parametric and non-parametric meth-

ods is shown in Table 7.1.

7.2 Research Contributions

The key contribution of the thesis is the development of a decoupled deformable model

(DDM) to rapidly identify the boundary of a 2D/3D object in the presence of outliers.

DDM separates the measurements from the prior to solve the conventional active contour

or active surface energy minimization problem (MAP, pp. 27) efficiently. By separating

the measurements from the prior, DDM first finds an approximate measured boundary
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Table 7.1: Summary of qualitative performance of various methods based on this thesis’s

experimental evaluations. The “ ∗ ∗ ∗ ∗ ∗ ” is the highest rating. N/A stands for not

applicable.

PAC NPAC

DDM GVF VFC PIG TS ACWE/LSWR

Initialization ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
insensitivity

Robustness ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗∗
to outliers

Convergence to ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
high curvature

Scalable to ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗
higher dimensions

Parameter ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
insensitivity

Computational ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗
efficiency

Identification ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ N/A
of broken edges

Handling of
N/A N/A N/A N/A ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

multiple topology

Handling of
N/A N/A N/A N/A ∗ ∗ ∗ N/A

embedded topology
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using a ML estimator and then uses a linear Bayesian estimator to incorporate a non-

stationary prior into the measured boundary. The non-stationary prior is generated by

following a curvature guided sampling method to capture the high curvature regions. The

ML estimation step of DDM facilitates the use of a large non-local search space (Chapter 3).

As a result, DDM finds an approximate solution from a non-local solution space, making

it insensitive to local minima. Unlike conventional methods, DDM integrates a noise

model and a non-stationary prior into the conventional traditional deformable model energy

functional.

For practical application, this thesis implements the following novel concepts to develop

i) decoupled active contour(DAC) [24], ii) fast decoupled active contour (FDAC) [118] and

iii) decoupled active surface [119].

1. Formulation of a novel approach to find the measured boundary (an approximate

boundary) using hidden Markov Model and Viterbi search.

2. Formulation of an iterative quasi-random search as a scalable and efficient approach

to find the measured boundary of a 2D/3D object.

3. Formulation of a curvature guided importance sampling (2D/3D) technique to cap-

ture high curvature regions.

4. Formulation of a Bayesian estimator to estimate an updated boundary by fusing the

non-stationary prior and the measurement.

5. Formulation of a modified conjugate gradient technique to efficiently solve the Bayesian

estimation problem.

In summary, DDM provides a unified framework to integrates historical knowledge (prior)

with the measurement to robustly identify the boundary of a 2D/3D object.

7.3 Future Direction

The DDM is an efficient and scalable model, and therefore this DDM model can be extended

in future research for multiple boundary detection. DDM is a parametric model and
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parametric models are not able to handle changes in topology naturally. Therefore, to find

multiple objects parametric models use manual multiple initial solutions. An ACID grid

based parametric deformable model approach is proposed [120] to identify the boundary

of multiple objects. Recently, a Poisson inverse gradient [54] based active contour and

active surface is proposed to locate multiple objects. These initialization techniques can

be incorporated into DDM to identify multiple boundaries.

The suitability of multi-scale, multi-stage and multi-resolution techniques to further

reduce the computational burden of DDM will be studied. The DDM model will be applied

to reconstruct 3D surfaces from scattered point clouds (collected using 3D laser scanner)

for generating CAD/CAM models of objects. The DDM will be implemented in C/C++

(complied language).
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Appendix A

Bayesian Linear Estimator

As discussed in Section 4.3, each element of v is, itself, an n-vector coordinate vj = (xj, yj);

to talk about the estimation of v is mathematically ambiguous. Therefore, the estimation

of the components x,y will be explicitly derived (adopted from [121]). Let ve = (xe,ye)

be the true and unknown discretized deformable model nodes that need to be estimated,

considering ve to be a random vector with the components of ve satisfying a normally

distributed prior model Λ with mean µ:

xe ∼ N(µx,Λ), (A.1)

and

ye ∼ N(µy,Λ) (A.2)

Assuming a linear relationship between the measured and true states, the extracted and

resampled measured boundary vm representing the measurements of ve can be expressed

as:

xm = Cxx
e + νx, (A.3)

and

ym = Cyy
e + νy, (A.4)

where Cx = Cy = I are identity matrices, since each visual entity is measured, and where

ν = [νx,νy] is the measurement noise, itself having statistics

νx,νy,∼ N(0, R). (A.5)
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For simplicity, the Bayesian estimation of one component (x) of v for scalar case is

derived:

x̂B = argx̂ min{E[(x̂− x)2|xm]} (A.6)

= argx̂ min

∫
(x̂− x)2P (x|xm)dx. (A.7)

To minimize the (A.7) the derivative is set to zero:

dx̂B
dx̂

=
∂

∂x̂

∫
(x̂− x)2P (x|xm)dx = 0 (A.8)

=

∫
2(x̂− x)P (x|xm)dx = 0 (A.9)

Solving (A.9), we get ∫
x̂P (x|xm)dx︸ ︷︷ ︸

x̂

=

∫
xP (x|xm)dx︸ ︷︷ ︸
E(x|xm)

. (A.10)

That is, the sub-optimal estimator is just the conditional mean of x, given the remeasure-

ments. The result for the vector case is identical:

x̂ = E[x|xm] (A.11)

To solve (A.11) for large estimation problems is difficult. Therefore a simple linear approach

that has a closed form solution is used.

Given a linear estimator, x̂ can be written:

x̂ = Axm + θ; (A.12)

To derive A and θ the following two criteria are asserted: 1) Unbiasedness and 2) Orthog-

onality.

Unbiasedness: The estimator is unbiased

E[x̂− x] = 0 =⇒ E[Axm +α− x] = 0 (A.13)

=⇒Aµxm + θ − µx = 0 =⇒ θ = µx − Aµxm (A.14)
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Orthogonality: The error in x̂ must be un-correlated (orthogonal) with any linear

function of data:

E[(x̂− x)(Fxm + `)T ] = 0 ∀F, ` (A.15)

=⇒E[(x̂− x)]E[(Fxm + `)T ] = 0 (A.16)

=⇒E[(Axm + µx − Aµxm − x)(Fxm + `)T ] = 0 (A.17)

After simplifying (A.17):

(AΛxm − Λxxm)F T = 0 =⇒ A = ΛxxmΛ−1
xm (A.18)

where Λ denotes a co-variance or cross-co-variance matrix, Λxm = cov(xm), Λxxm = E[(x−
µx)(x

m − µxm)T ]. Incorporating the xalue of θ and A, the Bayesian linear least square

estimator becomes:

x̂ = Axm + θ = µx + ΛxxmΛ−1
xm(xm − µxm) (A.19)

Let µx = µ and Λx = Λ, therefore µxm , Λxxm and Λxm are as shown in (A.22), (A.23),

(A.20)

µxm = E[(Cx + ν)] = Cµx + 0 = Cµ (A.20)

Λxxm = E[(x− µx)(xm − µxm)T ] (A.21)

= E[(x− µx)(Cx + ν − Cµxm)T ] = ΛxCT = ΛCT (A.22)

Λxm = cov(xm − µmx ) = cov(C(x− µ+ ν) = CΛCT +R (A.23)

Inserting the values of µx,µxm ,Λxxm and Λxm in (A.19) and simplifying:

x̂ = µx + (ΛCT )(CΛCT +R)−1(xm − Cµx) (A.24)

Using ABCD lemma (A.12) can be rewritten as:

x̂ = µx + (CTR−1C + Λ−1)−1CTR−1(xm − Cµx) (A.25)

129



References

[1] A.K. Mishra, A. Wong, W. Zhang, D.A. Clausi, and P.W. Fieguth. Improved in-

teractive medical image segmentation using enhanced intelligent scissors (EIS). In

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, pages 3083–6, Vancouver, Canada, August 2008. 1, 22

[2] N. Ray, S.T. Acton, and K. Ley. Tracking leukocytes in vivo with shape and size

constrained active contours. IEEE Transactions on Medical Imaging, 21(10):1222–

1235, October 2002. 1, 70

[3] N. Ray and S.T. Acton. Motion gradient vector flow: an external force for tracking

rolling leukocytes with shape and size constrained active contours. IEEE Transac-

tions on Medical Imaging, 23(12):1466–1478, December 2004. 1

[4] G. Dong, N. Ray, and S.T. Acton. Intravital leukocyte detection using the gradient

inverse coefficient of variation. IEEE Transactions on Medical Imaging, 24(7):910–

924, July 2005. 1, 70

[5] S. Sclaroff and L. Liu. Deformable shape detection and description via model-based

region grouping. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(5):475–489, 2001. 1

[6] N. Alajlan, M.S. Kamel, and G.H. Freeman. Geometry-based image retrieval in

binary image databases. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 30(6):1003–1013, 2008. 1

[7] M. Mata, J. Armingol, J. Fernández, and A. De. Object learning and detection using

evolutionary deformable models for mobile robot navigation. Robotica, 26(1):99–107,

2008. 1

130



[8] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum. Lazy snapping. ACM Transactions on

Graphics, 23(3):303–308, 2004. 1, 22

[9] N.M. Eric and A.B. William. Intelligent scissors for image composition. In SIG-

GRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, pages 191–198, New York, NY, USA, 1995. ACM. 1, 22, 23,

52, 60

[10] MAP3D: Interactive scientific visualization tool for bioengineering data. Scientific

Computing and Imaging Institute (SCI). 1

[11] R. Bowden, T.A. Mitchell, and M. Sahardi. Real-time dynamic deformable meshes for

volumetric segmentation and visualisation. In Bristish Machine Vision Conference,

pages 310–319, 1997. 1

[12] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition

using structure from motion point clouds. In European Conference on Computer

Vision, pages 44–57, Berlin, Heidelberg, 2008. Springer-Verlag. 1

[13] A.P. Pentland. Automatic extraction of deformable part models. International Jour-

nal of Computer Vision, 4(2):107–126, March 1990. 1

[14] A.P. Pentland and S. Sclaroff. Closed-form solutions for physically based shape

modeling and recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(7):715–729, July 1991. 1

[15] M. Bertalmı́o, G. Sapiro, and G. Randall. Morphing active contours. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(7):733–737, 2000. 1

[16] M. Bertalmio, G. Sapiro, and G. Randall. Morphing active contours: a geomet-

ric approach to topology-independent image segmentation and tracking. In IEEE

International Conference on Image Processing, pages III: 318–322, 1998. 1

[17] C.R. Shelton. Morphable surface models. International Journal of Computer Vision,

38(1):75–91, June 2000. 1, 8

[18] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-

time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(12):2247–2253, December 2007. 2, 120

131



[19] A. Wong, A. Mishra, J. Yates, P.W. Fieguth, D.A. Clausi, and J.P. Callaghan. Inter-

vertebral disc segmentation and volumetric reconstruction from peripheral quantita-

tive computer tomography imaging. IEEE Transactions on Biomedical Engineering,

56(11):2748–2751, 2009. 4

[20] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Interna-

tional Journal of Computer Vision, 1(4):321–331, 1988. 1, 3, 4, 5, 8, 9, 13, 14, 20,

21, 27, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68

[21] C.Y. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transac-

tions on Image Processing, 7(3):359–369, 1998. 3, 4, 5, 8, 9, 13, 14, 17, 18, 20, 21,

22, 23, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 68, 86, 87, 97, 99

[22] B. Li and S. T. Acton. Active contour external force using vector field convolution

for image segmentation. IEEE Transactions on Image Processing, 16(8):2096–2106,

2007. 3, 4, 5, 9, 13, 14, 17, 19, 20, 21, 22, 23, 32, 85, 86, 87, 88, 89, 90, 94, 97, 99

[23] L.D. Cohen. On active contour models and balloons. Computer Vision Graphics and

Image Understanding, 53(2):211–218, March 1991. 3, 5, 17, 18, 21, 22, 45, 46, 97

[24] A. Mishra, P.W. Fieguth, and D. A. Clausi. Decoupled active contour (DAC) for

boundary detection. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, Preprint, 2010. 3, 5, 32, 88, 89, 90, 125

[25] M. Krueger, P. Delmas, and G. Gimel’Farb. Active contour based segmentation of

3d surfaces. In European Conference on Computer Vision, pages 350–363, Berlin,

Heidelberg, 2008. Springer-Verlag. 3
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