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Abstract—Although the frequency and orientation of mitoses
can significantly affect the mechanics of early embryo
development, these data have not been available due to a
shortage of suitable automated techniques. Fluorescence
imaging, though popular, requires biochemical intervention
and is not always possible or desirable. Here, a new technique
that takes advantage of a localized intensity change that
occurs in bright field images is used to identify mitoses. The
algorithm involves mapping a deformable, sub-cellular tri-
angular mesh from one time-lapse image to the next so that
corresponding regions can be identified. Triangles in the
mesh that undergo darkening of a sufficient degree over a
period consistent with mitosis are flagged. Mitoses are
assumed to occur along the short axis of elliptical areas fit
to suitably sized clusters of flagged triangles. The algorithm is
less complex than previous approaches and it has strong
discrimination characteristics. When applied to 15 image sets
from neurulation-stage axolotl (Ambystoma mexicanum)
embryos, it was able to correctly detect 86% of the manually
identified mitoses, had less than 5% false positives and
produced average angular errors of only 15�. The new
algorithm is simpler to implement than those previously
available, is substantially more accurate, and provides data
that is important for understanding the mechanics of
morphogenetic movements.

Keywords—Mitosis identification, Mitosis orientation,
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INTRODUCTION

During early embryo development, sheets of cells
called epithelia undergo significant self-driven changes
of shape (Fig. 1) in order to form organs and other
essential structures. Experiments and computational
models have shown that mitosis can significantly affect

the mechanics of these cell sheets, especially if the
mitoses have non-random orientations within the
sheet.7,10 Although, in principal, mitoses can be iden-
tified manually by the characteristic local motion pat-
terns and reflectance changes they produce in bright
field images (Fig. 2), such work is tedious and makes
detailed studies impractical.

A number of attempts have been made to solve this
problem. Cells grown in culture are often separated
spatially from each other, and if the right combinations
of imaging methodologies and segmentation algo-
rithms are used, mitoses can be identified by changes in
topology.2,3,5,27 If cells are confluent but have sufficient
edge contrast, the segmentation step can be done using
boundary algorithms.17,23,25,33,38 Edge contrast can
often be enhanced using fluorescent membrane mark-
ers, but biochemical interventions are involved and
they may affect the behavior of the cells. Because cells
in axolotl embryos are contiguous, have unreliable
edge contrast, and fluorescent markers are not cur-
rently available for early stage embryos of this species,
none of these approaches is suitable. A previous
algorithm developed by the authors Siva et al.30 used
image processing and pattern recognition methods to
identify localized deformation patterns characteristic
of mitosis, thereby avoiding the segmentation problem.
That approach was able to achieve identification
accuracies slightly less than 70% and average orien-
tation errors of 27�.

In order to improve on these values, a new algorithm
that detects transient changes in surface reflectance was
developed and, like its predecessor, it circumvents the
need to find all of the cell boundaries. The optical
characteristics of these cells derive from the presence
and motion of pigment granules on the cell surface.11 In
the early-stage embryonic epithelia of interest here, a
dark band arises along the junction between the newly
formed daughter cells (Fig. 2), a phenomenon observed
in a variety of other kinds of tissues, including those
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associated with breast cancer.19 A previous study by the
authors suggested that mitoses in very early-stage
embryos could be identified by these dark bands,31

which evidently arise from the localization of pigment.
The present study generalizes that finding to later-stage
tissues and provides a means to determine mitosis ori-
entation. In brief, the algorithm places a regular, sub-
cellular mesh on one frame of the image sequence and
uses tracking methods to map it to subsequent images
so that each triangle continues to overlay the same
portion of the same cell. Triangles in which sufficient
reductions in intensity occur over a period consistent
with mitoses are then identified and elliptical areas are
fit to suitable clusters of such triangles. Mitoses are
assumed to occur at the centroids of these ellipses and
to be oriented along their short axes. When suitable
algorithms for each of these steps were found and
linked appropriately, the resulting method was simpler

than previous ones and substantially more accurate.
The new mitosis data it provides—spatial distributions,
frequencies and orientations—are an important addi-
tion to the motion,8,18 strain,37 stress,1 and fabric17 data
currently available to those investigating the mechanics
of morphogenetic movements.

REGION REGISTRATION

The first major step in the algorithm is to associate
corresponding regions in one time-lapse image with
those in the next. Since the morphogenetic movements
of interest here can cause tissues to move substantially
(Fig. 1), large bulk translations can occur from one
image to the next. These bulk translations are removed
usingnormalized cross-correlationon the entire image.30

FIGURE 1. Dorsal view of a neurulation-stage axolotl embryo. The cephalic end of the embryo is toward the top of the image and
the caudal end toward the bottom. (a) Stage 13; (b) Stage 16.

FIGURE 2. Close-up of a single mitosis. The intensity drop outlined by the ellipse occurs as the cell undergoes mitosis. The time
in frames for mitosis and the appearance of the dark spot are indicated.
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This approach works well because the intensity changes
produced bymitoses are highly localized and affect only
a small fraction of the total image area. Previous stud-
ies30,36 have shown that the remaining deformation
fields are smooth under normal circumstances, consid-
erably simplifying themapping problem, and allowing a
variety of options to be considered. Here, a regularmesh
(material reference frame)24,26,34 consisting of subcellu-
lar-sized triangles is used to map corresponding areas of
the image to each other. Meshes are matched from
frame-to-frame using identifiable triple junctions (TJs),
because these points are well defined and, although
irregularly spaced, are sufficiently dense (Fig. 3a) that
regions can be matched reliably. Also, unlike points in-
side the cells, they are not affected by mitosis-induced
intensity changes.

Accurate identification of triple points involves a
series of steps, starting with the application of Gabor
filters (GF) tuned to the pixel width of the cell bound-
aries33 and applied at 0, ±45�, and 90�. The four
resulting filtered images are then composited (Fig. 3b)
by selecting the maximum of the second norm at each
pixel. Too thin the lines produced by this process, phase
thresholding29 and skeletonization14 are applied giving
a binary image in which cell boundaries are no more
than one pixel wide (Fig. 3c). Due to low image con-
trast and high noise in the images, this approach does
not yield complete cell boundaries—the main reason
that mitoses cannot be identified directly from these
images—and it produces some short false boundaries.

A variety of options exist for identifying TJs in these
binary images.20,22,32 The quality of the binary images
is sufficient that candidate triple junctions can be
found by identifying 3 by 3 pixel neighborhoods
homologous with the three shown in Fig. 4 and their
rotated forms (mirrored forms would be redundant).
This set of 12 prototypes covers all possible skeleton-
ized triple junctions. To eliminate false triple junc-
tions produced by very short branches arising from

edge-adjacent noise, a circle of radius R was traced
around each candidate TJ. The circle radius was set to
three times the average cell boundary width (in the
neurulation image sets, for example, this was typically
10 pixels or 7 lm). If at least three branches from a
candidate TJ crossed the circle, the candidate TJ was
considered a true triple junction or key point, as
identified by the circles in Fig. 3c.

When mitosis rates are high, as they are during
gastrulation, local displacements occur causing the
templates to be matched to locations that are ran-
domly displaced about the true locations. The random
displacements

Qk � Nð0; qÞ ð1Þ

of a particular point in frame number k of the image
sequence are assumed to be Gaussian with zero mean
and covariance q. To ameliorate the effects of this
‘‘noise’’ a Kalman Filter (KF)35 is used to track points
in frame Fk to frame Fk+1.

29 The filter improves on the
tracked position of any particular point in Fk+1, by
using a dynamic model that describes how that point is
expected to move and by providing information about
its current velocity (based on the difference in its
tracked positions between Fk and Fk+1) to the model.
The KF has three steps, the first of which is to calculate
the new position (x, y) of the point based on the
dynamic model. Here, the simplest model is assumed;

FIGURE 3. Extraction of cell boundaries and junction points. (a) Original image; (b) Line gradient; (c) One pixel thick cell
boundary. The detected junction points are marked by circles in (a) and (c).

FIGURE 4. Masks used to identify triple junction points.
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namely that the velocity of each point is equal to its
average velocity up to that frame. The KF defines a
state vector

zkþ1 ¼ x; y; vx; vy
� �T ð2Þ

for each tracked point associated with Fk+1 where the
first two components of zk+1 give the location of the
point in Fk+1 and the last two components its velocity
between Fk and Fk+1. The dynamic model is then
written in the form

zkþ1 ¼ Azk þ wk ð3Þ

where

A ¼

1 0 Dt 0
0 1 0 Dt
0 0 1 0
0 0 0 1

2

664

3

775 ð4Þ

where each component of the vector wk is a Gaussian
distribution

wk � Nð0;RÞ; ð5Þ

with a variance of R = 4 pixels, a value found to be
suitable for all of the image sets, and Dt is the time
difference between frames Fk and Fk+1.

The next step in the KF is to track each of the key
points from Fk to Fk+1, and here this is done using
normalized cross-correlation template matching.36 A
template of size n by n centered on each key point is
searched within an N by N search area around its
predicted location (x,y) in Fk+1 as given by Eqs. (3)
and (4). The location of the maximum correlation va-
lue is taken as the key point location mk+1 = [x*,y*]T.
In order to characterize the uncertainty in mk+1, the 2
by 2 covariance matrix Qt of the N by N cross-corre-
lation matrix is calculated.28 To maintain invariance
with respect to image resolution, the template size n is
chosen to be approximately three times the cell
boundary width in pixels and the search area N is
chosen to be of the order of the average cell size in
pixels. Average cell size can be obtained manually or
using an automated algorithm such as Iles et al.17 In
the gastrulation images, n = 10 and N = 22, while for
the neurulation images n = 15 and N = 76.

The final step in the KF estimates the actual point
location gk+1 based on the model prediction zk+1, its
uncertainty wk, the measured point position mk+1 and
its uncertainty Qt. This is done on a point-by-point
basis frame-by-frame using the equations35

P0 ¼ 100I ð6Þ

Kkþ1 ¼ PkC
T CPkC

T þQkþ1
� ��1 ð7Þ

Pkþ1 ¼ Pk � Kkþ1CPk ð8Þ

gkþ1 ¼ zkþ1 þ Kkþ1 mkþ1 � Czkþ1ð Þ ð9Þ

where

C ¼ 1 0 0 0
0 1 0 0

� �
ð10Þ

The KF steps, which end here, provide an estimated
location gk+1 for each of the key points.

During tracking it is possible for key points to drift
away from their actual TJs36 or to be untrackable due to
low image contrast. To manage this situation, if a key
point at estimated location gk+1 is not within d pixels of
a TJ in frame Fk+1, it assumed to be lost, and a newTJ is
added to the list of key points in Fk+1. The newly added
TJ must be at least d pixels away from any existing TJs
and not closer than 3 cell diameters from the image
border so that it does not displace out of the field of view.

Next, these key points are used to determine how a
uniform triangular mesh defined by a set of vertices
S0 = {h1,…,hL} in the first image map successively
from frame Fk to frame Fk+1. Mesh vertices are
mapped from Sk to Sk+1 using an algorithm developed
by Pilet et al.24 In brief this algorithm obtains Sk+1 by
minimizing the objective function

Skþ1 ¼ argmin
Skþ1

eðSkþ1Þ

eðSkþ1Þ ¼ edðSkþ1Þ þ ecðSk;Skþ1;Fk;Fkþ1Þ;
ð11Þ

which involves two constrains: ec, which ensures that
key points are followed; and ed, which causes otherwise
unconstrained points in the mesh to deform like a
rubber sheet.36

An efficient deformation constraint ed can con-
structed using a banded matrix L, details of which are
given in Siva,29 which is associated with the second
derivative of displacements of adjacent vertices and
vectors X, Y composed, respectively, of all of the x and
y coordinates of the mesh vertices listed in Sk+1.

16,24

The resulting function

ed Skþ1ð Þ ¼ 0:5 XTLXþ YTLY
� �

ð12Þ

can be considered a type of strain energy measure.
Here, the constraint ec is formulated as24

ec Sk;Skþ1;Fk;Fkþ1ð Þ
¼ �Riq Fkþ1 ið Þ � Ts Fk ið Þ;Sk;Skþ1ð Þj jj j; rð Þ ð13Þ

where Ts(Æ) is a function that maps a point in a single
triangle in frame Fk to its new location in Fk+1 based
on the location Sk+1 of the mesh points defining that
triangle in Fk+1 and the barycentric triplet15 describing
the position of that point in its triangle.29
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The function q(d,r) was chosen as

q d; rð Þ ¼ 3 r2 � d2
� �

= 4r3
� �

ð14Þ

where the value of r, as obtained from Pilet et al.,24

starts as a large number and decreases after each iter-
ation of the objective function (Eq. 11). The starting
value for r was chosen as 3DMax where DMax is the
maximum possible displacement of a key point
between frame k and k + 1.

By iteratively solving Eq. (11),24 the triangular mesh
can be deformed from one frame to the next over the
entire image sequence. Since we seek patterns of
intensity change that span distances smaller than a cell,
the triangular mesh must have elements substantially
smaller than a typical cell. In this study, we found that
triangles with a side length not greater than 1/10 the
diameter of a typical cell gave reliable results.

INTENSITY ANALYSIS

Having established a means to map sub-cellular
triangular regions from frame-to-frame throughout the
time lapse image sequence, the next step is to identify
those triangular regions in which the intensity
decreases (i.e., the reflectance decreases) sufficiently
over a period of time consistent with mitosis. The
image intensity for each triangular region i, is defined
as the average intensity of all image pixels within that
triangle Gk(i). Figures 5a–5d show selected time-lapse
frames while Fig. 5e shows the corresponding triangles
colored according to their average values. The greatest
changes occur between a frame taken before mitosis
begins and one taken at the middle of the process, and
these frames may not be successive. Thus, the intensity
change for triangular area i is defined as

Uk ið Þ ¼ Gk ið Þ �min Gkþ1ðiÞ;Gkþ2ðiÞ; . . . ;GkþkMitosis
ðiÞð Þ
ð15Þ

The value of kMitosis is chosen by the user such that
it represents the largest number of frames that a typical
mitosis spans. Negative values of Uk(i) are set to zero
because only decreases in intensity, which produce the
light-colored triangles in Fig. 5f, are of interest here.

Next, the triangles in Uk are qualified with respect to
intensity, spatial distribution, and duration. Triangles
with lighter initial intensities were found to change more
duringmitosis than did those which were initially darker.
To utilize this observation, the intensity change qualifi-
cation threshold for each triangle was made a function

U0kðiÞ ¼
1 UkðiÞ>GkðiÞTm þ Tb

0 Otherwise

�
ð16Þ

of its intensity Gk(i), where Tm and Tb are slope and
y-intercept parameters, respectively, obtained by fitting

a line through a plot of Gk(i) vs. Uk(i) for 2–5 manually
identified mitoses in the image set.29

At this point, most of the triangles in the mesh are set
to zero, and the non-zero triangles correspond to actual
mitosis, noise induced by tracking errors and shadows
created by cell boundaries. To remove noise artefacts, a
size threshold TSize is applied to each set of contiguous
triangles (a blob). The size is measured as the number of
mesh triangles in the blob and any blobs smaller than
the size threshold are set to zero. The size threshold
TSize is set to half the number of mesh triangles needed
to span an average cell with a filled-in ribbon one tri-
angle wide. For good blob discrimination, the resulting
number of triangles should be at least 10.

The remaining collections of triangles (blobs) are
then qualified in terms of their duration. Given kMitosis,
the number of frames that a typical mitosis lasts and
kDarkSpot the characteristic number of frames until the
appearance of the dark band produced by mitosis
(Fig. 2), the expected duration of blobs can be esti-
mated as kMitosis � kDarkSpot + 1 frames. A blob in
frame t is said to be present in frame k + 1 if there is a
blob in frame k + 1 that spatially overlaps the blob
from frame k. Any blobs that do not have a duration
of at least kMitosis � kDarkSpot + 1 frames are deleted.
The result of this process is a series of blobs that span
several consecutive frames (Fig. 5g). The union of
these blobs, Fig. 5h, are assumed to represent a single
mitosis. An elliptical area is fit to this union of trian-
gular meshes over time using an Eigen-decomposi-
tion29 of its area. The centroid of the ellipse is defined
as the location of the mitosis and the direction of the
minor-axis of the ellipse is assumed to correspond to
the direction of the mitosis.

RESULTS AND CONCLUSIONS

The intensity-based algorithm defined in the previ-
ous sections was used to investigate mitosis in 15 time-
lapse image sets from early-stage embryos (Stages
9–10)4 of the axolotl (Ambystoma mexicanum), a type
of amphibian. The data are the same as those to which
the earlier motion-based algorithm was applied.30 The
gastrulation-stage sequence consisted of 25 images
collected at 5-min intervals from region A in Fig. 1 and
the images had 400 pixels per mm. Fourteen sequences
from late gastrulation and early neurulation (Stages
12–13), here identified as being ‘‘neurulation-stage’’,
were collected at 1-min intervals from regions B and C
and there were 1400 pixels per mm. The lenses had
sufficient numerical apertures that the resolution was
not diffraction limited.

Ground truth was determined using a custom
Matlab interface that made it possible to play single or
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multiple frames forward or back so that mitoses could
be identified manually. When any single cell became
visible as two cells, a mitosis was deemed to have
occurred and its location and orientation was deter-

mined by drawing a short line along the newly formed
border using the Matlab tool. These ground truth data
were used for evaluating the output of the automated
intensity-based algorithm.

FIGURE 5. Overview of mitosis identification process. (a)–(d) Selected, cropped frames from a time-lapse image set showing a
single mitosis; (e) Graphic representation of the average intensity of each triangle in the material reference frame; (f) Maximum
frame difference Ut over kMitosis frames; (g) Triangles that remain following intensity, blob size, and duration thresholding; and (h)
An ellipse fit to the union of the thresholded triangles. The short axis of the ellipse indicates the mitosis direction.
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Precision of the algorithm, a measure of the fraction
of the mitoses identified by the algorithm that actually
are mitoses, is defined as

P ¼ TP

TPþ FP
ð17Þ

where TP is the number of true positives and FP the
number of false positives. Recall, also called the true
positive rate, is the fraction of mitosis correctly
detected by the algorithm out of the total mitosis
present in the test data set, and is given by

R ¼ TP

TPþ FN
ð18Þ

where FN is the number of false negatives. The per-
formance of an algorithm relative to a parameter in
that algorithm can be studied using the precision–recall
curve (Fig. 6), a curve related to the receiver operator
curve (ROC),13 and commonly used to evaluate clas-
sification algorithms.

The performance rate or score for a given algorithm
can be calculated using the F-measure21

Fb ¼
b2 þ 1
� �

PR

b2Pþ R
; ð19Þ

where the parameter b controls the importance of
recall over precision. In this study both precision and
recall are assumed to be equally important, and b is set
to 1.

The parameters tMitosis � tDarkSpot + 1, Tm, Tb,
TSize used in the algorithm (Table 1) were selected
using 3 of the 94 manually detected mitoses for the
gastrulation-stage and using image sequences con-
taining 1 mitosis each, for the neurulation-stage sets. In
the gastrulation-stage series the algorithm correctly
detected 65 of the 91 mitosis and made 20 false

detections. In neurulation-stage sets it correctly
detected 18 of the 21 mitosis and made only 1 false
detection. Mitoses used to determine the algorithm
parameters were not included in these calculations.
The algorithm performed significantly better on the
neurulation-stage images than on the gastrulation-
stage images because of the shorter interval between
consecutive frames and the lower incidence of mitoses,
which reduced the probability of immediately adjacent
mitoses occurring simultaneously and their blobs
overlapping with each other. In both the gastrulation
and neurulation-stages the intensity-based algorithm,
with scores of 74 and 90%, respectively, significantly
outperformed the motion-based algorithm, which had
scores of 68 and 67%.

In terms of mitosis orientation, the mean error for
gastrulation-stage images was 40� with a standard
deviation of 29�, and these rather large errors were a
consequence of the low magnification of the images
(18.5 pixels per cell, and 6 triangles per cell). The
neurulation-stage image sets were of higher magnifi-
cation (42.9 pixels per cell, and 12 triangles per cell)
and the mitosis orientation error was much lower, with
a mean error of 15� and a standard deviation of 19�
(Fig. 7), as compared to the motion-based algorithm,

FIGURE 6. Precision–recall curves. Curves for (a) gastrulation- and (b) neurulation-stage image sets. The parameter Q in the
graphs is equal to kMitosis 2 kDarkSpot + 1.

TABLE 1. Intensity algorithm parameters.

Image set

Qualification type

Intensity

change
Blob size Blob duration

Tm Tb TSize kMitosis � kDarkSpot + 1

Gastrulation 0.275 0.020 5 2

Neurulation 0.039 0.294 5 5

SIVA et al.2652



which had a mean error of 35�.30 More than 80% of
the mitosis identified during neurulation were within
15� of their true orientations.

As we have noted previously,30 that the lack of a
clear angular preference for mitosis during gastrulation
(Fig. 8) is consistent with the relatively isotropic fabric

of the cells at that stage and with the relatively modest
strain rates associated with all but the region near the
blastopore. The high rate of mitosis is consistent with
the need for the epidermis to expand as tissue involutes
through the blastopore. Interestingly, the cells do not
grow in volume following division, but the geometry of

FIGURE 7. Orientation error histograms. The histograms show the angular error between ground truth and algorithmically
detected mitoses.

FIGURE 8. Ground truth and algorithmically detected mitosis orientation histograms.
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the daughter cells and the force imbalance it creates
predisposes the cell sheet to in-plane expansion.12

During neurulation, significant convergent exten-
sion (narrowing in the medio-lateral direction and
elongation in the cephalo-caudal direction) begins to
occur in the regions where the images were captured.
Individual cells become elongated in the medio-lateral
direction to the extent that their average aspect ratio
reaches approximately 1.1,7 a degree of anisotropy
generally not detectable by eye. This elongation may
well be a consequence of convergent extension6,9 and,
in turn, may be a significant factor in the relatively
strong preferential mitosis orientation.10

The new intensity-based algorithm presented here
represents a significant improvement over previous
approaches for identifying mitosis locations and ori-
entations in pigmented epithelium. Provided that cells
are imaged with at least 50 pixels per average cell
diameter, the algorithm can achieve a performance of
90% and angular accuracies of 15�, more than ade-
quate for describing mitosis frequency, spatial distri-
bution, and orientation patterns. For decades,
biomechanicians have been striving to construct a
comprehensive and unified understanding of the
mechanics of embryo morphogenesis, but the puzzle
has been incomplete. The new pieces of data this
algorithm makes possible may help to complete the
puzzle.
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