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ABSTRACT

Nonlocal-means (NL-means) is an image denoising method

that replaces each pixel by a weighted average of all the pixels

in the image. Unfortunately, the method requires the compu-

tation of the weighting terms for all possible pairs of pixels,

making it computationally expensive. Some short-cuts assign

a weight of zero to any pixel pairs whose neighbourhood av-

erages are too dissimliar. In this paper, we propose an alterna-

tive strategy that uses the SVD to more efficiently eliminate

pixel pairs that are dissimilar. Experiments comparing this

method against other NL-means speed-up strategies show that

its refined discrimination between similar and dissimilar pixel

neighbourhoods significantly improves the denoising effect.

Index Terms— nonlocal-means, denoising, SVD

1. INTRODUCTION

Image denoising is the operation of removing unwanted noise

from a noise-corrupted image, restoring the image to its un-

degraded ideal.

Recently, the method of nonlocal-means (NL-means)

has shown great promise [1, 2]. It involves replacing each

pixel with a weighted average of other pixels with similar

neighbourhoods. The idea is that images often contain self-

similarity, and many structures show up more than once in the

image. However, any noise in these similar neighbourhoods

is uncorrelated if we assume an i.i.d. noise model. Hence,

taking an average of these similar neighbourhoods yields a

version that has less noise.

Unfortunately, the ideal implementation of NL-means

is very computationally expensive. A number of recent pa-

pers on NL-means denoising focus on short-cuts to make the

method computationally practical [1, 3, 4, 5, 6]. One of the

most compelling strategies is to rule out many weight com-

putations using a simple and computationally cheap test [6].

While the method is among the best short-cuts for NL-means,

their approach is somewhat heuristic.

In this paper, we propose a different method for identify-

ing dissimilar pixel paris. Our method has its theoretical foun-

dation in the singular value decomposition (SVD), and yields

the most efficient representation (on average) to quickly rule

out dissimilar neighbourhoods.

2. NL-MEANS DENOISING

Nonlocal-means denoising [7, 8] replaces the intensity of

each pixel x in the noisy image u by a weighted average

of all of the pixel intensities in the image (as a convention,

we will refer to the pixel being denoised at any given time

as the “pixel of interest” (POI), denoted x, and denote all

other pixels as y). The weights w(x, y) reflect the probability

that the POI (x) has the same intensity value as the pixel it

is being compared to (y). This probability is based on the

similarity between the neighbourhoods around x and y. A

small neighbourhood, or “patch”, around each pixel is used to

compute the L2 norm. The weighting factor, w(x, y), is then

a normalized weighted Gaussian function of this L2 norm.

Consider a discrete noisy image u = f + n, in which n is

additive white Gaussian noise. The NL-means filter is written

f(x) ≈
∑

y

w(x, y)u(y) , (1)

where,

w(x, y) =
1

W (x)
exp

(−1
h2

∥∥∥u (N d(x)
)− u

(N d(y)
) ∥∥∥2

2

)
,

where N d(x) represents the square patch of size (2d + 1) ×
(2d+1) centered at x, and W is a normalizing term, W (x) =∑

y w(x, y). The parameter h will be referred to as the fil-

ter parameter that controls the decay of the exponential ex-

pression in the weighting scheme. This parameter is typically

controlled manually in the algorithm. Choosing a very small

h leads to noisy results identical to the input, while very large

h gives an overly-smoothed image.

Note that the above computation is required for all pixel

pairs in the image, (x, y) ∈ [N×N ]×[N×N ]. For denoising

an N × N image using patches of radius of d, each distance

computation is of O(d2), and hence the computational com-

plexity of computing all the weights for all N2 of the POIs is

O(N4d2).
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3. ACCELERATING NL-MEANS

Buades et al.[1] proposed the idea of using only a subset of all

possible pixels in the weighted average of (1), restricting the

computation to a limited range of pixels in the neighbourhood

of the POI, and effectively assigning a weight of zero to all

other pixels. Consider a radius of s defining a neighbourhood

with dimensions (2s + 1)× (2s + 1) centred on x. A total of

(2s+1)2 patch comparisons (weights) are evaluated for every

POI. Hence, the computational complexity of evaluating the

weights for all N2 POIs in an image is O(N2d2s2). If s is

much smaller than N , the time savings can be very significant.

However, this method is not nonlocal in the strict sense, and a

small s can defeat the purpose of using NL-means. However,

combatting the issue with a larger s slows the method down.

We will refer to this speed-up strategy as “limited-range” NL-

means.

A different speed-up proposed by Mahmoudi and Sapiro

[6] also computes only a fraction of the total set of weights.

For a given POI, they choose the (2s+1)2 patches with patch

average closest to that of the POI, terminating the list prema-

turely if they run out of patches with averages within about

10% the POI patch average. That list of candidate patches is

further pruned by comparing the local average gradient vec-

tors, excluding patches for which the gradient direction dif-

fers by an angle that exceeds a threshold. However, since

noise can drastically affect the direction of a short gradient

vector, the above pruning criterion is only applied if both gra-

dient magnitudes are above a chosen threshold. Any pixel

whose patch makes it through those two elimination rounds

is used in the weighted average (see (1)) to denoise the POI.

This whole process is repeated for each pixel to be denoised.

For the remainder of this paper, we will refer to this method

as “pre-filtering” NL-means.

Approaches similar to the pre-filtering method have re-

cently been published. Coupé et al. [4] and Kervrann et al.
[5] use patch average and patch variance to rule out dissimi-

lar patches, although these methods also incorporate a limited

search window in addition to pre-filtering. In [9], the search

window radius is adjusted to optimize the patch fit.

A problem with these pre-filtering methods is that the

measures by which pre-selection is based are chosen some-

what heuristically. In the next section, we propose a method

for pre-filtering that is based on the statistical properties

afforded by the singular SVD.

4. NL-MEANS USING THE SVD

If patches are (2d+1)×(2d+1) and we define D as (2d+1)2,

then each patch can be represented as a point (or vector) in

the space R
D. While this space represents the full gamut of

patches that are possible, we hypothesize that most natural

images will place most of their patches in a relatively modest

lower-dimensional manifold. If we seek only linear subspaces

of R
D, then we can use the SVD [10] to extract the most sig-

nificant subspaces (in the sense of minimizing the L2 norm).

Without loss of generality, order the N2 pixels in the im-

age lexicographically so that we can refer to every pixel with a

single index variable, i ∈ {1, . . . , N2}. Let zi be the column

vector in R
D representing the (2d+1)×(2d+1) patch centred

on pixel i. Then we define M as the matrix [z1 . . . zN2 ]T.

Hence, M contains all the patches in the image, one stored in

each row. We then compute the SVD of M, UΣVT = M.

Note that UTU yields the identity matrix, as does VTV.

Hence, the matrices U and V have orthonormal columns.

The matrix Σ is a diagonal matrix with diagonal elements

{σ1, σ2, · · · , σD}. The values {σk}D
k=1 are called singular

values, and are always in decreasing order, σ1 ≥ σ2 ≥ σ3 ≥
· · · ≥ σD ≥ 0.

The remarkable property of the SVD is its statistical rep-

resentation of M in subspaces of decreasing importance.

More precisely, one can reconstruct an approximation to M
by setting all of the singular values to zero except σ1. The

resulting matrix has a rank of one. Likewise, it can be proven

that MK , the rank-K approximation to M using only the first

K singular values, is the closest rank-K matrix to M. That is,

MK = arg minA ‖M−A‖F, where ‖ · ‖F is the Frobenius

norm, the sum of the squares of the matrix elements.

In our application, the columns of V (or rows of VT) can

be used as a basis for the space of image patches, R
D. Let

{v1,v2, · · · ,vD} be the basis comprised of singular vectors,

and {ṽ1, ṽ2, · · · , ṽD} be any other basis of R
D. Consider

any image patch z, and denote its coordinates with respect

to the two bases as {α1, α2, · · · , αD} and {a1, a2, · · · , aD},
respectively, such that z = α1v1 + · · · + αDvD and z =
a1ṽ1 + · · ·+ aDṽD. In approximating the patch z, the SVD

suggests that, on average,

‖z− (α1v1 + · · ·+ αrvr) ‖ ≤ ‖z− (a1ṽ1 + · · ·+ arṽr) ‖ ,

where r ≤ D is the number of basis vectors used in the ap-

proximation to z, and ‖·‖ is the Euclidean distance (L2 norm).

In other words, if we want to approximate image patches us-

ing fewer than D coordinates, we cannot do better on average

than the basis of singular vectors contained in V.

This line of reasoning suggests that we should do our

patch selection based on each patch’s sequence of coordinates

using the basis of singular vectors.

As with the other NL-means speed-ups, the method we

propose computes the norms for only a subset of all patch

pairs. The challenge is to efficiently find the most signifi-

cant subset of patch pairs, the ones with the lowest norm (and

hence highest weight).

Here, we describe our strategy. Consider a single POI,

x. We proceed by estimating the L2 norm between the patch

around x and all other patches using rank-1 approximations.

That is, if α1 is the first coordinate of our POI’s patch,

u(N d(x)), and β1 is the first coordinate of another patch,
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u(N d(y)), then the norm between their rank-1 approxima-

tions is simply (α1 − β1)
2
. (More generally, since the basis

is orthonormal, we can approximate the norm using the first

r coordinates as
∑r

k=1(αk − βk)2.)

Based on these rank-1 approximations, we eliminate the

fraction of the pixels that yield the largest norm. With this

smaller set of candidate pixels, we add to their norms the con-

tribution from the second coordinate, (α2 − β2)2. Again, we

threshold the new-and-improved norm estimates to eliminate

the highest values. Continuing this process, we progressively

narrow the set of candidate pixels. The nature of the SVD im-

plies that our elimination scheme leaves us with a set of pixels

with lower average norm than we could have achieved using

any other basis.

5. EXPERIMENTS

In our experiments, we compare the performance of three

NL-means implementations: the limited-range (LR) method

of Buades et al. [1], the pre-filtering (PF) method of Mah-

moudi and Sapiro [6], and our SVD-based approach (SVD).

All three methods were implemented in MATLAB (Nattick,

Massachusets).

The three implementations are compared in two experi-

ments. The first experiment is designed to see which method

gives the highest PSNR (peak signal-to-noise ratio) for a fixed

number of norm computations. The second one is designed to

compare the quality of patches chosen by the different meth-

ods.

In the first experiment, we allow each method a fixed

number of operations for computing norms. We measure the

operations in units of “norm-term operations”. For exam-

ple, computing the L2 norm between two vectors in R
D in-

volves adding up D terms. The limited-range method com-

putes N2SD norm terms, where S = (2s + 1)2, D = (2d +
1)2, and the image is N × N . We choose parameters for the

pre-filtering method so that approximately S patches make

it through the elimination rounds. Hence, the pre-filtering

method computes about the same number of norm terms as

the limited-range method.

For the SVD method, approximately 95% of the patches

are eliminated based on the rank-1 norm estimate, and 20%

are eliminated for each subsequent norm increment after that

(up to a maximum of 20 increments, for this experiment). As

we bring in more coefficients, we keep track of the total num-

ber of norm terms computed. For example, we compute N2

norm terms when computing the rank-1 estimates, but only

0.05N2 terms for the next increment. For each test image,

the elimination rates are adjusted slightly to arrive at about

N2SD norm terms in total.

Given this fixed number of norm terms, each of the three

methods is used to denoise three images that are artificially

corrupted with additive Gaussian noise (σ = 18). We then

compare the resulting peak signal-to-noise ratios (PSNR).

(a) Lena (b) Noisy, PSNR=23.0 (c) LR, PSNR=27.2

(d) PF, PSNR=27.4 (e) SVD, PSNR=28.7

Fig. 1. Lena image (256× 256) with d = 3 and h = 40.

The idea behind the second experiment is to choose a

number, say S, and ask each of the three methods to choose

the S patches that it would use to denoise each pixel. The

lower the L2 norm of the chosen patch pairs, the better the

denoising should be. To summarize the distribution of these

patch-pair norms, we compute the minimum norm, mean

norm, and maximum norm for each POI, and report their

averages for each test image.

6. RESULTS

The outcome of experiment 1 is shown in Figs. 1 and 2. The

PSNR for the limited-range method is usually slightly lower

than that for the pre-filtering method, which itself is lower

than the PSNR of the SVD method. In a third test image

(denoted “weave”, not shown), the limited-range and pre-

filtering methods yield very similar PSNR values. The im-

provement of the SVD method over the pre-filtereing method

ranges from 0.7dB to 1.3dB.

The first six singular vectors for the Lena image are dis-

played in Fig. 3. The first (most significant) singular vector

is indistinguishable from a constant image, suggesting that

patch average, as used by other pre-filtering methods [6, 4, 5],

is actually a good first-order classifier.

The results for experiment 2 are shown in Fig. 4. While

the minimum-norm value is very similar for all three methods,

there is a marked difference in the mean and maximum norms.

Recall that for this experiment each of the three methods is

configured to arrive at the same number of candidate patches

(on average) for each pixel. Thus, the lower distribution of

the norms for the SVD method suggests that it was far more

successful at finding close matches.
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(a) Building (b) Noisy, PSNR=23.3 (c) LR, PSNR=26.5

(d) PF, PSNR=26.7 (e) SVD, PSNR=27.6

Fig. 2. Building image (182× 177) with d = 3 and h = 50.

(a) v1 (b) v2 (c) v3 (d) v4 (e) v5 (f) v6

Fig. 3. First six singular vectors for Lena (d = 3)

7. CONCLUSIONS

In both experiments, the SVD method consistently selects

patch pairs that are more similar than those selected by the

limited-range and pre-filtering methods. The SVD method’s

ability to efficiently extract the most significant patch pairs

yields substantially higher PSNR values. We note, however,

that the first criteria for eliminating candidate matches is es-

sentially the same for the pre-filtering and SVD methods –

similarity in patch average.

For experiment 1, the SVD method used a truncated set

of 20 singular vectors. The effect of ignoring the remaining

29 singular vectors generally amounts to selective smooth-

ing. This fact might contribute to the success of the SVD

method on images with relatively smooth regions. More work

is needed to elucidate the behaviour of the SVD method in

these contexts.
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