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Abstract - In image registration, similarity metrics are 
used to determine the optimal alignment between two 
images.  A common metric used for judging image 
similarity is the weighted sum of squared differences 
(SSD) cost function.  Recently, it was demonstrated that 
the evaluation of the SSD cost function can be performed 
efficiently using the Fast Fourier Transform (FFT) to 
determine the optimal translation between two images 
based on pixel intensities.  This paper extends this 
efficient approach by introducing the concept of quasi-
orientation maps as features into the alignment 
framework.  This feature-based method is invariant to 
intensity mappings, making it suitable for aligning 
medical images acquired with different modalities.  
Experimental results demonstrate overall multi-modal 
image alignment performance to be superior to that of 
previous work. 
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1 Introduction 
Image registration is the process of determining the 

alignment between two images that have overlapping 
regions.  This is a difficult task because the images may 
be acquired at different times and/or by different sensors.  
The difficulty is increased significantly in the case of 
multi-modal image registration, where the images are 
acquired using different imaging techniques.  In such 
cases, images that share similar content may have very 
different intensity mappings.  One area where the 
alignment of images of different modalities is important is 
in the field of medical imaging.  Different medical 
imaging techniques such as x-rays, computed tomography 
(CT), magnetic resonance imaging (MRI), and positron 
emission tomography (PET) reveal different types of 
information about the body that can be used in the 
diagnosis of a disease.  An example of this can be seen in 
Figure 1, which shows a slice from a cranial T1-weighted 
MRI scan and its corresponding CT scan.  The bone 
structure of the head is clearly visible in the CT scan, as 

indicated by the bright areas in the image.  The bone 
structure has a higher radiodensity than the surrounding 
tissue.  This is not the case for the MRI scan.  Conversely, 
tissue differences can be clearly distinguished from the 
MRI scan but not from the CT scan.  Therefore, the 
alignment of images of different modalities allows for a 
better overall picture of a patient’s condition. 

A number of different techniques have been 
proposed for the purpose of image registration.  These 
methods are often classified based on: 1) the feature space 
used as the basis of comparison, and 2) the similarity 
metric used to compare the two images.  Common feature 
spaces include intensity, edges, corners, regions, and 
contours.  A number of different similarity metrics have 
been used in image registration.  These include: 

• cross-correlation [1]-[3] 
• phase correlation [4]-[7] 
• sum of squared differences (SSD) [8]-[10] 
• mutual information [11]-[13] 
Cross-correlation is commonly used for determining 

the translation alignment between two images because the 
correlation between the two images for all possible 
translations can be evaluated efficiently in the frequency 
domain by making use of the Fast Fourier Transform 
(FFT).  Recently, it was demonstrated that the evaluation 
of a weighted SSD cost function can be accelerated 
through the use of the FFT [8][9].  This novel approach 
was shown to yield performance improvements ranging 
from 60 to over 500 times faster than the direct approach 

 
Figure 1: Left: T1-weighted MRI cranial slice 

Right: Corresponding CT cranial slice 
 



of evaluating the SSD cost function for each individual 
shift [9].  Furthermore, the algorithm proposed in [9] also 
optimizes the contrast and brightness adjustment of the 
reference image to correspond with the other image by 
finding the best match over all linear intensity 
remappings.  While this approach performs well for cases 
where the intensity mappings used for the two images are 
similar in nature due to the linear remapping, it is a purely 
intensity-based method and therefore does not explicitly 
take advantage of the structural characteristics of content 
in the images.  Therefore, it is not suitable for the 
alignment of images with very different intensity 
mappings where no suitable brightness and contrast 
adjustment can be made to make the images similar on an 
intensity level.  As an example, this is evident when 
aligning T2-weighted MRI slices with CT slices, as 
shown in Figure 2.  Since the lower intensity regions in 
the CT slice correspond to the higher intensity regions in 
the MRI slice and the higher intensity regions in the CT 
slice correspond to the lower intensity regions in the MRI 
slice, and the dark background in the CT slice 
corresponds to the dark background in the MRI slice, no 
appropriate linear remapping exists between the two 
images.  Thus, the correct image alignment cannot be 
achieved using the SSD cost function with a linear 
remapping.  The goal of this paper is to extend this 
efficient alignment framework to address this issue by 
introducing the concept of quasi-orientation maps as a 
feature space over the use of pixel intensities to improve 
the level of invariance to intensity mappings.   

The main contribution of this paper is an efficient 

feature-based SSD-type image alignment algorithm based 
on quasi-orientation maps.  This method is highly 
invariant to intensity mappings and therefore suitable for 
aligning medical images acquired with different 
modalities.  In this paper, the theory behind weighted 
SSD cost function evaluation using the FFT framework 
and the theory underlying quasi-orientation maps is 
presented and explained in Section 2 along with an 
outline of the proposed algorithm.  The testing methods 
and test data are outlined in Section 3.  Finally, 
experimental results comparing the proposed algorithm 
with previous research are discussed in Section 4, and 
conclusions are drawn based on the results in Section 5. 

2 Theory 
Before outlining the proposed alignment algorithm, 

it is important to discuss the theory behind the key 
components of the algorithm.  The cost function 
evaluation is based on the technique introduced in [8] and 
[9].  Hence, the basic formulation of a weighted SSD cost 
evaluation using the FFT framework is presented to 
provide a context for this work.  More importantly, the 
concept of quasi-orientation maps is described and 
explained in detail to justify the use of such a feature 
space over intensities for the purpose of comparing two 
images of different modalities. 

2.1 Weighted SSD Cost Function 
Evaluation using the FFT 

Given the 2-D images f and g, the similarity 
between the two images within a region of interest (ROI) 
in g can be found by evaluating the weighted SSD cost 
between the images, 
 

( )2
( ) ( ) ( )SSD f g w

χ
χ χ χ= −∑ ,             (1) 

 
where ( )w χ  is a weighting function over ( )g χ in the 

range [0,1] (in the case of a ROI, 0 indicates the regions 
outside the ROI and 1 indicates the regions inside the 
ROI), andχ = (x,y) which indicates the coordinate of a 

pixel.  Using this cost function, a lower SSD cost 
indicates a higher image similarity.  Likewise, the SSD 
cost between a shifted image f and an image g is 
 

( )2
( ) ( ) ( ) ( )SSD f g w

χ
δ χ δ χ χ= − −∑ , (2) 

 

where δ = (m,n) represents the shift.  Therefore, to find 
the shift of f that provides the global optimal alignment of 
images f and g, it is necessary to find the shift δ = (m,n) 
that results in the lowest SSD cost function, as given by 
 

 
Figure 2: Top-Left: T2-weighted MRI cranial slice 

Top-right: corresponding CT cranial slice 
Bottom: alignment (SSD cost function with linear remapping) 
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This is commonly known as the least squares problem.  If 
done in a direct fashion, each shifted image of f needs to 
be compared to g using the SSD cost function.  This 
evaluation process is computationally expensive and so a 
more efficient way to determine the shift associated with 
the minimum SSD cost is desired.  As described in [8] 
and [9], Equation 2 can be expanded and expressed as 
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The last term of Equation 4 is irrelevant to the 
optimization problem and can be ignored, as it is 
independent ofδ .  The first two terms can be turned into 
convolutions.  Therefore, the final weighted SSD cost 
function ( )PSSDδ is expressed as 

 

( )2( ) ( ) ( ) 2 ( ) ( ) ( )PSSD f w f g w
δδ

δ χ χ χ χ χ   = ∗ − ∗  
,  (5)  

  

where ( )f χ  = ( )f χ−  and ∗ indicates a convolution.  

The bottleneck of this final cost function is the evaluation 
of the convolution operations.  These can be evaluated 
very efficiently in the frequency domain due to the fact 
that convolution in the spatial domain become 
multiplication in the frequency domain.  Therefore, the 
terms in Equation 5 can be evaluated for all possible 
values of δ  by taking the Fourier transform of the 
convolution terms, performing multiplication in the 
frequency domain, and then taking the inverse Fourier 
transform of the result, which can be expressed as 
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Therefore, the performance bottleneck becomes the 
computation of the FFTs and the inverse FFTs (IFFTs).  
For large image sizes, significant performance 
improvements can be achieved by evaluating the cost 
function in this manner since the FFT and the IFFT can be 
evaluated efficiently. 

2.2 Quasi-Orientation Maps 

The primary drawback for the use of pixel 
intensities as the feature space for multi-modal image 
registration is the fact that images acquired with different 

modalities can have significantly different intensity 
mappings.  This makes it very difficult to evaluate 
similarity between images based on pixel intensities.  
Therefore, a feature space that is invariant to intensity 
mappings is highly desired.  One such feature space is the 
gradient orientation, which can be calculated using the 
formula 
 

( )1( , ) tan /y xO x y −= ∇ ∇ ,                         (7) 

 

where y∇ and x∇ are the partial derivatives in the y 

direction and x direction, respectively.  Since the gradient 
orientation is a measure of angle, it is invariant to the 
variations in image contrast and illumination.  More 
importantly, this measure of gradient orientation provides 
a good representation of the structural characteristics of 
image content irrespective of the intensity mapping.  This 
property can be visualized using a simple example.  
Imagine a straight line on a constant background being 
processed with two different intensity mappings to create 
two images.  In the first intensity mapping, the straight 
line is mapped to black and the background is mapped to 
white.  In the second intensity mapping, the straight line is 
mapped to white and the background is mapped to black.  
This scenario is analogous to the T2-weighted MRI to CT 
alignment scenario given in Section 1.  It would be 
impossible to find a match between the two generated 
images using the SSD cost function if pixel intensity is 
used as a feature space directly.  However, the gradient 
orientation computed using Equation 7 would be identical 
in the two images, making SSD cost evaluation suitable 
for finding image alignment. 

A number of issues prevent the aforementioned 
gradient orientation measure from being used directly 
within a SSD cost evaluation framework.  First, the 
gradient measure is highly sensitive to image noise.  Any 
minor change in pixel intensities would result in the 
existence of a gradient direction regardless of the gradient 
magnitude.  For example, a constant increase in pixel 
intensity in only one direction should yield a uniform 
gradient orientation map.  However, the existence of 
noise would result in a gradient orientation map with 
many different gradient orientations.  Second, the gradient 
measure does not yield a quantitative representation of an 
absence of gradient orientation (e.g., pixels in a uniform 
region) that can be used for evaluation in a SSD cost 
function.  Finally, it is not possible to use just gradient 
orientation to distinguish uniform regions belonging to 
the foreground object and a uniform background, as is 
often the case with medical images where the background 
is represented as uniformly black.   Therefore, the goal is 
to introduce the concept of quasi-orientation maps, a 
hybrid feature space that makes use of gradient 
orientation information while addressing these issues.  



First, it is necessary to reduce the effect of noise on 
the effectiveness of the feature space for use in similarity 
evaluation.  This can be accomplished by taking into 
account gradient orientation information only at locations 
where the gradient amplitude is above a reasonable 
threshold t.  As gradient amplitude is a good indicator of 
structural feature significance (such as corners and 
edges), the gradient orientation at these locations provides 
a good representation of the structural characteristics of 
the image content while significantly reducing the effect 
of noise on regions with low structural feature 
significance. 

Second, it is necessary to establish a quantifiable 
relationship between pixels with gradient orientations and 
those pixels that lack gradient orientations to permit 
evaluation using a SSD cost function.  Let type-A pixels 
represent pixels with gradient orientations and type-B 
pixels represent pixels without gradient orientations (e.g., 
pixels in uniform regions).  A way that a relationship can 
be established between type-A pixels and type-B pixels is 
through the use of an offsetε , which represents the 
distance between the two types.  The value of ε should be 
chosen large enough such that the minimum difference 
between type-A pixels and type-B pixels is greater than 
the maximum difference between the gradient orientations 
in type-A pixels.  For example, Equation 7 yields gradient 
orientations within the range of [-90, 90].  Since SSD is 
used as a cost function, the orientation maps for both f 
and g can be remapped to the range of [0, 180] without 
affecting the outcome.  In this case, an offset of ε = 181 
can be used such that type-B pixels are set to 0 and type-
A pixels are in the range of [181, 361].  The minimum 
difference between type-A pixels and type-B pixels would 
then be 181, which is more than the maximum difference 
between the gradient orientations in type-A pixels (which 
would be 361-181=180).  By using an offset, uniform 
areas will more likely be matched with other uniform 
areas rather than being ignored, while areas with similar 
structural characteristics will be matched to each other.    

Finally, it is important to distinguish the foreground 
from the background so that uniform regions from the 
foreground objects are not matched to the uniform 
background.  This can once again be accomplished 
through the use of an offsetγ .   Pixels belonging to the 

background are assigned a value such that the SSD 
between background pixels and foreground pixels are 
large enough to not result in a match.  Expanding upon 
the previous example, the background pixels may be 
mapped to γ = –181.  In practical scenarios, the 

distinction between foreground objects and background 
objects is necessarily known prior to image alignment.  
This is the case in [9], where the ROI is known for the 
reference image but not known for the other images 
involved in image registration.  In such a case, an 
adaptive threshold algorithm such as Otsu’s algorithm 

[14] may be used.  Using the aforementioned techniques, 
quasi-orientation maps can be constructed for use as a 
feature space for the SSD-based image alignment 
framework. 

2.3 Alignment Algorithm 

Based on the theory presented, the alignment 
algorithm can be outlined as follows: 
1) Given images f and g, construct quasi-orientation 

maps f’  and g’ in the following manner: 
a) Compute the gradient magnitude G and 

orientation O of the image using Equation 7. 
b) Compute a binary image F that separates the 

foreground objects from the background using 
an adaptive thresholding method such as Otsu’s 
algorithm (where 1 indicates foreground objects 
and 0 indicates the background) 

c) Apply morphological close operator to binary 
image to fill in some of the holes in the image. 

d) Compute the quasi-orientation map QO using 
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            (8) 

 
2) Using f’  and g’, perform weighted SSD cost 

evaluation using FFT as described in Section 2.1 to 
determine the optimal shift between f and g. 

3 Testing Methods 
The proposed algorithm was implemented in 

MATLAB based on code that was used in [9].  In the 
current implementation, the optimal translation between 
two images is computed based on the lowest SSD cost 
within a selected region of interest (ROI).  The proposed 
algorithm was tested using three sets of images derived 
from the Visible Male dataset of the National Library of 
Medicine’s Visible Human Project.  All test images are 8-
bit grayscale images 256×256 in size.  A description of 
each test set is given below. 
 
• THORAX: A set of 5 images of a coronal slice through 

the thorax.  These include: T1-, T2-, PD-weighted 
MRI, CT, and a grayscale photo. 

• HEAD: A set of 4 images of an axial slice through the 
head.  These include: T1-, T2-, PD-weighted MRI, 
and CT. 



• PELVIS: A set of 3 images of a coronal slice through 
the pelvis and upper thigh.  These include: T1-, T2-, 
PD-weighted MRI. 

 
Each image in a test set is aligned with every other 

image in the same test set over a set of 20 randomly 
generated ROIs using one of the three alignment methods: 
1) SSD evaluation using pixel intensities directly 

(DIRECT) 
2) SSD evaluation using pixel intensities with linear 

remapping as described in [9] (LINEAR) 
3) SSD evaluation using quasi-orientation maps 

(QUASI) 
To judge the performance of the alignment methods, 

the mean alignment error and the percentage of image 
alignments with alignment errors less than or equal to 3 
pixels (1.17% of image dimension) were computed.  The 
alignment error is calculated as the Cartesian distance 
from the estimated shift to the gold standard shift. 

4 Experimental Results 
The experimental results are shown in Table 1.  It 

can be observed that the proposed QUASI method 
showed noticeably better performance over the DIRECT 
method in all test cases.  Furthermore, the QUASI method 
performed noticeably better than the LINEAR approach 
in the THORAX and HEAD test sets and slightly better 
results in the PELVIS test set.  An example of the 
alignment achieved using the three methods for each test 
set is shown in Figures 3, 4, and 5.  The QUASI method 
performed particularly well in aligning T2-weighted MRI 
with CT when compared to the DIRECT and LINEAR 
methods, as shown in Figure 6.  The intensity mappings 
of T2-weighted MRI and CT are too different for the two 
intensity-based methods to find a match.  However, since 
the structural characteristics of the content remain the 
same despite the intensity mappings, the proposed 
QUASI method is able to find a match.  These results 
illustrate the advantage of the QUASI method in aligning 
images where the intensity mappings are very different 
from each other, as is often the case with medical images 
acquired using different modalities. 

5 Conclusions and Future Work 
In this paper, we have introduced a new method for 

efficient least squares image alignment based on the 
concept of quasi-orientation maps.  Experimental results 
show that overall alignment accuracy is noticeably 
improved over previous work.  It is our belief that this 
method can be successfully implemented for multi-modal 
medical image registration purposes.  Future work 
includes investigating the effectiveness of quasi-
orientation maps as a feature space for other cost 
functions, as well as extending the algorithm to perform 
non-rigid image registration. 
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Figure 4: Alignment of grayscale photo with CT from THORAX test set using three methods 
Left: DIRECT; Center: LINEAR; Right: QUASI 

Only the QUASI method resulted in a correct alignment. 
 

 
Figure 5: Alignment of PD-weighted MRI with T1-weighted MRI from PELVIS test set using three methods 

Left: DIRECT; Center: LINEAR; Right: QUASI 
Both the LINEAR and QUASI methods resulted in a correct alignment, while the DIRECT method resulted in an incorrect 

alignment. 
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Figure 6: Alignment of T2-weighted MRI with CT from HEAD test set using three methods 

Left: DIRECT; Center: LINEAR; Right: QUASI 
Only the QUASI method resulted in a correct alignment. 


