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Abstract

This paper presents an efficient and robust approach for MRI-CT image fusion using a phase congruency model. The fast fourier
transform (FFT) is used to efficiently evaluate the similarity cost function. This approach is largely invariant to pixel intensity mappings.
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1. Introduction

Medical imaging has become increasingly important in
medical analysis and diagnosis. Different medical imaging
techniques such as X-rays, computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission
tomography (PET) provide different perspectives on the
human body that are important in the diagnosis of diseases
or physical disorders. For example, CT scans provide high-
resolution information on bone structure while MRI scans
provide detailed information on tissue types within the
body. Therefore, an improved understanding of a patient’s
condition can be achieved through the use of different
imaging modalities.

A powerful technique used in medical imaging analysis
is medical image fusion, where streams of information from
medical images of different modalities are combined into a
single fused image. The effectiveness of medical image
fusion can be illustrated by the fused image of an axial slice
through the head using a PD-weighted MRI scan and a CT
scan shown in Fig. 1. Both the bone structure (shown in

* Corresponding author. Tel.: +1 647 280 1947; fax: +1 519 746 3077.
E-mail addresses: a28wong@engmail.uwaterloo.ca (A. Wong),
wdbishop@uwaterloo.ca (W. Bishop).

0167-8655/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2007.08.018

magenta) and tissue structure (shown in green) can be
clearly identified in the single image. Therefore, image
fusion allows a physician to obtain a better visualization
of the patient’s overall condition.

To perform fusion between medical images, it is first
necessary to align the images with each other. A number
of techniques have been proposed for the purpose of image
alignment. These methods are often categorized based on
the similarity metric used to perform the comparison
between images. These techniques include the following:

1. Cross-correlation (Capel and Zisserman, 1998; Cideci-
yan, 1995; Solaiyappan and Gupta, 2000),

2. Sum of squared differences (SSD) (Fitch et al., 2005;
Lucas and Kanade, 1981; Orchard, 2005),

3. Mutual information (Maes et al., 1997; Shekhar and
Zagrodsky, 2002), and

4. Phase correlation (Averbuch and Keller, 2002; Heng
et al., 2000; Reddy and Chatterji, 1996).

In the general case, the successful alignment of two
images may require one of the images to undergo a series
of geometric transformations. Scaling, rotating, and shift-
ing one of the images is likely to be necessary to bring
the images into alignment. In the context of medical
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Fig. 1. An axial cranial slice: (a) Top-left image: PD-weighted MRI scan, (b) Top-right image: CT scan, and (c) Bottom image: fused image.

imaging, the scale of an image is typically known for a par-
ticular medical imaging device. Given two medical images
of different scales and known sources, it is possible to per-
form scaling compensation on one of the images to create a
set of images with consistent scale. The problem of scaling
medical images is substantially easier to solve than the
problem of scaling arbitrary images since the scale is
known a priori.

The task of determining the near optimal rotation
required to align two images is a challenging one. Given
a small range of possible rotations, it is possible to exhaus-
tively search the range for the rotation that delivers the best
possible alignment. In the context of medical imaging, a
tractable approach involves searching the very small range
of possible rotations. This exhaustive approach for deter-
mining the near optimal rotation relies upon the existence
of an efficient technique for determining the near optimal
shift between two medical images. Therefore, this paper
focuses on the determination of a near optimal shift
between two medical images of different modalities.

Recently, it has been shown that image alignment using
a weighted SSD cost function can be performed efficiently
through the use of the fast fourier transform (FFT) (Fitch
et al., 2005; Orchard, 2005). It has been demonstrated that
the performance of this approach is 60-500 times faster

than directly evaluating the SSD cost function (Orchard,
2005). One major issue with these approaches for image
fusion is that they are unsuitable for aligning images with
very different intensity mappings. The algorithm proposed
by Orchard (2005) attempts to reduce the effects of varying
intensity mappings through the use of linear intensity
remapping. However, this approach fails in the case of
aligning MRI images with CT images because there is often
no appropriate intensity mapping that can make them
appear similar in terms of pixel intensities. One approach
to this problem is to discard the use of pixel intensities as
the feature space and instead exploit the structural charac-
teristics of the image content. The goal of this paper is to
extend this efficient alignment method to the problem of
MRI-CT image fusion by utilizing a phase congruency
model that takes advantage of the important structural
characteristics of image content.

The main contribution of this paper is an efficient image
fusion algorithm based on a phase congruency model. The
proposed image fusion algorithm attempts to find a near
optimal shift that aligns two medical images of different
modalities. This approach is invariant to pixel intensity
mappings and it is suitable for the fusion of MRI and
CT images. In this paper, the theory underlying weighted
SSD cost function evaluation using the FFT and the phase
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congruency model is presented in Section 2. The proposed
image fusion algorithm is described in Section 3. The test-
ing methods and test data are presented in Section 4.
Experimental results are discussed in Section 5 and conclu-
sions are drawn in Section 6.

2. Proposed fusion method using phase congruency

Before outlining the proposed fusion algorithm, it is
important to examine the theory behind the key concepts
of the algorithm. First, weighted cost function evaluation
using the FFT framework is described in Section 2.1. Then,
the concept underlying the phase congruency model is
described and explained to illustrate how an intensity—
invariant feature space can be derived for the purposes of
aligning MRI scans with CT scans in Section 2.2. For the
purpose of determining the near optimal shift, it is assumed
that all medical images have comparable scale and orienta-
tion. A brief discussion of how to determine the near opti-
mal rotation necessary to produce medical images with a
comparable orientation is presented in Section 2.3.

2.1. Weighted cost evaluation using the FFT

For two images f'and g, the weighted SSD cost function
between image g and image f shifted by «a is given by:

E(a) = (f(x—a) —gx))'w(x) (1)

where w(x) is a weighting function over g(x), x is the coor-
dinate of a pixel in the image, and « is the shift. For the
proposed algorithm, the weighting function is used to iden-
tify the region of interest in g (0 if outside the ROI and 1 if
inside the ROI). A low value of E signifies a high level of
image similarity. Hence, the optimal shift of f that brings
it into alignment with g is the value of « that results in
the minimum value of E. This can be expressed in the form
of a least squares optimization problem as the following:

a=argmin | > ((x —a) = g(x) () (2)

This least squares optimization problem is computationally
expensive to solve directly. This is because the SSD cost
function must be evaluated for every possible shift of /. A
more efficient approach to solving this problem is to for-
mulate the dual of the problem such that it can be solved
using the FFT in a computationally efficient manner. As
shown in previous research (Fitch et al., 2005; Orchard,
2005), (1) can be rewritten as follows:

E@ =) fx—awlx) =2 flx—a)gx)w)
+y g xw). 3)

Note that the last term in (3) does not depend on the
value of a so this value can be removed from the equation.
Reformulating the first two terms into convolutions results
in the following cost function:

E(a) = {f*(x) # w(x)}, = 2{/ (x) * (g(x)w(x))}, )

where the * operator denotes convolution and f(x) =
f(—=x). Typically, convolutions are computationally
expensive if performed in a direct fashion. However, it is
important to realize that convolutions in the spatial do-
main become multiplications in the frequency domain.
Multiplications are significantly faster to evaluate. There-
fore, (4) can be rewritten as the following:

E(a) = F~{F(f*(x))F (w(x))}(a)
= 2FH{F(f (x))F (g(x)w(x)) }(a) (5)

where F and F~! represent FFT and inverse FFT (IFFT),
respectively. The use of FFT allows the value of E for all
possible values of a to be evaluated simultaneously in a
very efficient manner.

2.2. Phase congruency model

The main problem with previous approaches is that they
make use of pixel intensities for determining the similarity
between images. While the use of pixel intensities works
well for images acquired using the same device or modality,
it is unsuitable for comparing images captured with differ-
ent modalities. The reason is that images captured with dif-
ferent modalities can possess significantly different pixel
intensity mappings, even if the target content is the same.
This is especially true when comparing MRI scans and
CT scans, which respond differently to tissue and bone
structures. Therefore, algorithms must utilize features that
do not rely on pixel intensities when comparing MRI scans
with CT scans.

Using the perception characteristics of the human vision
system, an alternative approach to the task of fusing MRI
scans and CT scans is apparent. When comparing the sim-
ilarity between two objects, the human vision system relies
on the significant structural characteristics of the objects.
Therefore, two identical objects with very different color
patterns can be identified as similar objects based on struc-
tural characteristics alone. The efficient alignment frame-
work described in Section 2.1 can be extended to make
use of significant structural characteristics as a feature
space for comparing MRI scans with CT scans. To extract
these significant structural characteristics as a feature
space, phase congruency can be utilized.

The phase congruency approach to feature perception is
based on the Local Energy Model (Morrone and Owens,
1987), which postulates that significant features can be
found at points in an image where the Fourier components
are maximally in phase. Furthermore, the angle at which
phase congruency occurs signifies the feature type. The
phase congruency approach to feature perception has been
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used for feature detection (Kovesi, 1999, 2003) and percep-
tual blur estimation (Wang and Simoncelli, 2004). The
phase congruency model used in the proposed algorithm
is based on the one presented by Kovesi (2003) which
was designed to provide good feature localization and
noise compensation. First, logarithmic Gabor filter banks
at different discrete orientations are applied to the 2D
image signal in the spatial frequency domain and the local
amplitude and phase at a point (x, y) in a signal are
obtained. The phase congruency, P(x, y, ), is then calcu-
lated for each orientation 6 using the following measure:

P(x,y,0) =

Zn W(xayv 0) \_An(xvya 9)(008((}5”()6,)/, 0) B &(X,J/a 0)) — | sin(qﬁn(x,y, 0) B (;S(xvyv 0))') — TJ

tor of significant structural characteristics, where moments
with higher values indicate higher structural feature signif-
icance. Two examples of matching significant features with
high minimum moment values are illustrated in Fig. 2.
Note that the feature indicated by the dotted line in the
1st image is clearly discernable from its surrounding region
by the change in contrast. Although the same feature indi-
cated by the dotted line in the 2nd image lacks a significant
contrast with the surrounding region, it still possesses a rel-
atively high minimum moment value. As such, it is deemed
to be a significant feature. This example demonstrates that

where (x,y) is the point in the image, 0 is the orientation,
W(x, y, 0) is the weighting factor based on frequency
spread, 4,(x, y, 0) and ¢,(x, y, 0) are the amplitude and
phase for wavelet scale n, respectively, ¢(x, y, 0) is the
weighted mean phase, T is a noise threshold constant and
¢1s a small constant value to avoid division by zero. A mea-
sure of feature significance can then be calculated using the
principle moments of phase congruency. For the purpose
of the algorithm, the minimum moments, M(x, y), are cal-
culated using the following equation:

> An(x,y,0) + ¢

(6)

the moments are invariant to intensity mappings. There-
fore, the minimum moment map of an image can be used
as an effective feature space for comparing similarity
between images with very different pixel intensity
mappings.

Based on the above model, the new weighted SSD cost
function becomes:

E(a) =) (M/(x —a) = M(x))’w(x) (®)

X

M(x,y) = % (Z(Ps(e))z S P0) - \/4(2(1»‘?(0))(1%(0)))2 + (S0 - Z(Ps(e)ff) (7)

where P(x, y, 0) is the phase congruency at point (x, y) for
a given orientation 0, Py(0) is P (x, y, 0)sin(0), and P.(0) is
P (x, y 0)cos(0). The minimum moments are a good indica-

where M, and M, are the minimum moments of images f
and g, respectively. Since the minimum moments are
invariant to the pixel intensity mappings, linear remapping

Matching significant features with
high minimum moment values

Fig. 2. Matching significant features with high minimum moment values.
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can be performed to make the corresponding portions of o B B
the minimum moment maps of the two images as similar  a,s,¢# = argmin Z(st(x —a) 41— My(x))w(x)

as possible. This is accomplished by substituting M, with ast ¥

sMy+t to form the following least squares optimization 9)

problem:

Table 1

Image alignment performance results

Test Set MI Linear PC
Mean alignment Images aligned correctly Mean alignment Images aligned correctly Mean alignment Images aligned
error® (%)° error® (%)® error® correctly® (%)

THORAX

PD to CT 54.43 45.00 23.20 37.50 4.52 57.50

T1 to CT 66.22 35.00 47.60 35.00 20.7 62.50

T2 to CT 64.62 30.00 73.45 17.50 50.85 30.00

HEAD

PD to CT 32.34 50.00 80.73 30.00 1.40 100.00

Tl to CT 26.27 60.00 111.64 0.00 10.75 90.00

T2 to CT 27.92 60.00 92.36 15.00 9.67 85.00

PELVIS

T1 to CT 26.10 65.00 17.36 65.00 3.24 70.00

Overall 42.56 49.29 63.76 28.57 14.45 70.71

% The mean alignment errors are computed over 40 test alignments for each alignment pair.
° Images are aligned correctly if the alignment error is less than or equal to 3 pixels. The alignment error is computed over 40 test alignments for each
alignment pair.

Fig. 3. An axial cranial slice: (a) Top-left image: fused image using MI, (b) Top-right image: fused image using LINEAR, and (c) Bottom image: fused
image using PC.
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The final cost function evaluation using the FFT becomes
the following:

E(a,s,1) = s’F ' {F(M7(x))F(w(x))}(a)
— 25F (P (M, (X)) F (M (%
+25tF {F (M (x))F (w(x)) }(a) (10)

2.3. Determining the near optimal rotation for medical image
alignment

The near optimal rotation for medical image alignment
can be determined using the proposed cost function for
evaluating the near optimal shift. Due to the nature of
medical imaging equipment, medical images typically do
not exhibit large rotations. Therefore, it is reasonable to
conduct an exhaustive search within a small range of rota-
tions to find the near optimal rotation. The problem of
finding the near optimal rotation (0,,) can be expressed
mathematically as follows:

0,, = argmin[E;,(0)], where 0 € [Omin, Omax) (11)
0

where E.iy(0) represents the lowest cost shift for each value
of 0 in the acceptable range. An exhaustive search can be
conducted in linear time using the proposed cost function.
If the range of 0 is well constrained by 0,,;, and 0., the
time required by an exhaustive search is reasonable for
most practical applications.

3. Algorithm outline

Utilizing the theory presented, the fusion algorithm con-
sists of the following steps:

1. Given images f and g, compute the minimum moment
maps Myand M, using Eqgs. (6) and (7) as described in
Section 2.2.

2. Perform weighted SSD cost evaluation using the FFT
using Eq. (10) as described in Section 2.2 to determine
the optimal shift between f and g.

3. Align f and g using the optimal shift and fuse the two
images into a single image using techniques such as color
fusion (where each image is assigned to a specific color
band to create a fused color image) or fusion using
mathematical operators (e.g. Addition, Subtraction,
Logical AND, Logical OR, etc.).

Fig. 4. A coronal thorax slice: (a) Top-left image: fused image using MI, (b) Top-right image: fused image using LINEAR, and (c) Bottom image: fused

image using PC.
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4. Testing methods

The fusion algorithm was implemented in MATLAB
using a color fusion technique. The algorithm was tested
using two sets of images derived from the Visible Male
and Female datasets of the National Library of Medicine’s
Visible Human Project. All of the test images used were 8-
bit grayscale images of size 256 x 256. The THORAX and
HEAD test sets consisted of T1-weighted MRI scans, T2-
weighted MRI scans, PD-weighted MRI scans, and CT
scans. The PELVIS test set consisted of Tl1-weighted
MRI scans and CT scans. A description of each test set
is given below:

e THORAX: A coronal slice through the thorax.
o HEAD: An axial slice through the head.
e PELVIS: An axial slice through the pelvis.

To judge the performance of the fusion methods,
each MRI image was fused with the corresponding CT
image and vice-versa in the same test set over a set of 40
randomly generated regions of interest (ROI) using three
methods:

e MI: mutual information using pixel intensities.

o LINEAR: weighted SSD evaluation with linear remap-
ping using pixel intensities (Orchard, 2005).

e PC: the proposed algorithm using the phase congruency
model with linear remapping.

The mean alignment error and the percentage of image
alignments with alignment errors less than or equal to 3
pixels (1.17% of the image dimension) were calculated.
The alignment error between two images was calculated
as the Euclidean distance from the estimated optimal shift
to the gold standard optimal shift.

5. Experimental results

The experimental results are shown in Table 1. It can be
observed that the proposed method achieved noticeably
better alignment performance over the MI and LINEAR
methods in all test cases. Examples of the fused images
achieved using the three methods are shown in Figs. 3-5.
The proposed algorithm outperformed the other two
methods due to the fact that the intensity mappings of
the MRI and CT scans are significantly different. The

Fig. 5. An axial pelvis slice: (a) Top-left image: fused image using MI, (b) Top-right image: fused image using LINEAR, and (c) Bottom image: fused

image using PC.
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Fig. 6. An example of a misalignment produced using the proposed fusion
algorithm.

two intensity-based methods (MI and LINEAR) are
unable to find a good correspondence. However, the pro-
posed algorithm relies on the significant structural charac-
teristics that are mostly present and consistent between the
MRI scans and the CT scans so the proposed algorithm is
able to find a good correspondence. The experimental
results demonstrate the effectiveness of the proposed algo-
rithm for fusing MRI images with CT images.

An example of a misalignment using the proposed
method is shown in Fig. 6. In this particular case, the ran-
domly selected region of interest for alignment was a region
that did not exhibit significant structural characteristics in
one of the two modalities. In the absence of significant
structural characteristics, the proposed algorithm has diffi-
culty finding a suitable alignment. It should be noted that if
a human expert were given this particular alignment task, a
suitable alignment would be difficult to find between the
two medical images in the region of interest. To help reduce
misalignments, the entire image should be used for align-
ment since full medical images often exhibit significant
structural characteristics that may not be present in a par-
ticular region of interest.

6. Conclusions

In this paper, we have introduced a new method for effi-
cient image fusion based on phase congruency. The method
uses structural characteristics of images that are invariant
to pixel intensity mappings. The method determines the
near optimal shift required to align medical images of
different modalities. Experimental results show that the

proposed method improves alignment accuracy when com-
pared to existing methods. This method is well suited for
multi-modal medical image fusion.
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