Abstract

High b-value diffusion-weighted imaging is a promising approach for diagnosing and localizing cancer in the prostate gland. Due to hardware limitations, an alternative approach is computed diffusion-weighted imaging, which allows for estimation of ultra-high b-value images from a set of diffusion-weighted acquisitions with different magnetic gradient strengths. This paper presents a quantitative investigative analysis of the improvement in tumour separability using ultra-high b-value computed diffusion-weighted imaging.

Introduction

- There were 913,000 new diagnoses of prostate cancer globally in 2008
- Localization of prostate cancer is particularly important for treatment using minimally-invasive focal therapy technologies

Problem

- Diffusion-weighted imaging (DWI) can be used to differentiate between healthy and cancerous tissues in the prostate gland using a diffusion gradient (with specific b-value)
- Prostate tumour identifiable in diffusion weighted images with a high b-value
- Due to hardware limitations, difficult to achieve high b-value at a high signal-to-noise ratio

Objective

To investigate and quantify the benefits of ultra-high b-value computed diffusion imaging for prostate cancer detection.

Computed Diffusion-Weighted Image Methodology

- ADC value (A) for a particular voxel is estimated using a set of diffusion-weighted images measured with different b-values (b_i and b_α)

 \[S_i = S_\alpha e^{-(b_i-b_\alpha)A} \]

- If a collection of DWI images (S) is used, the ADC estimate is formulated as a Bayesian estimation problem

 \[\hat{A} = \arg \max_A P(S|A) \]

 where $P(S|A) \sim N(S_\alpha e^{-(b_i-b_\alpha)A}, \sigma^2)$

- The ADC estimate \hat{A} can be used to compute diffusion-weighted images S_i at any desired b-value b_i

 \[S_i = S_\alpha e^{-(b_i-b_\alpha)\hat{A}} \]

Experimental Results

Expected Probability of Error

Fig. 1: The expected probability of error curves suggest improvements for a wide range of b-values past 1500, with an optimal choice in the neighbourhood of 3000.

Example Patient Case

- Fig. 2: Patient case showing observed diffusion-weighted images for lower b-values and computed diffusion-weighted images for higher b-values

 Computed $b=3000$ Computed $b=4000$

Fig. 3: Receiver Operator Characteristic curve for the patient case showing good classification for higher b-value computed diffusion-weighted images

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Ontario Ministry of Economic Development and Innovation.