
MULTI-MODAL IMAGE REGISTRATION USING

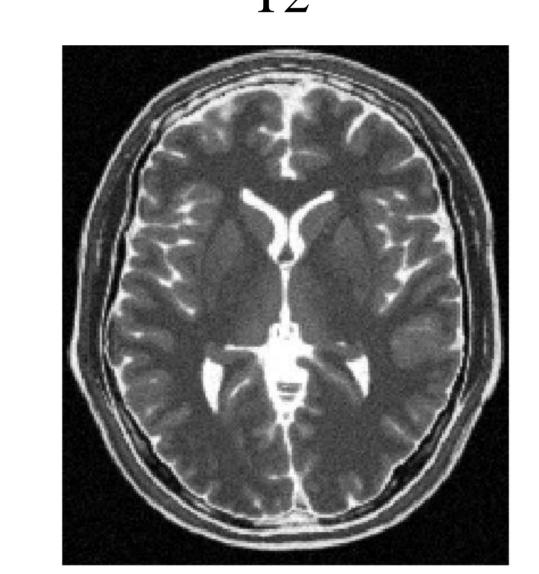
STRUCTURAL FEATURES

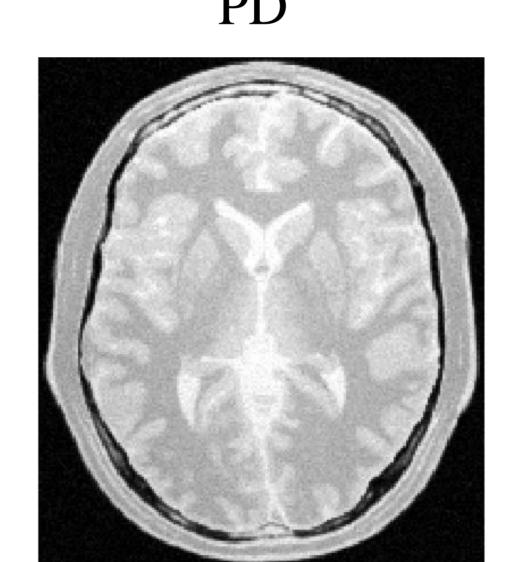
Keyvan Kasiri, David A Clausi, Paul Fieguth {kkasiri, dclausi, pfieguth}@uwaterloo.ca

Vision and Image Processing Group

Systems Design Engineering

Motivation


- Incorporating multiple image modalities of the same subject or organ plays an important role for diagnosis and computer-aided surgery.
- Image registration helps clinicians integrate the information obtained from different imaging modalities.
- Of particular interest is registering multiple atlases from different modalities in a multi-atlas segmentation problem.
- Accuracy and computational time are the two major challenges.


Problem

- Most common method for multi-modal image registration work based on statistical intensity relationship.
- Would be challenging specifically when
 - the intensity relations are not spatially invariant,
 - there is a highly complex intensity relationship.
- **Objective:** To bypass the issue related to complex intensity relationships and simplify the registration procedure by on converting the problem to a mono-modal one.

Fig1. Brain MR images of different Modalities

Methodology

• The problem of registering I_m to I_f can be formulated as estimating the optimal deformation transform:

$$\hat{T} = \arg\min D(I_f, T(I_m)),$$

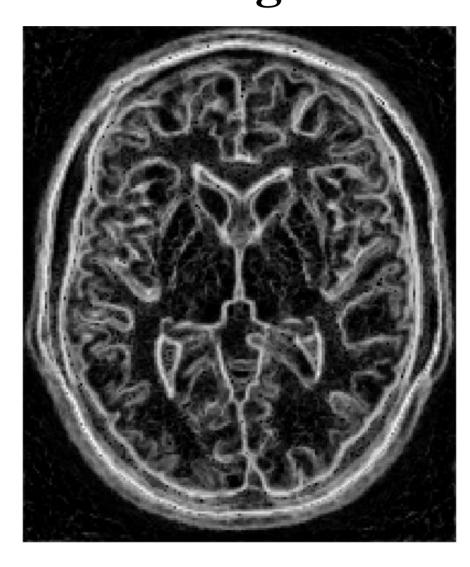
T and D are the transformation and the dissimilarity measure.

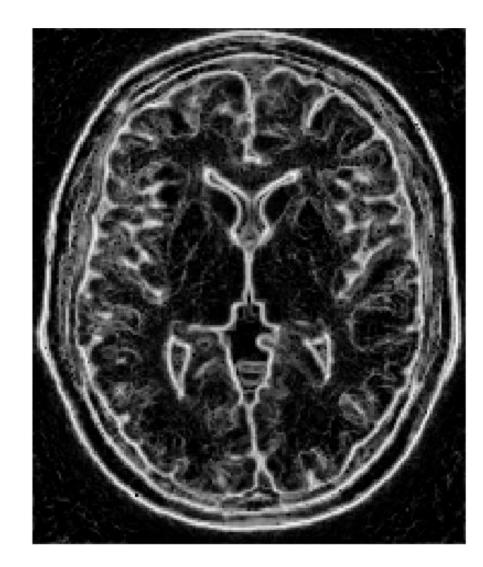
- I_m and I_f will be mapped to a new intensity mapping space using structural features.
- Structural features are extracted by combining phase congruency and edges information of the images.
- Step 1-Phase congruency (PC): multi-scale representation of images using an over-complete Log-Gabor complex wavelet transform.

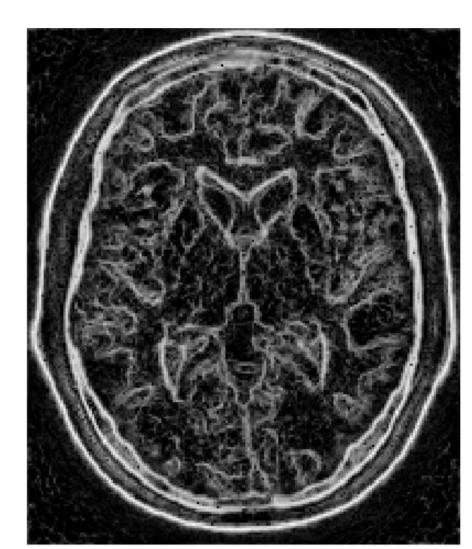
$$Y_{n,i}(\mathbf{x}) = A_{n,i}(\mathbf{x}) \exp(j\phi_{n,i}(\mathbf{x})),$$

 $A_{n,i}$ and $\phi_{n,i}$ are the amplitude and phase of the complex wavelet coefficient at location **x** for *n*th scale and *i*th orientation.

• Step 2-Gradient magnitude (GM) of images is used to encode contrast information.

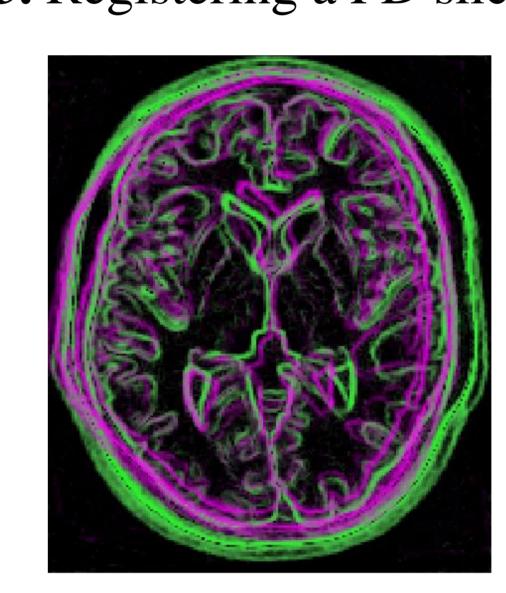

• Step 3-Combination Strategy:

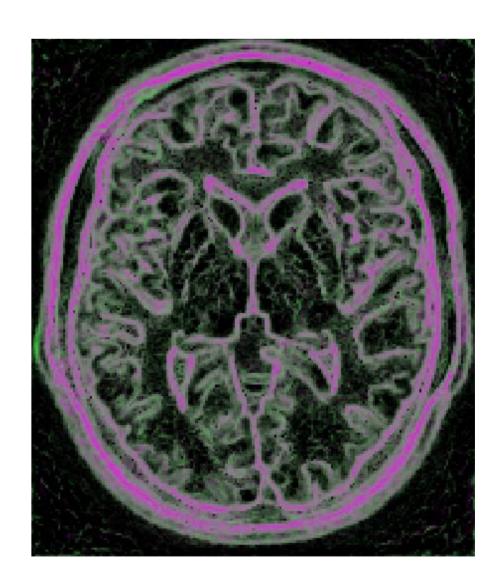

- Intensity normalization and histogram equalization,
- Combining PC and GM


$$J(I) = GM^{\alpha}(I) \otimes PC^{\beta}(I)$$

 \otimes is element-by-element product and $\alpha = 0.5$, $\beta = 1$.

Fig. 2. Structural features from different MR modes


- Obtaining *T* using a gradient descent-based optimization modelled by free-form deformation (FFD) model.
- SSD as the similarity measure


$$D(J(I_m),J(I_f)) = \sum_{\mathbf{x}} |T_{\mathbf{x}}(J_{\mathbf{x}}(I_m)) - J_{\mathbf{x}}(I_f)|$$

Results

- Target registration error (TRE) as the accuracy measure.
- Comparison with the multi-modal registration based on mutual information (MI) (J. Pluim, 2003, A. Myronenko, 2010)

Fig. 3. Registering a PD slice (red) to a T1 slice (green)

Table. 1. Registration errors with different levels of noise and intensity non-uniformity (INU)

	Modalities					
	T1-T2		T1-PD		T2-PD	
Noise and INU level	MI	Reg	MI	Reg	MI	Reg
3%, 20%	1.74	1.11	1.97	1.59	2.14	1.23
5%, 20%	2.13	1.89	2.85	2.13	3.48	2.74
7%, 20%	3.07	3.05	4.21	4.28	5.63	5.94
3%, 40%	2.34	1.27	3.63	1.93	4.83	2.39
5%, 40%	3.81	2.32	5.64	3.14	6.94	4.03
7%, 40%	5.11	7.21	7.21	5.03	8.12	5.84
Average	3.03	2.18	3.19	3.02	4.97	3.69

- Higher accuracy is achieved compared to the MI-based method.
- As the non-uniformity increases, the method is shown to be more accurate than the MI-based method

