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Abstract — Dynamic estimation of large-scale remote-sensing image se-
quences is important in a variety of scientific applications. However, the
growing size of such sensed images makes conventional dynamic estima-
tion methods, for example the Kalman and related filters, impractical. In
this paper we present an approach that emulates the Kalman filter, but
with considerably reduced computational and storage requirements. Our
approach is illustrated in the context of a large (512 x 512) image sequence
of ocean surface temperature.

I. INTRODUCTION

There is a tremendous interest in the processing of image se-
quences! Although a great deal of this interest stems from the
excitement surrounding up-and-coming areas such as multime-
dia and Internet video, much of the research is being driven
by the fact that storage, bandwidth, and computational power
have, for the first time, really increased to the point where it
is practical to process sequences of huge arrays of numbers, or
images.

Solutions to the image sequence processing problem gen-
erally fall into the generic prediction-update structure (i.e.,
Kalman filter)[3], [10], [13], the general form of which is
sketched in Figure 1: a sequence of observed images y(t) is
processed, predicted estimates X (¢|t — 1) are inferred from an
estimated motion field my¢, and the updated estimates X (¢|t)
are driven by a residual field v(t) which encodes the informa-
tion present in y(t) which is not contained in %(¢|t — 1). How-
ever the Kalman filter is totally impractical for large remotely-
sensed images.

Our research stems from the desire to estimate sea-surface
temperature (SST) from the sparse measurements taken by the
Along Track Scanning Radiometer (ATSR)[12]. The goal is to
produce dense images of SST with associated estimation error
variances, but preserving the local features which are present
in the measurements. Because of the extreme sparsity in the
data, and because ocean SST is highly correlated from one day
to the next, clearly the only practical approach is to perform
smoothing over time; that is, to process the time-dependent se-
quence of measurement images. The specific challenges in dy-
namic estimation are (a) the propagation/storage of huge error
covariances in prediction and (b) the inversion of large matri-
ces in update.

II. PREDICTION

Suppose we have some discretized dynamic model A, such
that

z(t+1) = Az(t) + w(t). (1)

In general, the exact state prediction according to (1) is
straightforward. Furthermore, for sparse, stationary dynam-
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Fig. 1. Standard prediction-update process: An image sequence can be used
to infer motion information and a residual, which determine the time-to-
time prediction and update. A wide variety of problems can be cast into
this framework.

ics A can be represented implicitly by a kernel, allowing the
exact state prediction to be computed as a convolution

2+ 1]t) = Ay * 2(t]t). )

The much greater challenge lies in the prediction of the error
statistics, in which the estimation error is propagated through
time as

P(t +1]t) = AP(t[t) AT + Q. 3)

For large-scale dynamic estimation problems the exact, brute-
force computation of (3) is impossible. Our approach for the
error prediction step is to parameterize the error covariances
P(t|t), P(t + 1|t). Note that any positive semi-definite matrix
P can be written as

P = {p'yiod )
where © refers to element-by-element multiplication, and
where @ is the matrix of normalized correlations:

1 P(1,1)(2,1) P(1,1)(n,1)
P(2,1)(1,1) 1 : )
P(1,1)(n,1) R 1

The statistics prediction problem then reduces to the predic-
tion of the parameters p(¢t + 1|¢), ®(¢ + 1|¢). To ensure the
positive-definiteness of ®(¢ + 1|t) we model the correlations
as exponential. The relationships between the error variances
and correlation lengths is then found empirically, as shown in
Figure 2.
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Fig. 3. Fixed correlation-length prior models: Suppose we wish to fuse two new measurements with a nonstationary prior model (a), where the darkness shows
the correlation length. The inconsistency between the exact estimates and estimates are based on a correlation length of (b) /1 = 0.6 and (c) l2 = 9, where
dark shades represent higher quality. Note that although both (b),(c) contain regions of significant error, an excellent estimated image could be found through

the selection of appropriate subsets of (b) and (c).
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Fig. 2. The empirical relationship between the error standard deviations /p
and the correlation length L for diffusion processes with process correla-
tions lengths of (a) 4.0 and (b) 12.0.

III. UPDATE

Many efficient estimators[1], [4], [5], [8], [9] apply most
easily to static problems. Challenges arise from dynamic esti-
mation [9], in which the error statistics become non-stationary.
Even our proposed parameterization has problems, in that the
exponential correlations are guaranteed to be positive definite
only for a fixed correlation length, not a space-varying one.
However a fixed correlation length may be wrong and will lead
to incorrect estimation results in various regions of the 2D pro-
cess. For example, suppose we want to update a nonstationary
prior model with new measurements; Figure 3 plots the quality
of the estimates for two different correlation lengths. Clearly
the estimates computed using a short correlation length, Fig-
ure 3(b), are more accurate in those parts of the prior having
a short correlation length, and similarly Figure 3(c) for longer
lengths.

The key insight is that although both Figure 3(b),(c) con-
tain regions of significant error, an excellent estimated image
could be found through the selection of appropriate subsets of

TABLE I
MAXIMUM ERROR AS A FUNCTION OF K AND PROCESS CORRELATION
LENGTH.
Process Number of priors K
correlation length 3 5 7 9

3 0.0109 | 0.0013 | 0.0004 | 0.0002

8 0.0384 | 0.0070 | 0.0022 | 0.0009

17 0.0789 | 0.0145 | 0.0045 | 0.0019

25 0.0996 | 0.0183 | 0.0056 | 0.0024

(b) and (c). Even better, can we interpolate the two sets of
estimates to acquire even better estimates for intermediate cor-
relation lengths? Finally, a key problem is how to define a non-
stationary prior covariance which is guaranteed to be positive
definite, a problem not yet fully solved in two dimensions.[11],

(9]

We address all of these issues by finding the estimates and
error variances as the nonstationary interpolation

K

Bi,5) = Y aw(i g k) @0, 4, k) ©)
k=1

R K

P 3) = > aplisg, ) B(i, 4, i) )
k=1

of an ensemble of K stationary estimation problems, each
of which is easily guaranteed to be positive definite and can
be solved efficiently. The interpolation weights « are found
through least-squares, an example of which is shown in Fig-
ure 4, and an optimization criterion is defined in order to de-
termine which stationary problems to solve. The result is an
elegant solution with a very high degree of accuracy.
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Fig. 4. The general shape of the interpolating weights for the states a, (solid
lines) and the estimation error variances o, (dashed lines)

IV. RESULTS

Table I shows how the maximum error in the update step
varies with the number of stationary models K to interpolate.
Even a modest number of models admit extremely accurate
updates, and virtually all of the error in the dynamic estimates
can be traced to the prediction.

A sample of the dynamic estimation results obtained by the
proposed estimator, applied to five months of ATSR data, is
shown in Figure 5, showing estimates and corresponding esti-
mation error standard deviations.
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Fig. 5. Reconstruction of dynamic sea surface temperature over the period of

June to October, 1992.
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