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Abstract - In image registration, similarity metrics are
used to determine the optimal alignment between t
images. A common metric used for judging imag
similarity is the weighted sum of squared diffeesc
(SSD) cost function. Recently, it was demonstrétatl
the evaluation of the SSD cost function can beopmed
efficiently using the Fast Fourier Transform (FF19
determine the optimal translation between two insage
based on pixel intensities. This paper extends th
efficient approach by introducing the concept ofsju
orientation maps as features into the alignmen Figure 1: Left: T1-weighted MRI cranial slice
framework. This feature-based method is invariemt Right: Corresponding CT cranial slice
intensity mappings, making it suitable for aligningindicated by the bright areas in the image. Thaebo
medical images acquired with different modalities.structure has a higher radiodensity than the sodimg
Experimental results demonstrate overall multi-mlodatissue. This is not the case for the MRI scannv@csely,
image alignment performance to be superior to thit tissue differences can be clearly distinguishednfithe
previous work. MRI scan but not from the CT scan. Therefore, the
alignment of images of different modalities allofes a
Keywords: multi-modal registration, image alignment, medical better overall picture of a patient’s condition.
imaging, orientation matching, least-squares A number of different techniques have been
. proposed for the purpose of image registration.es€h
1 Introduction methods are often classified based on: 1) the feaface

Image registration is the process of determinirgy thused as the basis of comparison, and 2) the sityilar
alignment between two images that have overlappin§€tric uged to compare the two images. Commc_)lmrfeat
regions. This is a difficult task because the iesagnay ~SPaces include intensity, edges, corners, regians
be acquired at different times and/or by differsemisors.  contours. A number of different similarity metribave
The difficulty is increased significantly in the sea of ~been used inimage registration. These include:

multi-modal image registration, where the images ar * cross-correlation [1]-[3]

acquired using different imaging techniques. Irchsu * phase correlation [4]-[7]

cases, images that share similar content may heame v » sum of squared differences (SSD) [8]-[10]
different intensity mappings. One area where the » mutual information [11]-[13]

alignment of images of different modalities is imjamt is Cross-correlation is commonly used for determining

in the field of medical imaging. Different medical the translation alignment between two images becthes
imaging techniques such as x-rays, computed torpbgra correlation between the two images for all possible
(CT), magnetic resonance imaging (MRI), and positro translations can be evaluated efficiently in thegfrency
emission tomography (PET) reveal different types oflomain by making use of the Fast Fourier Transform
information about the body that can be used in théFFT). Recently, it was demonstrated that theuatain
diagnosis of a disease. An example of this casele® in  of a weighted SSD cost function can be accelerated
Figure 1, which shows a slice from a cranial Tlghttd through the use of the FFT [8][9]. This novel apgmh
MRI scan and its corresponding CT scan. The bonwas shown to yield performance improvements ranging
structure of the head is clearly visible in the &&n, as from 60 to over 500 times faster than the diregtrapch



feature-based SSD-type image alignment algorithseda
on quasi-orientation maps. This method is highly
invariant to intensity mappings and therefore fléor
aligning medical images acquired with different
modalities. In this paper, the theory behind wtagh
SSD cost function evaluation using the FFT framéwor
and the theory underlying quasi-orientation maps is
presented and explained in Section 2 along with an
outline of the proposed algorithm. The testing hrods
and test data are outlined in Section 3. Finally,
experimental results comparing the proposed alguorit
with previous research are discussed in Sectioand,
conclusions are drawn based on the results in@ebti

2 Theory

Before outlining the proposed alignment algorithm,
it is important to discuss the theory behind the ke
components of the algorithm.  The cost function
evaluation is based on the technique introducg#]iand
: [9]. Hence, the basic formulation of a weightedS®st
Figure 2: Top-Left: T2-weighted MRI cranial slice evaluation using the FFT framework is presented to

Top_right: Corresponding CT cranial slice prOVide a context for thIS WOI‘k. More importantljn,e
Bottom: alignment (SSD cost function with lineamapping) ~ concept of quasi-orientation maps is described and
explained in detail to justify the use of such atfee
of evaluating the SSD cost function for each indiiseil ~ SPace over intensities for the purpose of compaivy
shift [9]. Furthermore, the algorithm proposeddhalso ~ images of different modalities.
optimizes f[he contrast and brlghtr_1ess adJustmgrth@f 21 Weighted SSD Cost Function
reference image to correspond with the other intage . .
finding the best match over all linear intensity Evaluation using the FFT
remappings. While this approach performs welldases Given the 2-D images and g, the similarity
where the intensity mappings used for the two irsajieé  petween the two images within a region of inte(&sI)

similar in nature due to the linear remappings @ipurely i g can be found by evaluating the weighted SSD cost
intensity-based method and therefore does not@tpli  petween the images,

take advantage of the structural characteristiosootent

in the images. Therefore, it is not suitable fbe t 2

alignment of images with very different intensity SSD:Z( ) - Q)()) wy). (1)
mappings where no suitable brightness and contrast X

adjustment can be made to make the images sinmilano

intensity level. As an example, this is evidentewh Where W()) is a weighting function oveg(Y)in the
aligning T2-weighted MRI slices with CT slices, asrange [0,1] (in the case of a ROI, 0 indicatesrégions
shown in Figure 2. Since the lower intensity region  outside the ROI and 1 indicates the regions inshde
the CT slice correspond to the higher intensityaeg in  ROI), andY = (x,y) which indicates the coordinate of a
the MRI slice and the higher intensity regionshie CT  pixel.  Using this cost function, a lower SSD cost
slice correspond to the lower intensity regionth@ MRl ingicates a higher image similarity. Likewise, 86D

corresponds to the dark background in the MRI she

appropriate linear remapping exists between the two _ 2
images. Thus, the correct image alignment caneot b SsSho) _Z( f(x-9)- g)()) wy) . (2)
achieved using the SSD cost function with a linear X
remapping. The goal of this paper is to extend thi . ]
efficient alignment framework to address this issye where J = (mn) represents the shift. Therefore, to find
introducing the concept of quasi-orientation mapsaa the shift off that provides the global optimal alignment of
feature space over the use of pixel intensitiesnrove ~ imagesf andg, it is necessary to find the shi@t = (m,n)
the level of invariance to intensity mappings. that results in the lowest SSD cost function, asmgby

The main contribution of this paper is an efficient
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S(tw-or sty win) @
X
This is commonly known as the least squares prablém
done in a direct fashion, each shifted imagé mdéeds to
be compared ta using the SSD cost function. This
evaluation process is computationally expensive smd
more efficient way to determine the shift associatgth
the minimum SSD cost is desired. As described8in [
and [9], Equation 2 can be expanded and expressed a

O = arg; min{

sso) =Y ( F(x-9) vix))
23 (f (r-8)a00wen) + X won)

X

(4)

The last term of Equation 4 is irrelevant to the
optimization problem and can be ignored, as it i
independent ad . The first two terms can be turned into
convolutions. Therefore, the final weighted SSDstco
function PSS§O) is expressed as

Pssra) =[ fnOwn ], -2 NI &0 wn)],» ©

where () = f(-x) and Cindicates a convolution.

The bottleneck of this final cost function is theakiation
of the convolution operations. These can be etadla
very efficiently in the frequency domain due to flaet
that convolution in the spatial
multiplication in the frequency domain. Therefotbe
terms in Equation 5 can be evaluated for all pdssib
values of O by taking the Fourier transform of the
convolution terms, performing multiplication in the
frequency domain, and then taking the inverse [eouri
transform of the result, which can be expressed as

PSSo) = F'[ R F(x) R wx)](@)-
2F [ F(FONF (9nwix) ] 9)

(6)

modalities can have significantly different integpsi
mappings. This makes it very difficult to evaluate
similarity between images based on pixel intersitie
Therefore, a feature space that is invariant tenisity
mappings is highly desired. One such feature sfzite
gradient orientation, which can be calculated usdimg
formula

O(x, y):tan‘l(Dy /DX), )

where [, and U, are the partial derivatives in the y

direction and x direction, respectively. Since t¢inadient
orientation is a measure of angle, it is invarismtthe
variations in image contrast and illumination. Mor
importantly, this measure of gradient orientatisovides
a good representation of the structural charatiesi®f
image content irrespective of the intensity mappindis

Jroperty can be visualized using a simple example.

Imagine a straight line on a constant backgroundgbe
processed with two different intensity mapping<teate
two images. In the first intensity mapping, theaigtht
line is mapped to black and the background is méppe
white. In the second intensity mapping, the strilige is
mapped to white and the background is mapped tkbla
This scenario is analogous to the T2-weighted MRCT
alignment scenario given in Section 1. It would be
impossible to find a match between the two gendrate
images using the SSD cost function if pixel intgngs
used as a feature space directly. However, thdigra
orientation computed using Equation 7 would be fidah

domain becomein the two images, making SSD cost evaluation blgta

for finding image alignment.

A number of issues prevent the aforementioned
gradient orientation measure from being used direct
within a SSD cost evaluation framework. First, the
gradient measure is highly sensitive to image noisay
minor change in pixel intensities would result imet
existence of a gradient direction regardless ofjtiaglient
magnitude. For example, a constant increase iel pix
intensity in only one direction should yield a wmih
gradient orientation map. However, the existenfe o
noise would result in a gradient orientation maghwi
many different gradient orientations. Second,gizlient

Therefore, the performance bottleneck becomes thgeasure does not yield a quantitative representafi@n

computation of the FFTs and the inverse FFTs (IFFTs
For large image sizes, significant

absence of gradient orientation (e.g., pixels umdorm

performanceegion) that can be used for evaluation in a SSEt co

improvements can be achieved by evaluating the coglnction. Finally, it is not possible to use juptdient

function in this manner since the FFT and the |[ERif be
evaluated efficiently.

2.2 Quasi-Orientation Maps

The primary drawback for the use of pixel
intensities as the feature space for multi-modahgen
registration is the fact that images acquired wifferent

orientation to distinguish uniform regions belongito

the foreground object and a uniform backgroundjsas
often the case with medical images where the backgt

is represented as uniformly black. Therefore,gbal is

to introduce the concept of quasi-orientation magps,
hybrid feature space that makes use of gradient
orientation information while addressing theseéssu



First, it is necessary to reduce the effect of@ais [14] may be used. Using the aforementioned teclasg
the effectiveness of the feature space for usénilagity = quasi-orientation maps can be constructed for gsa a
evaluation. This can be accomplished by takin@ int feature space for the SSD-based image alignment
account gradient orientation information only atdtions  framework.
where the gradient amplitude is above a reasonablf . .
thresholdt. As gradient amplitude is a good indicator of .3 Alignment Algorithm
structural feature significance (such as cornersl an Based on the theory presented, the alignment
edges), the gradient orientation at these locapoogides  g|gorithm can be outlined as follows:
a good representation of the structural charattesisf 1) Gjven imagesf and g, construct quasi-orientation

the image content while significantly reducing #féect mapsf’ andg’ in the following manner:
of noise on regions with low structural feature a) Compute the gradient magnitud& and
significance. orientationO of the image using Equation 7.
Second, it is necessary to establish a quantifiable ) Compute a binary imagg that separates the
relationship between pixels with gradient oriemtasi and foreground objects from the background using
those pixels that lack gradient orientations tonper an adaptive thresholding method such as Otsu’s
evaluation using a SSD cost function. Let typeike[s algorithm (where 1 indicates foreground objects
represent pixels with gradient orientations andetip and 0 indicates the background)
pixels represent pixels without gradient orientagide.g., c) Apply morphological close operator to binary
pixels in uniform regions). A way that a relatibips can image to fill in some of the holes in the image.
be established between type-A pixels and type-Rlpiis d) Compute the quasi-orientation m@p using

through the use of an offset which represents the

distance between the two types. The value should be

chosen large enough such that the minimum differenc o(xy)+e if Qxy > t

between type-A pixels and type-B pixels is gredbam

the maximum difference between the gradient ortenta ) ®)
in type-A pixels. For example, Equation 7 yieldadjent QO(x y) = FG(x Y < t&
orientations within the range of [-90, 90]. Sir88D is Fixy)=1

used as a cost function, the orientation maps fith b

andg can be remapped to the range of [0, 180] without if G(x Y)<t&

affecting the outcome. In this case, an offsegaf 181 y F(x,y)=0

can be used such that type-B pixels are set talCtygoe-
A_ pixels are in the range o_f [181, 361]. The_ miaim 2) Using f
difference between type-A pixels and type-B pixetsild
then be 181, which is more than the maximum diffeee
between the gradient orientations in type-A piXelkich
would be 361-181=180). By using an offset, uniform3 Testing M ethods
areas will more likely be matched with other unifor ) _ _
areas rather than being ignored, while areas \iitiilas The proposed algorithm was implemented in
structural characteristics will be matched to eaitter. MATLAB based on code that was used in [9]. In the
Finally, it is important to distinguish the foregrud currgnt |mple_mentat|on, the optimal translationwesn
from the background so that uniform regions frore th WO images is computed based on the lowest SSD cost
foreground objects are not matched to the unifornVithin a selected region of interest (ROI). Thepmsed
background. This can once again be accomplishe@gorithm was tested using three sets of imageseter
through the use of an offsgt  Pixels belonging to the from the Visible Male dataset of the National Lityraf

background are assigned a value such that the S%ﬂedicine’s Vis_ible Human Pro_ject_. All test ima_gaa_te 8
between background pixels and foreground pixels ar It grayscale Images 23€56 in size. A description of
. : €ach test set is given below.

large enough to not result in a match. Expandipgnu
the previous example, the background pixels may bg
mapped to y= -181. In practical scenarios, the

distinction between foreground objects and backgdou

objects is necessarily known prior to image alignme | \crp. A set of 4 i ial slice th h th
This is the case in [9], where the ROI is known tioe heaoi '?P?esoe inlcrruazjgee'sTol-arjrg-Xl?DS-Ivf/iigr{t%l:jgMRle
reference image but not known for the other images . éT ’ ’ ’ '

involved in image registration. In such a case, an
adaptive threshold algorithm such as Otsu’s algorit

and g', perform weighted SSD cost
evaluation using FFT as described in Section 2.1 to
determine the optimal shift betwetandg.

THORAX: A set of 5 images of a coronal slice through
the thorax. These include: T1-, T2-, PD-weighted
MRI, CT, and a grayscale photo.



Table 1: Image Alignment Performance

DIRECT LINEAR QUASI
Test Set Mean % Error < 3 Mean % Error < 3 Mean % Error< 3
Alignment Pixels Alignment Pixeld Alignment Pixeld
Errort Errort Errort
THORAX 58.68 29.50 49.68 39.50 12.59 63.00
HEAD 30.29 26.16 54.67 40.83 7.17 83.33
PELVIS 22.86 70.00 4,79 94.17 3.28 95.83
Overall 44.06 34.84 44,17 48.55 9.39 74.60

1: The mean alignment errors are computed oveté€italignments for THORAX, 240 for HEAD, and 120 PELVIS.
2: The % error < 3 pixels is computed based ontdS0alignments for THORAX, 240 for HEAD, and 120 PELVIS.

 PELVIS: A set of 3 images of a coronal slice through .
the pelvis and upper thigh. These include: T1-, T2 @ Conclusions and Future Work

PD-weighted MRI. In this paper, we have introduced a new method for

hi . is alianed with h efficient least squares image alignment based @ th
Each image In a test set is aligned with everyrothe, oncept of quasi-orientation maps. Experimentallis

image mdthe same test se]E ?\VGL a selt. of Z?h;%er}dom how that overall alignment accuracy is noticeably
generated ROIs using one of the three alignme t improved over previous work. It is our belief thhts

1) SSD_evaluation using pixel intensities directlymethod can be successfully implemented for multétato
(DIRECT) ) ) ) ) . L medical image registration purposes.  Future work
2) SsD eyaluatlon using p|xel intensities with &ne includes investigating the effectiveness of quasi-
remapping as Qescrlbeq in [9] (LINEAR) , orientation maps as a feature space for other cost
3) SSD evaluation using quasi-orientation MaPYynctions, as well as extending the algorithm tofqren

(QUASI) non-rigid image registration
To judge the performance of the alignment methods, g gereg '

the mean alignment error and the percentage ofémagb\cknow|edgments
alignments with alignment errors less than or edqoa
pixels (1.17% of image dimension) were computedie T
alignment error is calculated as the Cartesianandist
from the estimated shift to the gold standard shift

The authors would like to thank the National
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