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Abstract - One of the major problems facing medical
imaging is the presence of geometric distortions inherent
in an imaging technique.  Image registration techniques
are often used to correct for such geometric perturbations.
Recently, it was proposed that the SSD cost function can
be evaluated efficiently using the Fast Fourier Transform
(FFT) to determine the optimal translation between two
images.  However, spatial distortions in medical images
can be highly non-rigid in nature.  This paper extends this
efficient approach to allow for non-rigid alignment
between two images through the use of patch
correspondence and robust statistical model estimation
techniques.  This feature-based method is designed to be
highly robust, making it suitable for aligning medical
images with various forms of geometric distortions.
Experimental results demonstrate high overall image
rectification performance.
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1 Introduction
 Advances in medical imaging techniques have
revolutionized the field of medical diagnostics.  Different
medical imaging techniques such as x-ray, computed
tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET) give new insight on
the human body that can be used in the diagnosis of a
disease.  However, a number of issues hinder the potential
of medical imaging techniques.  One such problem is the
presence of geometric distortions in medical images.
These geometric distortions can be a result of the imaging,
as in the case of MRI.  MRI is becoming the imaging
technique of choice in clinical examinations due to its
ability to distinguish between tissue types.  However, a
number of hardware-related and tissue-related issues cause
geometric distortions and result in poor spatial localization
when compared to CT [1].  Another source of geometric
distortions is the actual operating conditions of the
imaging device.  It is particularly true for x-ray imaging
devices, where the quality of the image is highly dependent
on the technician and the positioning of the patient.  This
situation is compounded by the fact that medical images of
the same object are taken at different times and/or by
different technicians, each introducing a slightly different

geometric distortion.  An example of typical geometric
distortions on medical images can be seen in Figure 1,
which shows a slice from a cranial T1-weighted MRI scan
and a distorted version of the slice.  It can be observed that
the distorted image differs from the original reference
image in terms of location, orientation, and scale.  This
makes it difficult to compare medical images acquired at
different times and/or different modalities for medical
diagnostics of a patient.  Therefore, the geometric
rectification of distorted images allows for better
consistency with previously acquired images as well as
improved spatial localization.

One way of rectifying medical images is to have a
medical expert manipulate the images manually with
respect to a gold standard image.  However, this is very
laborious and time-consuming given the large volume of
medical images acquired on a daily basis.  Therefore,
image registration techniques are often used to perform
such geometric corrections by aligning an image to a gold
standard image in an automated fashion.  A number of
different techniques have been proposed for the purpose of
image registration.  These techniques are often classified
based on: 1) the feature space used as the basis of image
comparison, and 2) the similarity metric used to perform
the comparison.  Some feature spaces include intensity,
edges [2], gradient orientation [3], corners [4], and regions
[5], and contours [6].  A number of different similarity
metrics have been used for the purpose of image
registration.  Some of the more popular metrics include
cross-correlation [7]-[9], phase correlation [10]-[13], sum of
squared differences (SSD) [14]-[16], and mutual
information [17]-[19].

Figure 1: Left: T1-weighted MRI cranial slice
Right: Same slice with geometric distortions



Recently, it was proposed that a weighted SSD cost
function may be evaluated efficiently through the use of the
FFT [14][15].  This novel approach was demonstrated to
perform 60 to 500 times faster than the direct approach of
evaluating the SSD cost function [15].  However, this
technique is limited to images where the difference between
the two images is a translation and therefore is not suitable
for the purpose of non-rigid image.  Therefore, it is highly
desired to take advantage of the efficient SSD cost
evaluation technique while making it flexible enough to
handle non-rigid distortions.  The goal of this paper is to
extend this efficient alignment framework to address this
issue by making use of patch correspondence and robust
statistical model estimation techniques.

The main contribution of this paper is an efficient
feature-based SSD-type image alignment algorithm that can
perform non-rigid alignment of images.  This method is
highly robust to distortions in position, orientation, and
scale and therefore suitable for performing rectification on
medical images with various geometric distortions.  In this
paper, we briefly outline the theory behind the FFT-based
evaluation of the weighted SSD cost function, as well as
the theory underlying patch correspondence and robust
transformation model estimation.  Section 2 also outlines
proposed algorithm.  The testing methods and test data are
outlined in Section 3.  Finally, experimental results
performed to evaluate the rectification performance of the
algorithm are discussed in Section 4, and conclusions are
drawn based on the results in Section 5.

2 Theory
Before outlining the proposed rectification algorithm,

it is important to discuss the theory behind the key
concepts of the algorithm.

2.1 Weighted SSD Cost Function
Evaluation using FFT

The cost function evaluation technique used in the
algorithm is based on the technique introduced in [14] and
[15].  Given the 2-D images f and g, the similarity between
the two images within a region of interest (ROI) of 

€ 

g  can
be found by evaluating the weighted SSD cost between the
images as

€ 

SSD = f (x) − g(x)( )2w(x)
x
∑ , (1)

where 

€ 

w(x)  is a weighting function over 

€ 

g(x)  in the
range [0,1] (in the case of a ROI, 0 indicates the regions
outside the ROI and 1 indicates, and 

€ 

x  indicates the
coordinate of a pixel.  Using this cost function, a lower
SSD cost indicates a higher image similarity.  Likewise,
the SSD cost between a shifted image 

€ 

f  and an image 

€ 

g
is
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SSD(δ) = f (x −δ) − g(x)( )2w(x)
x
∑ , (2)

Where 

€ 

δ  represents the shift.  Therefore, to find the shift
of 

€ 

f  that provides the global optimal alignment of image
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f  and 
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g , it is necessary to find the shift 
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δ  that results in
the lowest SSD cost function,
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This is commonly known as the least squares problem.  If
done in a direct fashion, each shifted image of 

€ 

f  needs to
be compared to 

€ 

g  using the SSD cost function.  This
evaluation process is computationally expensive and so a
more efficient way to determine the shift associated with
the minimum SSD cost is desired.  As described in [8] and
[9], Equation 2 can be expanded and expressed as

€ 

SSD(δ) = f 2(x −δ)w(x)
x
∑

− 2 f (x −δ)g(x)w(x)
x
∑ + g2(x)w(x)

x
∑ .

(4)

The last term of Equation 4 is irrelevant to the
optimization problem and can be ignored since it is
independent of 

€ 

δ .  The first two terms can be turned into
convolutions.  Therefore, the final weighted SSD cost
function 

€ 

PSSD(δ)  is expressed as

€ 

PSSD(δ) = f 2(x)∗w(x){ }
δ

− 2 f (x)∗ g(x)w(x)( ){ }
δ

(5)

where 

€ 

f (x) = f (−x)  and 

€ 

∗ indicates convolution.  The
bottleneck of this final cost function is the evaluation of the
convolution operations.  These can be evaluated very
efficiently in the frequency domain due to the fact that
convolutions in the spatial domain become multiplications
in the frequency domain.  Therefore, the terms in Equation
5 can be evaluated for all possible values of 

€ 

δ  by taking
the Fourier transform of the convolution terms, performing
multiplication in the frequency domain, and then taking the
inverse Fourier transform of the result, which can be
expressed as

€ 

PSSD(δ) = F −1 F f 2(x)( ) F w(x)( ){ }(δ)
− 2F −1 F f (x)( ) F g(x)w(x)( ){ }(δ) .

(6)

Therefore, the performance bottleneck becomes the
computation of the FFTs and the inverse FFTs (IFFTs).
For large image sizes, significant performance



improvements can be achieved by evaluating the cost
function in this manner since the FFT and the IFFT can be
evaluated efficiently.

2.2 Patch Correspondence

The main drawback of using the weighted SSD cost
evaluation technique described in Section 2.1 is that fact
that it is only suitable for situations where the difference
between two images is a translation.  Since distortions in
medical images include rotation, scale, and skew, it is not
possible to apply this algorithm directly for the purposes
of non-rigid image rectification.  One way of getting
around this issue is through the concept of patch
correspondence.

Let us treat the content of an image as bounded by a
rectangular box.  It is true that non-rigid transformations
on a rectangular box cannot be modeled using a single
translation transformation.  However, this is in direct
contrast with the case for a single point in an image, where
the only transformation is a single translation.  Taking this
concept one step further, it can be said that a small
rectangular patch of neighboring pixels around a single
point can be treated in a similar manner, as the geometric
distortions in the patch can be treated as minimal relative
to that of the overall image.  As a result, it is possible to
extract patches from the gold standard image g and find its
corresponding patch in the distorted image f and represent
the transformation as a simple translation.  Finally, given
enough pairs of matching patches (depending on the type
of transformations supported), the estimated non-rigid
transformation between the two images can be derived
based on the patch centroids and used to rectify geometric
distortions in the distorted image.  

There are some issues that need to be considered for
the use of patch correspondence in non-rigid image
alignment. First, an automated method is needed for
selecting patches from the gold standard image.  These
patches can then be used for finding corresponding patches
in the distorted image.  Each patch selected from the gold
standard image should ideally be chosen so that its content
is unique, and no other patch in the image is a close
match.  A method of selecting such patches is to detect
points on the image that have high feature significance and
to use them as the centroids of the patches.  This can be
accomplished by selecting feature points using the
modified Harris corner detector outlined in [20].  An
example of patch centroids selected from a T1-weighted
MRI gold standard slice using this method is shown in
Figure 2.

The second issue that needs to be considered is with
regards to how patch correspondence can be evaluated using
the efficient SSD cost function evaluation technique
described in Section 2.1.  A patch of the gold standard
image can be regarded as an ROI, within which the
distorted image is aligned using the weighted SSD cost
function.  The optimal shift between the two images
within the ROI can then be treated as the translation vector
that brings the distorted image in alignment with the gold
standard image.  As such, this vector can then be used to
determine the position of the corresponding patch in the

distorted image.  This can be illustrated using a simple
example.  Imagine that a patch was selected with a centroid
at 

€ 

(x1, x2) = (50,50)  in the gold standard image.  To
perform patch correspondence evaluation for this patch, the
weighting function 

€ 

w(x)  defined in Section 2.1 is set up
such that the weight for each pixel in the patch is 1, while
all other weights are set to 0.  When the distorted image f
and the gold standard image g are aligned within the
window specified by w , let the resulting optimal shift be

€ 

δ = (20,20) .  From this, it can be determined that the
corresponding patch in f has a centroid at

€ 

( ′ x 1, ′ x 2) = (x1 −δ1,x2 −δ2) = (30,30) .  Once all
matching pairs of patches has been found, the centroids of
matching patches are extracted to form a set of candidate
control points for transformation model estimation.  An
example of matching patches found using this approach is
shown in Figure 3.

This approach to finding a corresponding patch based
on patch-to-image comparisons is considerably different
than traditional approaches, where specific patches are
detected from both images and are matched on a patch-by-
patch basis.  One of the main reasons that patch-to-patch
approaches are used is to reduce the search space, as a
patch-to-image approach would be computationally
expensive if computed in a direct manner.  However, the

Figure 3: The translation vectors between matched patches
shown relative to gold standard T1-weighted MRI slice

Figure 2: Patch centroids selected in T1-weighted
MRI cranial slice used as gold standard



SSD cost evaluation method described in Section 2.1 is
able to perform similarity evaluation for all possible shifts
in a very efficient manner and therefore making it feasible
to take the patch-to-image approach.   There are two main
advantages to the proposed method of finding matching
patches.  First, unlike the patch-to-patch approach, the
SDD cost evaluation method finds the global optimum.
Second, the proposed approach only needs to detect feature
points from the gold standard image.  Therefore, all
subsequent alignments with a particular gold standard
image would not require any form of feature detection and
thus reduce computational complexity in the long run.
Another performance optimization that can be performed is
to precompute and store the Fourier transforms of 

€ 

f (x)
and 

€ 

f 2(x) , as they are used in the SSD cost function
evaluation of each patch.

2.3 Robust Transformation Model
Estimation

The transformation model that aligns the distorted
image to the gold standard image needs to be determined
based on the set of candidate control points found in
Section 2.2.  There are two main issues that need to be
considered to determine the final transformation model.
First, it is necessary to determine the type of
transformation model needed for proper alignment between
the distorted image and the gold standard image.  The
selection of a transformation model is dependent on the
types of geometric distortions that exist in the distorted
image.  In the case of medical images, typical geometric
distortions include translation, rotation, scale, and shear.
A projective model can be used to express all of the above
geometric distortions.  The projective transformation
model can be expressed as an invertible 33×  matrix

€ 

T =

t0 t1 t2
t3 t4 t5
t6 t7 t8
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, (7)

where 

€ 

′ x 1 =
t0x1 + t1x2 +t2
t6x1 + t7x2 +t8

, (8)

and 

€ 

′ x 2 =
t3x1 + t4x2 +t5
t6x1 + t7x2 +t8

. (9)

The second issue that needs to be considered regards
how the parameters of the selected transformation model
are estimated.  One method of parameter estimation for a
projective transformation matrix is the normalized direct
linear transformation (DLT) algorithm described in [21].
One problem with using this parameter estimation
algorithm directly on the set of candidate control points is
the fact the DLT algorithm is a least-squares estimation
method and therefore performs poorly in the presence of
outliers.  Since the error is squared, far outliers can have an

enormous effect on the estimated transformation model.
Once the set of candidate control points are selected using
an automated algorithm as opposed to manually selected,
the possibility of mismatched patches is relatively high.
One method of addressing this issue is to prune outliers
from the set of candidate control points through the use of
the Random Sample Consensus (RANSAC) algorithm
[22].  In the RANSAC algorithm, a number of data points
are selected at random from the complete sample set, which
in this case is the set of control points.  The selected data
points are then used to estimate a model, which in this
case is the 33×  projective transformation matrix.  The
number of outliers is then determined based on the
estimated model.  For this proposed algorithm, the number
of outliers is determined by calculating: 1) the estimated
transformed points 

€ 

′ x  of each control point x in the
distorted image using the estimated model Test, and 2) the
estimated transformed points    x    of each control point 

€ 

′ x  in

the gold standard image using the inverse mode 

€ 

Test
−1

.
The SSD cost between 

€ 

′ x  and 

€ 

′ x , and between 

€ 

x  and x
is computed for each matching pair of control points, and
the pairs whose cost is greater than or equal to a pre-
defined threshold t are counted as outliers.  This process is
repeated for another K iterations, where

€ 

K =
log 1− p( )

log 1− ninliers
N
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  
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 
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 

 , (10)

and p is the desired estimated probability that all available
data points fit the estimated model, ninliers is the number of
data points that fit the current estimated model, N is the
total number of data points, and s is the minimum number
of samples required to fit a model, which in the case of
projective transformation model estimation is 4.  At the
end of the RANSAC algorithm, a final set of control
points are determined by finding the set of inliers from the
estimated model with the highest consensus.  An example
of the final set of control points for the distorted image and
the gold standard image is shown in Figure 4.  This set of
control points, now free of outliers, is then used to
estimate the final transformation model using the DLT
algorithm.

Figure 4: Left: Final control points in gold standard image
Right: Final control points in distorted image



2.4 Rectification Algorithm

Based on the theory presented, the alignment
algorithm can be outlined as follows:

1. Given a distorted image f and a gold standard image g:
2. Extract a set of feature points from g using the modified

Harris corner detector.  Each of these feature points
represents the centroid of a patch.

3. For each patch p detected from g, perform weighted
SSD cost evaluation using FFT as described in Section
2.1 within a ROI bounded by pg to determine the
optimal shift between f and g.  Use this shift as a
translation vector to determine the location of the
corresponding patch pf in f.

4. Extract the centroids of matching patches to form a set
of candidate control points.

5. Apply the RANSAC algorithm on the set of candidate
control points using the projective transformation model
to determine a final set of control points.

6. Use the DLT algorithm to estimate a final projective
transformation model from the final set of control
points.

7. Use the final projective transformation model to
transform f into a geometrically corrected image 

€ 

′ f .

3 Testing Methods
The proposed algorithm was implemented in

MATLAB and was tested using three sets of images
derived from the Visible Male dataset of the National
Library of Medicine’s Visible Human Project.  All test
images are 8-bit grayscale images.  Each test set consists of
a gold standard image and 5 distorted images generated
from that image with random perturbations in location,
orientation, scale, and projective skew.  A description of
each test set is given below.

THORAX: A 310310×  PD-weighted MRI coronal slice
through the thorax.  

HEAD: A 256256×  T1-weighted MRI horizontal slice
through the head.  

PELVIS: A 310310×  T1-weighted MRI coronal slice
through the pelvis and upper thigh.

Each distorted image in a test set is rectified with the
gold standard image in the same test set.  To judge the
rectification performance of the proposed algorithm, the
mean squared error (MSE) of pixel intensity is computed
between the rectified image and the gold standard image.
The MSE between the original distorted image and the
gold standard image is used as a reference.

Since we know the true transformation for each of our
test cases, we can calculate how far each pixel is from its
true position after rectification.  We compute the average
pixel displacement for all pixels, excluding background
pixels.  If the rectification is successful, the average pixel
displacement should be small.

4 Experimental Results
The MSE results are shown in Table 1.  The proposed

rectification method shows substantial improvements in
MSE compared to the original distorted image in all test
cases.  Table 2 shows the average pixel displacements for
the distorted and rectified images.  Before rectification, the
average pixel displacement is 28.08 pixels.  After
rectification, the average pixel displacement is reduced to
only 1.84 pixels.

Examples of the rectification results achieved for each
test set are shown in Figures 5, 6, and 7.  In each case, the
distorted image is correctly rectified with respect to the
gold standard image.  These results illustrate the
effectiveness of the proposed image rectification algorithm
for non-rigid distortions.

5 Conclusions and Future Work
In this paper, we have introduced a new method for

efficient and robust least squares image rectification based
on the concepts of patch correspondence and robust
statistical model estimation.  Experimental results show
that overall rectification performance is relatively high.  It
is our belief that this method can be successfully
implemented for medical image rectification purposes.

Future work includes investigating the effectiveness
of quasi-orientation maps as a feature space for multi-
modal non-rigid image registration.
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Table 2: AVERAGE PIXEL DISPLACEMENT
2

Test Set Distorted
Image

Rectified
Image

THORAX 25.72 1.13
HEAD 22.78 1.69

PELVIS 35.75 2.69
Overall 28.08 1.84

2. Averaged over 5 test images in each test set.

Table 1: MEAN SQUARED ERROR
1

Test Set Distorted
Image

Rectified
Image

THORAX 2097.00 12.00
HEAD 1519.40 8.44

PELVIS 2791.00 12.63
Overall 2135.80 11.02

1. Averaged over 5 test images in each test set.
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Figure 5: Rectification of PD-weighted MRI from THORAX test set
Left: Gold Standard; Center: Distorted; Right: Rectified

Figure 6: Rectification of T1-weighted MRI from HEAD test set
Left: Gold Standard; Center: Distorted; Right: Rectified

Figure 7: Rectification of T1-weighted MRI from PELVIS test set
Left: Gold Standard; Center: Distorted; Right: Rectified


