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ABSTRACT

We propose Eigen-RBM, a scalable Restricted Boltzmann
Machine (RBM) for visual recognition in which the num-
ber of free parameters to learn is independent of the image
size. Eigen-RBM exploits the global structure of the image
and does not impose any locality or translation-invariance
assumption, and regularizes the network weights to be a lin-
ear combination of a set of predefined filters. We show that,
compared to basic RBM, Eigen-RBM can achieve similar or
better performance in both recognition and sample generation
with significantly less training time.

Index Terms— Image Classification, Generative Mod-
els, Feature Extraction, Restricted Boltzmann Machines, Ma-
chine Learning

1. INTRODUCTION

Image understanding is a shared goal in all computer vi-
sion problems. This objective includes decomposing the
image into a set of primitive components through region seg-
mentation, region labeling and object recognition, and then
modeling the interactions between the extracted primitives.
However, due to large intra-class variations, extracting im-
age primitives is highly challenging. Although images are
given as a gridded set of pixels, in order to cope with large
variations a high-level abstraction is required. Therefore, a
key challenge is to bridge the gap between low-level pixel-
representations and high-level abstract image descriptors.

The past decade was not successful in developing an ef-
fective abstraction mechanism. Researchers have tried to en-
gineer hand-crafted descriptors to discriminate different com-
ponents of the image [1, 2, 3, 4], where the best represen-
tative of this category is the Scale-Invariant Feature Trans-
form (SIFT) [1]. Although successful, these discriminative
models are domain-specific and require a large amount of la-
beled training data. On the other hand, the problem of visual
recognition has some innate challenges, including occluded
images and a lack of labeled data. Generative models address
this issue by imposing additional constraints on the model
parameters to perform well in generating images as well as
discriminating them. That is, instead of hand-crafting image

Fig. 1. Schematic diagram of Eigen-RBM in which filters (i.e.
w:j) are defined as linear combinations of a set of pre-defined
filters.

descriptors, features constituting a generative model can be
used to regularize the parameters of a discriminative model.
In this way, one can take advantage of the large amount of
easily available unlabeled data while the generative aspects of
the features can be investigated to deal with image occlusion.
Considering these properties, we have witnessed a growth of
interest in learning image descriptors in probabilistic genera-
tive frameworks [5, 6, 7, 8].

Despite the merits of employing generative models in vi-
sual recognition, there are many unresolved obstacles. Of
these, one of the most important issues is that of high com-
putational complexity. Although considerable advances have
been made [6, 9], running these algorithms requires special
hardware and software support. In this paper, we focus on Re-
stricted Boltzmann Machines (RBMs), the most widely-used
generative model for visual recognition, and study the issue
of computational complexity. We present Eigen-RBM, as an
extension of RBM, which reduces the computational burden
of RBM learning significantly. The key idea behind Eigen-
RBM is to reduce the number of parameters by defining the
network weights as linear combinations of a set of predefined
filters.

The rest of this paper is organized as follows: Section 2
gives a brief overview, Section 3 introduces the proposed
method and the performance of the proposed method is ex-
amined on a number of visual recognition tasks in Section 4.



2. BACKGROUND

2.1. Generative Models for Images

The basis of generative modeling approaches for image appli-
cations is the seminal work by Geman and Geman [10]. The
heart of any generative approach is modeling the prior distri-
bution of the data. However, due to the high-dimensionality
and non-Gaussian statistics of natural images, defining a
generic prior model is quite challenging. Researchers have
evolved this model of [10] by investigating richer priors [11,
8, 12, 13].

We have witnessed a growth of attention [5, 6, 9] toward
using generative models for visual recognition. The problem
of visual recognition has some innate challenges, including a
lack of labeled data and image occlusion, both of which can
be addressed in a generative framework:

- Unsupervised Learning: Labeled data is costly to pro-
duce, however generative models are able to learn from
unlabeled data.

- Occlusion: Investigating the generative property of a
model, ambiguities in the raw sensory inputs can be
resolved by means of inferring the missing pixels [6, 5].

2.2. Restricted Boltzmann Machines

Restricted Boltzman Machines (RBMs) [14] are the most
widely used generative model for feature extraction in visual
recognition [9, 15, 16, 17]. RBMs are bipartite undirected
graphical models with a set of binary hidden units h and a
set of visible units v (binary or real-valued) arranged in two
layers. There are symmetric connections between these two
layers represented by weight matrix W (see figure 1). In this
structure, visible units correspond to input data (e.g., image
pixels) and hidden units are the extracted abstract representa-
tions. In order to capture more abstract features, RBMs can
be stacked to form deep architectures such as Deep Belief
Networks [9] and Deep Boltzman Machines (DBMs) [18].

In an RBM, the probability of a configuration (h,v) is

P (h,v) =
1

Z
exp(−E(h,v)) (1)

where Z is the partition function, with energy E(h,v)

E(h,v) =
1

2

∑
i∈vis

(vi − ci)2 −
∑
j∈hid

hjbj

−
∑

i∈vis,j∈hid

viwijhj

(2)

where b and c are the biases of the hidden and visible units.
Given the joint distribution P (h,v) (1), the probability that
an RBM assigns to an input vector v can be obtained from the
marginal P (v). The parameters of an RBM can be optimized

in a purely unsupervised manner, based on maximizing the
likelihood of the training data. Since maximizing P (v) with
respect to the network weights does not have a closed-form
solution, gradient ascent is applied.

One key disadvantage is the large number of parameters to
be learned, thus the application of RBMs is limited to small-
size images. Furthermore, having a large number of parame-
ters is always a threat to the good generalization of a model.
One way of tackling this problem is to reduce the number of
parameters using a weight-sharing scheme [6, 5, 16]. Con-
volutional architectures [6] assume that the network weights
(i.e., filters) are local and stationary, however, in practice
translation invariance is frequently violated.

3. Eigen-RBM

The number of RBM parameters grows roughly quadratically
with the size of the input image. Therefore, extending RBMs
to high-resolution images is not computationally tractable or
desirable, since having large numbers of parameters is a threat
to good model generalization.

Suppose that X ∈ RD is a set of observed input variables
and Y ∈ N is a set of latent output variables drawn jointly
from distribution P (X ,Y). Given a set of unlabeled observed
samples X = {x1, x2, . . . , xN} as N realizations of X , we
are looking for a weight matrix W which maps x to h such
that the likelihood of the observations is maximized. We use
W:j to denote the weight vector that connects all of the units
of the visible layer to hidden unit hj .

In order to scale RBMs to realistic-sized images, we pro-
pose that the weightsW:j to be defined as linear combinations
of a set of predefined filters (see figure 1). That is, given a fil-
ter bank F = {f1, f2, ..., fP }, we define weight vector (i.e.,
filter) W:j as

W:j :=

P∑
k=1

αkjf
k (3)

where the size of the filter bank is much smaller than the num-
ber of visible units (i.e., P � D). In this way, the number
of parameters is independent of the image size and becomes
instead a function of the size of the filter bank. In addition,
the global structure of the image is exploited and no locality
or translation invariance assumption is imposed.

Training an RBM consists of learning the weights αkj of
the filters in the filter bank. Performing gradient ascent on the
log-likelihood of the training data, the update rule for coeffi-
cient αkj is computed as

∂logP (v)

∂αkj
=

∑
i∈vis

∂logP (v)

∂wij

∂wij

∂αjk
(4)

=
∑
i∈vis

(< vihj >data − < vihj >model)f
k
i
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Fig. 2. (a) The Akaike Information Criterion (AIC) for Eigen-RBM on the Small MNIST data set. Note that for both unsu-
pervised and fine-tuned features, the optimum number of Eigendigits, found by minimizing the AIC, are similar. (b) and (c)
compare the basic RBM and Eigen-RBM in terms of classification error rate and running time. Observe that the Eigen-RBM
has a similar error performance relative to basic RBM, but with much less training time.

The freedom of choosing the filter bank enables us to capture
different aspects of the image. Since the filters are applied
linearly to the image (rather than being convolved), a good
choice would be a filter bank that captures global information
at different levels of details. A simple choice for the filter
bank could thus be the set of eigenvectors corresponding to
large eigenvalues of the covariance matrix of the training data.
Figure 3 (a) shows a sample of this filter bank for hand-written
digits of MNIST data set [19]. The RBM with the weights
defined as linear combinations of Eigen-filters is Eigen-RBM.

To assess whether Eigen-RBM can produce similar re-
sults to basic RBM, which has many more free parameters,
both networks are trained with images of handwritten digit 2
taken from the MNIST data set. The filter bank in Eigen-
RBM consists of the top 30 eigenvectors. As figure 3 (b)
shows, with about one twenty-seventh the number of parame-
ters, Eigen-RBM produces similar results to RBM. Although
noise-reduction is not the objective, it is interesting to observe
the reduction of noise in the corners of the learned Eigen-
RBM filters; the Eigen-RBM filters are random combinations
of Eigendigits, which are not noisy, whereas the learned filters
for basic RBM are initialized with random values.

4. RESULTS AND DISCUSSION

We conducted a set of experiments on a small version of
MNIST1 data set of handwritten digits to study the effective-
ness of Eigen-RBM compared to that of RBM. The feature
learning procedure consists of two stages. In the first stage,
the generative weights are learned in a purely unsupervised
manner. In the next phase, the learned generative weights
are fine-tuned using error backpropagation. The extracted
representations are used to classify the test set using a one-
nearest-neighbor classifier [20].

1A subset of 600 and 100 samples from each digit class is chosen ran-
domly for training and testing, respectively.

(a) Eigendigits Filter Bank

(b) Basic RBM (top) and Eigen-RBM (bottom)

Fig. 3. (a) In the filter bank, observe how the Eigendigits
capture information at a variety of scales from coarse to fine.
(b) The learned filters for single digit training data (digit 2) as
computed by basic RBM and Eigen-RBM.

In order to determine the optimum number of Eigendig-
its for Eigen-RBM, we use the Akaike Information Criterion
(AIC) [21], a model selection criterion rewarding goodness of
fit while penalizing the number of free parameters. Figure 2
(a) presents the computed AIC for Eigen-RBM for different
numbers of Eigendigits, illustrating that the required number
of Eigendigits for both unsupervised and fine-tuned models
are similar. Based on this criterion, in Eigen-RBM we use the
top 30 Eigendigits of the data.

Figure 2 (b) and (c) propose a comparison between basic
RBM and Eigen-RBM in terms of recognition rate and run-
ning time. To ensure a fair comparison, both RBM and Eigen-
RBM are trained with the same number of epochs. This re-
sult demonstrates that with near one twenty-seventh the num-
ber of the parameters of basic RBM, Eigen-RBM performs
similar to and even better than basic RBM. As illustrated in
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Fig. 4. A histogram of active hidden neurons on small MNIST
data set, showing the number of hidden neurons that are ac-
tive for some fraction of the images, such that the left-most
bin shows the number of neurons that are active for none of
the images (i.e., always off), allowing us to conclude that the
Eigen-RBM representation is sparser than that of basic RBM.

figure 2 (c), for a large number of hidden neurons—which im-
proves the recognition performance—the difference between
the training time of basic RBM and Eigen-RBM becomes sig-
nificant.

It is important to know that learning overcomplete repre-
sentations2, such as RBM features, run the risk of learning
trivial solutions [6]. To avoid this problem, one can encour-
age the features to be sparse so that for each input only a small
fraction of hidden neurons becomes active [22, 23]. With-
out imposing any sparsity penalty, a side-effect of the new
weight-learning algorithm is to learn sparse representations.
The histogram in Figure 4 shows how often the hidden neu-
rons are active for the training images. Evidently, compared
to basic RBM, in Eigen-RBM there are many more hidden
neurons that are never active or active for a small fraction of
time.

For the next step of this comparative study, we take a look
at the mind of the network to see what the network believes
in. For each class of digits on the complete MNIST data
set, an RBM and an Eigen-RBM both with 50 hidden units
are trained. After training, starting from a random binary
input for the hidden layer, we run alternate Gibbs sampling
for 500 iterations. Figure 6 shows the generated samples for
each class at different Gibbs sampling iterations. As this fig-
ure shows, compared to basic RBM, Eigen-RBM, with much
less free parameters, produces similar or better samples (e.g.,
digit 6, 7 and 8). In our last experiment, the average number
of active hidden units is measured on 1000 samples drawn
from each class of digits. As figure 5 illustrates, for all digit
classes, Eigen-RBM generates similar or better samples with
more sparse representations than that of basic RBM.

2More sources of features than observations.
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Fig. 5. Fraction of hidden units which are active for the gener-
ated samples of each class using basic RBM and Eigen-RBM.
For all digit classes Eigen-RBM generates similar or better
samples with more sparse representations than basic RBM.

(a) Basic RBM

(b) Eigen-RBM

Fig. 6. Generated samples using basic RBM and Eigen-RBM
trained on single digit classes. The rows show the sample
evolution as a function of Gibbs sampling iterations. Eigen-
RBM, with fewer free parameters, produces similar or better
samples (e.g., digits 6, 7 and 8).

5. CONCLUSION

This paper presented Eigen-RBM, with a scalable weight-
learning algorithm in which the number of free parameters
is independent of the image size. Compared to basic RBM,
Eigen-RBM has similar or better performance in both recog-
nition and sample generation with much less training time.
Without imposing any sparsity regularization, the new weight
learning algorithm leads to more sparse representations, the
subject of future work.
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