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Abstract

Robust visual tracking is a challenging problem, espe-

cially when a target undergoes complete occlusion or leaves

and later re-enters the camera view. The mean-shift tracker

is an efficient appearance-based tracking algorithm that has

become very popular in recent years. Many researchers

have developed extensions to the algorithm that improve

the appearance model used in target localization. We ap-

proach the problem from a slightly different angle and seek

to improve the robustness of the mean-shift tracker by inte-

grating an efficient failure recovery mechanism. The pro-

posed method uses a novel application of the STAGE algo-

rithm to efficiently recover a target in the event of tracking

failure. The STAGE algorithm boosts the performance of

a local search algorithm by iteratively learning an evalua-

tion function to predict good states for initiating searches.

STAGE can be viewed as a random-restart algorithm that

chooses promising restart states based on the shape of the

state space, as estimated using the search trajectories from

previous iterations. In the proposed method, an adapted

version of STAGE is applied to the mean-shift target local-

ization algorithm (Bhattacharyya coefficient maximization

using the mean-shift procedure) to efficiently recover the

lost target. Experiments indicate that the proposed method

is viable as a technique for recovering from failure caused

by complete occlusion or departure from the camera view.

1. Introduction

The task of visual tracking involves estimating the loca-

tion and/or appearance of a target from one video frame to

the next. In recent years, there has been much interest in de-

veloping effective tracking algorithms for applications in ar-

eas including intelligent surveillance, traffic monitoring, ve-

hicle navigation, and human-computer interaction [9]. The

mean-shift tracker proposed by Comaniciu et al. is a popu-

lar tracking algorithm that has been demonstrated to be ro-

bust to small camera motion, partial occlusions, clutter, and

scale changes [3]. In the mean-shift tracking algorithm, the

target is represented by a colour histogram that is weighted

according to an isotropic kernel. Given its estimated loca-

tion in the previous frame, the target is efficiently localized

in the current frame using the iterative mean-shift proce-

dure.

Since its introduction, many researchers have proposed

enhancements to the basic mean-shift tracking algorithm.

Haritaoglu and Flickner developed an extended mean-shift

tracker for tracking shopping groups in stores [4]. The au-

thors applied a temporal background subtraction and mo-

tion detection method to segment shoppers, and incorpo-

rated both colour and edge information in the target appear-

ance model. Liu et al. similarly assumed a static camera

and proposed a method for integrating both colour and mo-

tion cues [6]. They also presented a technique for adaptively

tuning the weights of the cues based on their reliability in

the previous frame. Li put forward an adaptive binning

colour model to improve the target appearance model [5].

Since a target’s colour is often compactly distributed, the

usual uniform partitioning of the colour space for building a

colour histogram creates many zero-valued bins and is sub-

optimal. To solve this problem, Li’s method first performs

clustering on the object colour space and uses the result-

ing clusters to partition the space; thus, each histogram bin

corresponds to a cluster. Each cluster is further represented

using a histogram based on independent component anal-

ysis. Yilmaz replaced the radially symmetric kernel used

in the basic mean-shift tracker with an asymmetric, non-

parametric kernel based on the level set representation of

the target contour [8]. The proposed kernel is a normalized

version of the usual level set function used in contour repre-

sentation, bounded by the zero level set. Yilmaz also intro-

duced a method for automatically adapting the target scale

and orientation by including these parameters as additional

dimensions in the state space.

The enhancements described above generally increase

the performance of the mean-shift tracker by improving the
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appearance model used in target localization. The enhance-

ment proposed in this paper takes a different approach and

focuses on target recovery: efficiently localizing a target in

the event that the tracker loses it. Thus, the enhancement

increases robustness by introducing an explicit mechanism

for handling tracking failure, which may occur when a tar-

get is completely occluded over several frames or leaves and

later re-enters the camera view, for example. In the pro-

posed method, an adapted version of the STAGE algorithm

[1] is applied to the mean-shift target localization algorithm

to efficiently recover a lost target.

The rest of this paper is structured as follows. Section 2

describes the target localization method used in the mean-

shift tracker. Section 3 covers local search algorithms and

their relation to the STAGE algorithm. Section 4 explains the

proposed application of STAGE for efficient target recovery

in mean-shift tracking. Experimental results illustrating the

operation of the proposed method are presented in Section

5. Finally, Section 6 closes with conclusions and possible

directions for future work.

2. Target localization in the mean-shift tracker

In the mean-shift tracker [3], the target appearance is rep-

resented by a colour histogram that is weighted according to

an isotropic kernel. Pixels closer to the centre of the kernel

are assigned greater weight than those near the boundary.

The tracker compares two histograms using a metric based

on the Bhattacharyya coefficient. Given two m-bin normal-

ized histograms p̂ = {p̂}u=1...m and q̂ = {q̂}u=1...m, the

distance between them is defined as [3]

d =
√

1 − ρ[p̂, q̂] (1)

where

ρ[p̂, q̂] =
∑

u

√

p̂uq̂u (2)

is the sample estimate of the Bhattacharyya coefficient and

can be interpreted as a similarity measure.

A target is localized by finding the region that minimizes

the distance (1) to the target model histogram, or equiva-

lently maximizes the similarity metric (2). In addition to

reducing the influence of peripheral background features,

use of the kernel also produces a smooth similarity func-

tion, which makes it possible to apply a gradient optimiza-

tion method to find the most similar local candidate [3].

Gradient information is provided by the mean shift vector,

which always points in the direction of maximum increase

in the density [2]. Target localization using the mean-shift

procedure is much more efficient than optimized exhaustive

search: Comaniciu et al. estimated that the computational

time is approximately 24 times less [3].

3. Local search and STAGE

In general, local search algorithms try to efficiently

find good approximate solutions to large-scale optimization

problems by starting at a particular state, corresponding to a

candidate solution, and iteratively moving to a neighbouring

state until an optimum is reached. The quality of a partic-

ular state or solution is measured using an objective func-

tion, which the local search algorithm seeks to minimize

or maximize. The most basic local search algorithm is the

hill-climbing algorithm, also known as greedy local search,

in which the neighbour with the highest objective value is

chosen at each iteration [7]. Though simple, the basic hill-

climbing algorithm is susceptible to becoming trapped in

local optima. Stochastic hill-climbing algorithms address

this problem by choosing the neighbour randomly, where a

neighbour’s probability of being chosen may depend on the

degree of improvement in the objective function offered by

the neighbour. Simulated annealing is a popular version of

stochastic hill-climbing that permits some downhill moves,

based on both the elapsed time and the change in objec-

tive value. Another solution is random-restart hill-climbing,

which runs several hill-climbing searches from random ini-

tial states and returns the best solution found [7].

The STAGE algorithm, proposed by Boyan and Moore

[1], boosts the performance of a local search algorithm by

iteratively learning an evaluation function to predict good

states for initiating searches. STAGE can be viewed as

a random-restart algorithm that chooses promising restart

states based on the shape of the state space, as estimated

using the search trajectories from previous iterations.

STAGE progressively learns an evaluation function

V π(x), defined as the ”expected best Obj [objective] value

seen on a trajectory that starts from state x and follows lo-

cal search method π” [1, p. 79]. During each iteration, the

local search method π is run. States on the resulting search

trajectory are added to the training data, and V π(x) is re-

approximated using a linear or quadratic regression model.

Provided π is Markovian, not only the initial state but all

intermediate states on the trajectory contribute to the train-

ing data since the search result would be the same had the

search started at any of the intermediate states. Stochastic

hill-climbing is then performed on V π(x), starting from the

solution found by the local search, and the result determines

the starting state of the next iteration. The Algorithm 1 box

provides a summary of the STAGE algorithm; the interested

reader can find more details in [1].

4. STAGE for efficient target recovery

In the context of failure recovery for the mean-shift

tracker, we propose using a combination of STAGE and the

usual mean-shift target localization algorithm to efficiently
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Algorithm 1 Summary of the STAGE algorithm [1]

1: Set x0 to be a random starting state

2: while the number of states evaluated is less than a

threshold do

3: Run search algorithm π starting from x0; let

(x0,x1, ...,xT) denote the resulting search trajec-

tory and v the corresponding objective value

4: Add (xi, v)(i = 0, 1, ..., T ) to the training set for

V π(x)
5: Re-approximate V π(x) using linear or quadratic re-

gression

6: Run stochastic hill-climbing on V π(x) starting from

xT; let (z0, z1, ..., zt) denote the resulting trajectory

7: if zt = xT then

8: Set x0 to a new random starting state

9: else

10: Set x0 to zt

11: end if

12: end while

13: return the best state found

recover the lost target. The local search method π is simply

the Bhattacharyya coefficient maximization algorithm using

the mean-shift procedure [3]. The objective function is the

similarity metric ρ based on the Bhattacharyya coefficient

(2). States are all the possible (x, y) pixel locations of the

target. To generate a random starting state, a pixel within

a pre-defined distance of the previous known target loca-

tion is randomly selected. For simplicity, the L∞ distance

is used: that is, the distance between two states (x1, y1) and

(x2, y2) is given by max(|x1−x2|, |y1−y2|). Alternatively,

the starting state can be randomly selected from among all

pixels in the image. This option removes the need to choose

a suitable threshold distance. However, it also incurs addi-

tional computation time in terms of the number of STAGE

iterations required to arrive at a good solution. In our im-

plementation, a threshold distance of 200 pixels (approxi-

mately half the image height) is used.

We make a minor modification to the STAGE algorithm

to adapt it to the particular mechanics of mean-shift track-

ing. Given a local maximum of the similarity metric ρ, exe-

cution of the Bhattacharyya coefficient maximization algo-

rithm starting from a location within the target ellipse cen-

tred at the local maximum will generally converge to that

same local maximum [3]. Hence, to reduce the possibility

of becoming trapped in a local maximum, instead of reset-

ting x0 to a new random starting state when zt = xT, the

reset is performed when zt falls within the target ellipse

centred at xT.

Finally, the STAGE algorithm loops until the total num-

ber of states evaluated exceeds a pre-defined threshold.

States on both x and z trajectories are counted towards the

Algorithm 2 Summary of the adapted STAGE algorithm for

target recovery

1: Set x0 to be a random starting state

2: for a pre-defined number of iterations do

3: Run Bhattacharyya coefficient maximization algo-

rithm starting from x0; let (x0,x1, ...,xT) denote

the resulting search trajectory and ρ the correspond-

ing objective value

4: Add (xi, ρ)(i = 0, 1, ..., T ) to the training set for

V π(x)
5: Re-approximate V π(x) using quadratic regression

6: Run stochastic hill-climbing on V π(x) starting from

xT; let (z0, z1, ..., zt) denote the resulting trajectory

7: if zt is within the target ellipse centred at xT then

8: Set x0 to a new random starting state

9: else

10: Set x0 to zt

11: end if

12: end for

13: return the best state found

total. Simply to enable more intuitive comparison with the

basic mean-shift tracker, we modify the loop to stop after

the Bhattacharyya coefficient maximization algorithm has

been run a pre-defined number of times, which we set to be

ten in our implementation. During normal execution, the

basic mean-shift tracker runs the Bhattacharyya coefficient

maximization algorithm once per target per frame. Comani-

ciu et al. reported the successful tracking of five targets in

real-time on a 1GHz PC [3].

Our proposed failure recovery algorithm using STAGE is

summarized in the Algorithm 2 box.

The failure recovery algorithm is invoked when the like-

lihood of a target, as measured by the similarity metric ρ,

falls below a threshold ltrigger . The location returned by

the algorithm is accepted if its corresponding likelihood ex-

ceeds an acceptance threshold laccept . In our experiments,

we set ltrigger to 0.3 and laccept to 0.6.

5. Experimental Results

To illustrate the operation of the proposed target recov-

ery algorithm, we walk through an example run using the

PencilCase test video sequence. The test video sequences

presented in this section have a resolution of 720 × 480 and

a frame rate of 30 fps. Similar to [3], we use the RGB colour

space quantized into 16 × 16 × 16 bins.

Figure 1 shows the salient frames in the tracking results

for the PencilCase sequence, in which a pencil case moves

into complete occlusion behind a backpack and reappears

later moving in a perpendicular direction. The traditional

mean-shift tracker loses the target in frame 88. In frame
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175, the target recovery algorithm is invoked (it is invoked

in previous frames as well but only returns a solution satis-

fying the acceptance threshold in this frame). The first it-

eration starts with the random initial state of (x, y) = (573,

384). Running the Bhattacharyya coefficient maximization

algorithm yields the state xT = (528, 379), with similarity

ρ = 0.1515. The search trajectory followed by the Bhat-

tacharyya coefficient maximization algorithm is plotted in

Figure 1d. The empty training set is augmented with the

states on the trajectory, each of which is associated with the

objective value of 0.1515. Quadratic regression yields a flat

V π(x), as shown in Figure 1e, so stochastic hill-climbing

on V π(x) returns zt = (528, 379) again. Hence, a new

random initial state (615, 186) is generated for the next it-

eration. In the second iteration, the mean-shift target local-

ization procedure starting from (615, 186) returns the same

state (615, 186), with similarity ρ = 0. The search trajec-

tory is plotted in Figure 1f. The single state on the trajec-

tory, (615, 186), is associated with the objective value of

0 and added to the training set. Figure 1g shows the re-

approximated V π(x). Stochastic hill-climbing on V π(x)
starting from (615, 186) returns zt = (614, 267), so in

the third iteration, the Bhattacharyya coefficient maximiza-

tion algorithm starts from (614, 267). Figure 1h shows the

search trajectory plot and Figure 1i shows the approximated

V π(x) surface after ten iterations. The algorithm returns the

state (279, 252), corresponding to a similarity ρ = 0.6666,

found in the seventh iteration.

Figure 2 shows the results for the Wire test sequence. In

this sequence, a spool of wire is moved out of the camera

view and returned at a different location in the view. Figures

2a to 2c show the frames in which the target is initialized,

lost, and recovered with similarity ρ = 0.8131. Figures 2d

and 2e show the search trajectory plot and approximated

V π(x) surface after ten iterations.

Figure 3 shows the results for the Tissue test sequence.

In this sequence, a tissue pack is moved behind a backpack

and then the backpack is removed to eliminate the occlu-

sion. Figures 3a to 3c show the frames in which the target is

initialized, lost, and recovered with similarity ρ = 0.6429.

Figures 3d and 3e plot the search trajectories and approxi-

mated V π(x) after ten iterations.

A limitation of the algorithm is that an incorrect object

may be recovered if it is very similar to the target in appear-

ance. Integration of a technique that improves the target

appearance model, such as one of the mean-shift tracker ex-

tensions described in Section 1, can help mitigate this limi-

tation by making the target appearance more distinctive.

6. Conclusion

A novel adaptation of STAGE for efficient target recov-

ery in mean-shift tracking is presented. Target recovery us-

ing STAGE may be particularly viable as a technique for

handling failure caused by complete occlusion or departure

from the camera view for several frames. Like the tradi-

tional mean-shift tracker, the proposed method does not in-

trinsically require a static camera. As a result, the method

is well-suited for scenarios in which the camera is not static

and it is infeasible to rely simply on motion cues, such as

when following a target using a pan-tilt-zoom surveillance

camera.

A useful extension for future investigation would be the

adaptive tuning of the algorithm parameters. Adjusting the

number of STAGE iterations based on statistics from previ-

ous runs may further increase algorithm efficiency. Finally,

as previously mentioned, integration of a tracker extension

that improves the target appearance model can help maxi-

mize the probability of correctly recovering the target.
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Figure 1. Operation of the target recovery algorithm on the PencilCase sequence. (a) Manual initializa-

tion of the mean-shift tracker in frame 1. (b) Target lost by the traditional mean-shift tracker in frame
88. (c) Target recovered by the proposed method in frame 175. Iteration 1: (d) Search trajectory

after execution of Bhattacharyya coefficient maximization algorithm (line 3 in Algorithm 2 box). (e)
Approximated V π(x) (line 5 in Algorithm 2 box). Iteration 2: (f) Search trajectories after execution of

Bhattacharyya coefficient maximization algorithm, which adds only a single point in this iteration.

(g) Approximated V π(x). Iteration 10: (h) Search trajectories after execution of Bhattacharyya co-
efficient maximization algorithm. Note the z trajectories from stochastic hill-climbing on V π(x) are

shown in red. (i) Approximated V π(x).
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Figure 2. Results for the Wire sequence. (a) Manual initialization of the mean-shift tracker in frame

1. (b) Target lost by the traditional mean-shift tracker in frame 108. (c) Target recovered by the
proposed method in frame 258. (d) Search trajectories after execution of Bhattacharyya coefficient

maximization algorithm (line 3 in Algorithm 2 box) in tenth iteration. Note the z trajectories from
stochastic hill-climbing on V π(x) are shown in red. (i) Approximated V π(x) (line 5 in Algorithm 2

box) in tenth iteration.
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Figure 3. Results for the Tissue sequence. (a) Manual initialization of the mean-shift tracker in frame 1.

(b) Target lost by the traditional mean-shift tracker in frame 69. (c) Target recovered by the proposed
method in frame 207. (d) Search trajectories after execution of Bhattacharyya coefficient maximiza-

tion algorithm (line 3 in Algorithm 2 box) in tenth iteration. Note the z trajectories from stochastic

hill-climbing on V π(x) are shown in red. (i) Approximated V π(x) (line 5 in Algorithm 2 box) in tenth
iteration.
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