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Abstract—A novel energy functional for automatic registration
of remote sensing imagery based on quasi-random scale-space
structural correlation is presented. The structural correlation en-
ergy functional takes advantage of the fact that, for many types of
remote sensing imagery, there exist common structures at different
scales even if the acquired images have very different intensity
characteristics. The proposed energy functional also takes advan-
tage of the noise robustness and feature localization properties of
quasi-random scale-space theory. An efficient globally exhaustive
optimization strategy in the frequency domain is developed for
registering remote sensing imagery based on the proposed energy
functional. Promising test results on interband, intraband, and
intermodal remote sensing image sets show that the proposed
method has the advantage of being robust to differing sensing
conditions and large misalignments.

Index Terms—Energy functional, quasi-random scale space,
registration, structural correlation.

I. INTRODUCTION

R EMOTE sensing image registration can involve images
taken at different times and/or captured using different

sensors and/or using different bands. Registration is of signifi-
cant value in remote sensing applications such as building ex-
traction, environmental modeling, and change detection. Given
a pair of remote sensing images f and g, the underlying goal is
to determine the transformation T that brings f into alignment
with g such that the energy functional C is maximized

T ∗ = argmax
T

[C (T [f ], g)] . (1)

To handle the different intensity characteristics of image
pairs acquired under different conditions, a class of algorithms
[1], [2] has been developed based on mutual information (MI)
[3], [4]. However, due to the presence of many local optima
on the convergence plane [5], converging to the global op-
tima using iterative optimization methods such as conjugate
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gradient [6] and Nelder–Mead simplex [7] can be difficult to
achieve with an MI-based energy functional. In response to
these difficulties, energy functionals based on intensity remap-
ping such as correlation ratio [5] have been proposed but are
still sensitive to large initial misalignments.

Globally exhaustive search methods, on the other hand, are
not sensitive to local optima or to large initial misalignments,
and a class of efficient frequency domain algorithms has been
proposed [8]–[12]. However, since most of these methods
are based on the conventional cross correlation as the energy
functional, they are not well suited to registering remote sens-
ing images acquired using different sensors and/or different
bands because such images may have very different intensity
characteristics.

To overcome this limitation of globally exhaustive search
methods, we propose a novel energy functional that fuses
structural correlation with quasi-random scale-space theory
[13], which allows for robust registration of remote sensing
imagery acquired under different sensing conditions. The pro-
posed energy functional attempts to overcome the difficulties
faced when using cross correlation by taking advantage of
the presence of common structures at different scales between
images that may have very different intensity characteristics.
Note that the proposed energy functional is designed to take
advantage of common structural characteristics between images
and may not be suitable for situations where little to no common
structures are captured between the acquired images.

Based on this energy functional, a globally exhaustive op-
timization framework in the frequency domain is developed.
Although the optimization framework discussed in this letter
assumes rigid transformations (rotations and translations only),
the proposed energy functional can be applied in optimiza-
tion frameworks dealing with nonrigid transformations. Fur-
thermore, achieving an accurate rigid registration between the
images under evaluation is an important first step in aiding the
subsequent nonrigid registration process [14], [15] to converge
to the correct solution.

To the best of the authors’ knowledge, this approach to
registration for remote sensing imagery has not been proposed
before and presents a significant advancement in the capabil-
ities of efficient globally exhaustive search algorithms, since
other energy functionals such as correlation ratio and mutual
information cannot be performed exhaustively for all possible
rotations and translations in an efficient manner.
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Fig. 1. In this example, (left) the optical image has very different intensity
characteristics than (right) the LIDAR image of the same area. As such, a
conventional cross-correlation approach would fail to register such an image.
However, the two images share a large number of common structures at dif-
ferent scales, thus motivating the use of energy functionals that take structural
characteristics into account.

II. QRSC ENERGY FUNCTIONAL

Remote sensing images taken under different sensing con-
ditions such as different sensors and different bands often
have very different intensity characteristics. An example of
this is shown in Fig. 1, where an optical/light detection and
ranging (LIDAR) image pair is shown. The underlying intensity
characteristics of the optical image differ significantly from that
of the LIDAR image, making the use of conventional cross
correlation ill suited. However, the image pair shares a large
number of common structures at different scales. Hence, we
are motivated to design an energy functional that captures the
structural information as the basis of registering the images so
that we can take common structural characteristics into account.

In most remote sensing imagery, the important structural
characteristics exist at a variety of different scales [16]. Thus,
an effective approach to capturing structural information would
be to decompose the image into the scale-space domain, the
most popular form of which is the Gaussian scale space [17].
However, the Gaussian scale space is limited by its sensitivity
to noise and poor structural localization [18]; therefore, to
overcome these limitations, Mishra et al. proposed a quasi-
random scale-space theory [13], which is obtained as follows.

In scale-space theory, an image I(s) is represented as a fam-
ily of M scale-space representations L0(s), L1(s), . . . , LM (s)
representing image detail at different scales. As the scale in-
creases, more and more of the details contained within the
image become removed. Therefore, at lowest scale i = 0, the
scale-space representation L0(s) is just the original image I(s)
and, as such, contains all of the fine details, while at the highest
scale i = M , the scale-space representation LM (s) consists of
mainly the coarse large scale details of the original scene. This
separation of detail among the family of scale-space representa-
tions allows us to identify structural details that exist at the finer
smaller scales as well as at the coarser larger scales within the
image, which is very important for emphasizing common struc-
tures that exist between the images under alignment. Unlike
conventional multiresolution approaches where the resolution
changes at each level, the resolution is maintained at each level
of the scale-space decomposition. Based on testing, a total of

M = 5 scales was used as it was found to provide the best
results.

Let us now study the concept of scale-space decomposition
from a mathematical perspective. Let L be a discrete lattice
with a set of sites S. Let the original scene I(s), the scale-
space representation Li(s), and the residual fine scale structure
Ci(s) be the random fields on s ∈ S, where the index i =
0, . . . ,M denotes the scale. Since more and more fine scale
structures are removed at each increasing scale, the scale-space
decomposition is expressed in the recursion relation

Li−1(s) = Li(s) + Ci(s) for i = 1, . . . ,M. (2)

Starting with L0 = I(s), we formulate the computation of
each coarser scale Li as an inverse problem, where Li−1(s),
Li(s), and Ci(s) are the measurement, state, and noise, respec-
tively. The Bayesian least squares estimate for this problem is
given by

L̂i(s) =E [Li(s)|Li−1(s)] (3)

=

∞∫
0

p (Li(s)) p (Li(s)|Li−1(s)) dLi(s). (4)

Since computing the posterior distribution p(Li(s)|Li−1(s))
is analytically intractable, a quasi-random estimation approach
is employed. In this approach, n quasi-random samples from
a Sobol sequence [19] are drawn with respect to site s at
scale i. A Gaussian mixture model is fitted to p(Li−1(s)),
and those samples which fall within one standard deviation
of the nearest local maximum of p(Li−1(s)) are selected as
a realizable sample of p(Li(s)|Li−1(s)). From the set Ω of
selected samples, the posterior distribution is estimated as

p̂ (Li(s)|Li−1(s)) =
1

G
√
2πσLi

∑
k∈Ω

f1(k)f2(k)f3(k)

× exp

(
−1

2

(
Li(s)− Li−1(sk)

σLi−1

)2
)

(5)

where G is a normalization factor and f1(k), f2(k), and
f3(k) are objective functions of sample relevance assessed by
intensity, gradient, and spatial offset, respectively [13]. This
completes the computation of the scale-space estimates via the
method of Mishra et al. [13].

Next, given the scale-space estimates Li(s), we suppress
the modality-specific intensity information and capture the
structural characteristics by computing the discrete derivative
magnitude of |∇i|2(s) at each scale

|∇i|2(s) =
(
∂Li

∂x

)2

+

(
∂Li

∂y

)2

. (6)

Taking advantage of the fact that salient structural fea-
tures have strong responses across multiple scales [20], the
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quasi-random scale-space structural representation of the image
is given by

Q(s) =

[
M∑
i=1

αi|∇i|2(s)
] 1

2

(7)

where the response at each scale is weighted by αi to emphasize
coarser scales as a way to suppress noise. Based on testing,
α = 2 was found to provide the best results.

After computing the quasi-random scale-space structural
representations, Qf and Qg for the image pair f and g, the
quasi-random scale-space structural correlation (QRSC) energy
functional C can be defined as

C (T [f ], g) =
∑
τ

Qf (T [τ ])Qg(τ). (8)

A. Efficient Globally Exhaustive Optimization in
the Frequency Domain

In this section, we now develop an efficient globally exhaus-
tive optimization framework in the frequency domain based on
the QRSC energy functional C introduced in (8). Suppose that
we wish to find the rigid transformation that, when applied to
Qf , maximizes the energy functional in (8), according to (1).
The cross-correlation energy functional can be efficiently max-
imized using the fast Fourier transform (FFT) [8], [9], hence
making this approach a good direction to follow for the pro-
posed optimization framework. Given two images f and g,
their QRSC energy functional at all integer shifts Δx is
found by

Cf,g(x) =
∑
τ

Qf (τ −Δx)Qg(τ) (9)

=F−1
(
F{Qf}F{Qg}

)
(10)

where F is the FFT operation and F{Q} denotes the complex
conjugate. Hence, for the space of possible rigid transforma-
tions, we can determine the maximum QRSC as a function
of rotation θ and translation Δx = [x, y] by decoupling the
rotational and translational components.

First, let F and G be the Fourier coefficients of Qf and Qg ,
respectively. Since a rotation in the spatial domain is equivalent
to the same rotation in the frequency domain, we would like to
find the rotation θ∗ that, when applied to F , gives the greatest
correlation with G.

To do this, we transform F and G into polar coordinates,
expressed as Fpol(θ, r) and Gpol(θ, r). To find the optimal
shift in the θ axis, we maximize the correlation between the
magnitudes |Fpol| and |Gpol| according to

{θ∗, r∗} = argmax
θ,r

{
C|Fpol|,|Gpol|(r, θ)

}
(11)

where C|Fpol|,|Gpol|(r, θ) can be computed for all possible val-
ues of θ and r in a simultaneous manner according to (10). Note
that, while both θ∗ and r∗ are found, only θ∗ is important for
our purposes as the goal is to determine the optimal rotation
that brings the images into alignment. Furthermore, due to the

conjugate symmetry of the FFTs of real-valued images Qf and
Qg , both θ∗ and θ∗ + 180◦ are possible maxima.

Next, we rotate Qf by θ∗ to obtain Q′
f . Now, we compute

the optimal translation that brings Q′
f into alignment with Qg

by maximizing the cross correlation

{x∗, y∗} = argmax
x∗,y∗

{
CQ′

f
,Qg

(x, y)
}
. (12)

Again, the QRSC energy functional CQ′
f
,Qg

(x, y) can be
computed globally for all possible translations in a simultane-
ous manner using (10). To deal with the fact that both θ∗ and
θ∗ + 180◦ are possible maxima, this process is repeated for the
case of θ∗ + 180◦, and the rotation–translation combination that
gives the highest maximum value is chosen.

III. RESULTS

To evaluate the performance of the proposed QRSC ap-
proach, automatic registration was performed on both interband
and intraband remote sensing image sets from the United States
Geological Survey, as well as optical–LIDAR image sets from
Intermap Technologies Inc. The first test pair, RS1, consists of
two images taken using different sensors on different bands.
The second test pair, RS2, consists of two images taken by the
same sensor on the same band on different dates. The third test
pair, RS3, consists of an aerial optical image and a LIDAR im-
age, which are acquired using different sensing technologies:

1) RS1: Interband, Landsat-7 Enhanced Thematic Mapper
Plus (ETM+) Band 3 [ground sample distance (GSD):
240 m] and Landsat 5 Thematic Mapper (TM) Band 5
(GSD: 240 m), different dates;

2) RS2: Intraband, Landsat-7 ETM+ Band 3 (GSD: 240 m),
taken on July 26, 2002 and July 17, 2002;

3) RS3: Intermodal, aerial passive optical (GSD: 1 m) and
LIDAR (GSD: 1 m).

The images in RS1 and RS2 measure 740 × 740 pix-
els while the optical and LIDAR images in RS3 measure
902 × 1131 pixels and 449 × 567 pixels, respectively, and
are shown in Fig. 2. Each image was distorted with 30 random
rigid transformations, with translations up to 50 pixels for RS1
and RS2, translations up to 200 pixels for RS3, and rotations
between 0◦ and 360◦ for all cases, giving us a total of 90
randomized tests. Since the images are initially aligned, the
gold standard transformations are known for all tests.

For comparison, we also performed registration with
GO-EDGE [9], a state-of-the-art multimodal globally optimal
FFT-based approach that was shown to provide superior perfor-
mance when compared to correlation-ratio-based methods for
large misalignments [9] and with normalized mutual informa-
tion [4] maximized with the Nelder–Mead simplex method [7]
as described in [2]. For QRSC, a total of M = 5 scales was used
to represent the structural characteristics of the images. The
registration accuracy is determined by the fiducial registration
error (FRE), defined as the root mean square distance between
the fiducial points.

Since the images were originally aligned and the gold stan-
dard transformations are known for all tests, a set of 60 fiducial
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Fig. 2. Remote sensing test image pairs.

TABLE I
FRE FOR REMOTE SENSING TEST PAIRS. A TOTAL OF 30 RANDOMIZED

TESTS WERE PERFORMED FOR EACH TEST CASE

points were randomly placed by the computer to allow for a fair
evaluation among different techniques, since human placement
of fiducial points could be prone to error in this particular
case and tend to be biased toward structured landmarks such
as road intersections and buildings and, as such, may give an
advantage to techniques that make use of structure information.
The choice of 60 fiducial points was considered sufficient as
they are based on unbiased computer placement and are well
spread out throughout the images.

Table I summarizes the results for the remote sensing test
pairs. In all three cases, QRSC has the greatest success rate,

Fig. 3. Example of QRSC registration result for remote sensing image pairs.
The overlay shows the structural representation of the Band 3 image in the
top row, the July 26, 2002 image in the middle row, and the LIDAR image in
the bottom row. Only a zoomed-in section of the results for RS3 is shown for
illustrative purposes to improve clarity.

resulting in the lowest average registration errors. Sample
results using QRSC are shown in Fig. 3 with the structural
representation of the left images overlaid on the transformed
images. Given the large number of randomized tests conducted,
a discussion of the dependence on the amount of misalignment
is important. The effect of different levels of misalignment
(defined here in terms of pixel displacement from the true
alignment) on the average FRE across all test pairs was studied,
as shown in Fig. 4. The FRE obtained using the QRSC approach
remained relatively stable as the amount of misalignment in-
creased, while the FRE obtained using the other approaches
increased significantly as the amount of misalignment in-
creased. This weak dependence of FRE on the amount of mis-
alignment is due to the fact that the proposed approach employs
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Fig. 4. Effect of different amounts of misalignment on the average FRE across
all test pairs. The FRE obtained using the QRSC approach remained relatively
stable as the amount of misalignment increased.

an efficient globally exhaustive optimization framework in the
frequency domain based on the QRSC energy functional, which
is highly robust to the presence of local optima that can have
a tremendous effect on registration performance for situations
characterized by large misalignments between the images.

IV. CONCLUSION

In this letter, we presented a novel QRSC energy func-
tional for registering remote sensing images acquired under
different sensing conditions. An efficient globally exhaustive
optimization framework in the frequency domain has been also
introduced based on the proposed energy functional. It offers
advantages in being suitable for registering remote sensing
images acquired at different times, using different sensors,
and/or at different bands, particularly under large misalign-
ments. Based on the results, this approach shows great promise
in allowing the use of efficient globally exhaustive optimization
methods for robust registration of remote sensing imagery.
Future work involves investigating the design and incorporation
of a nonrigid registration component to the existing framework
based on this energy functional.
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