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Abstract This paper presents an empirical study of joint
wavelet statistics for textures and other imagery to find
an efficient correlation neighborhood. Since there is an es-
tablished realization that modeling wavelet and other x-let
coefficient relationships is crucial to any successful trans-
form domain algorithm (such as Hidden Markov Trees), new
works have been devoted to examine these dependencies
from different aspects and propose an appropriate model.
Because the time and computation complexity involved both
in analyzing non-linear dependencies and in solving depen-
dent models may restrict us to consider only a very small
subset of contributing neighbors we focus our attention on
linear dependencies (correlations) while having a squint on
non-linear relations too. In this process, we study a collec-
tion of 5000 real images to corroborate our statistical anal-
ysis of the joint coefficient behavior and try to find an effi-
cient and at the same time frugal relation map through dif-
ferent statistical means. The statistical observations are then
certified by a coefficient significance measure and the com-
petitiveness of the map is substantiated by plugging it into
two dependent denoising frameworks.
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1 Introduction

Statistical models for joint pixel statistics are of central im-
portance in many image processing applications. However
long-range spatial interactions and the high dimensionality
stemming from large problem size make statistical image
modeling particularly challenging. Commonly this model-
ing is simplified by a change of basis, particularly using
a wavelet transform (WT) [1]. Indeed, the WT has widely
been used as an approximate whitener of statistical time se-
ries. It has, however, long been recognized [2, 3] that the
wavelet coefficients are neither Gaussian, in terms of the
marginal statistics, nor white, in terms of the joint statistics.

Wavelet marginal statistics have received considerable
scrutiny. In general, a majority of the wavelet coefficients
are small, with a few coefficients large in magnitude, making
the marginal distribution more heavily tailed than a Gaus-
sian, with a large peak near zero. Authors of [1] and [2]
showed that this heavy tailed non-Gaussian marginal can be
well approximated by a Gaussian Mixture Model (GMM),
for example, a mixture of two normals or of one normal and
one point mass function at zero [4, 5]. Bayesian estimation
has been achieved with these non-Gaussian priors by using
wavelet non-linear shrinkage [2], which takes into account
this kurtotic behavior of the wavelet coefficients.

As opposed to marginal models, the question of joint
models is much more complicated and admits far more pos-
sibilities, with statistical structures possible across differ-
ent sub-bands, orientations, and scales. Since [6] proposed
zero-tree coding for image compression there have been
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many efforts to model joint structures using Markov ran-
dom fields (MRFs) [7, 8], Besov spaces [9], wavelet hid-
den Markov models (HMMs) [2, 10, 11] and Gaussian scale
mixtures (GSMs) [12]. Wavelet-based HMMs, in particular,
have been thoroughly studied. These models can success-
fully outperform many other wavelet-based techniques in
Bayesian denoising, estimation, texture analysis, synthesis,
and segmentation.

Although a variety of joint models have been proposed
and tested, few models appear to be obtained directly based
on empirical studies of wavelet coefficient cross-statistics.
Rather, they are based on intuitive or heuristic notions of
wavelet neighborhood structures. Without an examination of
the underlying statistics, such heuristic approaches necessar-
ily leave unanswered questions of neighborhood sufficiency
and necessity: are there important relationships remaining
which are not being modeled, or are we adding unneces-
sarily to computational complexity by including irrelevant
relationships?

Similar works have already been presented which address
joint statistic analysis and modeling in x-let domains. Ex-
ample of such works are [13—15] in Curvelet domain, [16]
for Contourlets and [17] for wavelets. However, our work
has its own characteristics. For instance, we have a linear
approach as opposed to the works in [13, 14, 16, 17]. The
reason is the complexity of involving extensive non-linear
maps. Meanwhile, a linear map will be feasible enough to
be able to accommodate larger maps. Moreover, we exam-
ine numerous candidate neighbors to decide if they corre-
lated and if correlated whether they are beneficial to include.
This is somehow similar to the work in reference [15] but
different with the others which use a heuristically decided
neighborhood. As another difference, we don’t intend here
to statistically model wavelet coefficients. Rather, we seek
a correlation map that captures crucial linear dependencies
and is efficient when used in related algorithms. This paper
has unique features too. It tests the significance, usability, of
individual neighbors to verify if they actually contribute to a
better estimation of the reference coefficient. Also, the goal
of this article is to definitively establish an efficient map.
Therefore, the observations are made based on the wavelet
coefficients of 5000 real images to keep generality.

Put briefly, the purpose of this paper is a systematic study
of the joint linear correlations of wavelet coefficients includ-
ing dependencies across scale, space, and orientation. We
shall see that there are structures present in these statistics
over a surprisingly large range of natural images and ran-
dom fields. Clearly linear correlations model and represent
only a subset of image structure, thus this paper is only one
step in the broader goal (Fig. 1) of building more capable
joint models for image representation.
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Fig.1 Focus of this work: The development of joint Gaussian wavelet
coefficient models with inter-coefficient dependencies

2 Wavelet Statistical Models

Researchers have proposed a variety of wavelet depen-
dency models on the basis of the observed characteristics of
wavelet coefficients: across-scale persistence, within-scale
clustering [11], and sparse representation. In general, these
models are divided into three main categories:

1. inter-scale [2, 11, 18],
2. intra-scale (spatial) [19-22], and
3. combined intra- and inter-scale [5, 7, 8, 10, 23, 24].

Our past works also focused on combined models, a wavelet
multiscale statistical model [25], which captured parent-
child correlations but not inter-orientation, and an approach
to Markov modeling [26] across scales, orientations, and
space. As a prevalent statistical framework for modeling
wavelet coefficient distribution, HMMs have been adapted
to accommodate all the three main categories. Therefore, we
pursue examination of these categories with HMM terminol-
ogy.

Since the introduction of Hidden Markov Models to
wavelet joint statistics [2], significant work has been done
to extend and improve the performance of these models. In
general, these models adopt a probabilistic graph in which
a wavelet coefficient w; is associated with a discrete hid-
den state s; € {0, 1, ..., M — 1}, thus modeling w; as an M-
state Gaussian mixture, conditionally independent of all of
the other coefficients:

p(wi, wilsi) = p(wjls;)) p(wils;) Vi#j ()

A binary state, M = 2, is particularly common and is used to
specify a low/high variance of w;. Defining which pairs of
hidden states can be conditionally independent and what the
interpretation of the conditioning variable, several wavelet
HMMs have been introduced.

2.1 Independent Mixture Model (IMM)

The simplest HMM, the IMM [2] (Fig. 2(a)), models the
hidden states as independent, motivated by the observation
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(b) HMT
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Fig. 2 Illustration of hidden Markov models. Empty circles denote
hidden states and filled circles the coefficient values. (a) Independent
hidden states; (b, ¢) Interscale dependencies; (d) Three subbands (H,
V, D) integrated into one hybrid HMT

that the WT is an approximate whitening process, making
the coefficients nearly decorrelated.

Although the IMM can well describe the wavelet mar-
ginal statistics as a Gaussian mixture, it does not attempt to
characterize any wavelet-domain joint statistics. More ad-
vanced models, in which the hidden states have a Markovian
dependency structure, are discussed below.

2.2 Hidden Markov Tree (HMT)

Crouse et al. [2] observed the persistence and clustering
properties of wavelet coefficients and introduced the HMT
(Fig. 2(b)) which captures inter-scale dependencies by im-
posing a tree structure on the hidden states across scales,
while assuming independence within and across the three
subbands. The statistics of the hidden state s; are a function
of the parent, s, ), based on a transition probability

ps,-\sp(i) (Si :m|s,0(i) :I’l) (2)

It was shown in [11] that the HMT algorithm outperforms
traditional wavelet-based techniques.

A generalization, to capture additional correlations be-
tween scales, is the HMT-2 [19], where the state s; depends
on the state of its parent s,;), as before, but also on siblings
of its parent (Fig. 2(c)) leading to higher-order hidden states.
The approach is motivated by the correlation of the wavelet

bases in two adjacent scales and the long length of the filters
used in the decomposition process. HMT-2 empirical results
show some improvement in signal denoising [19].

2.3 Contextual Hidden Markov Model (CHMM)

The HMT model focused on the inter-scale dependencies by
imposing a tree structure in the wavelet domain. To support
additional connectivity, the CHMM was developed by [2],
which adds a context structure to model both inter-scale and
intra-scale dependencies. The basic idea of the CHMM is to
define contexts as a function of the wavelet coefficient w;
and its local neighbors to capture the spatial dependencies
such that given the context the coefficients are treated as in-
dependent. The CHMM has many potential advantages [2]
over traditional HMMs in exploiting the wavelet correlation
structure, offering similar denoising performance with re-
duced computational complexity compared with the HMT.

The lack of spatial adaptability of the CHMM [19, 20]
may limit its advantages in image processing tasks, so a Lo-
cal CHMM was proposed [19], exploiting both interscale
and local statistics.

2.4 Hidden Markov Model-Three Subbands (HMM-3S)

The above joint models assume that the subbands of dif-
ferent orientations are independent, an almost universal as-
sumption. Although this simplifies wavelet image modeling,
for natural textures regular spatial patterns may result in no-
ticeable dependencies across subbands [10]. The HMT-3S
(Fig. 2(d)) includes the joint interscale statistics captured by
the HMT, but adds dependencies across subbands by treat-
ing jointly the three hidden elements across the three ori-
entations. The HMT-3S was successfully applied in texture
analysis and synthesis with improved performance over the
HMT models.

It is clear that a significant body of research addresses
wavelet joint statistics and modeling. The more general the
model, the broader the range of included statistics, the bet-
ter the results. In this regard, only few models appear to
be obtained directly based on empirical studies of wavelet
coefficient cross-statistics, but more heuristic and intuitive.
In the absence of an examination of the underlying joint
statistics, such heuristic approaches necessarily leave unan-
swered questions of neighborhood sufficiency and necessity
as stated above. Therefore, the following section will exam-
ine empirical wavelet correlations for the purpose of assess-
ing model necessity and sufficiency.

3 Wavelet Neighborhood Modeling

Let us not face the problem in full details ab initio. To have
a firm ground we start inspecting structured images with
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(a) Thin-plate

(c) Grass (d) Calf leather

Fig. 3 Four textures were used to generate wavelet statistics; random
images from the corresponding GMRFs are shown

known pixel interaction models, synthetic statistical tex-
tures. As wished for, their correlation matrix, can be exactly
derived from their kernels and their neighborhood structure
easily identified.

Consider a statistical texture x with known covariance
Py. The fine scale texture x = x° has a 2-D wavelet decom-
position

onz{wl,wz,...,wj,xj} 3)

where w/ = {w{;, wi, wé} contains the three orientation sub-
bands at scale j, and where x’ represents the scaling coeffi-
cients at the coarsest scale J. Because it is so widely used in
wavelet HMMs, we restrict our attention to the Daubechies
class of wavelets.

The wavelet operator W is linear, therefore the known
spatial domain covariance structure Px can be projected into
the wavelet domain

Py =WPWT. 4)

The wavelet covariance Py is rarely a diagonal matrix,
indicating that the wavelet coefficients are not, in fact, inde-
pendent. Indeed, it is well known that localized image struc-
tures, such as edges, tend to have substantial power across
many scales. We have observed [25] that, although the ma-
jority of correlations are very close to zero, a relatively sig-
nificant percentage (10%) of the coefficients are strongly
correlated across several scales or across orientations.
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Fig. 4 Wavelet domain covariance matrix Py. Top: schematic plot.
Bottom: Correlation coefficient magnitudes of the spatial thin-plate
model (Fig. 3(a)) in the db2 wavelet domain. The main diagonal blocks
correspond to the same scale and orientation, whereas off-diagonal
blocks illustrate cross-correlations across orientations or across scales

3.1 Wavelet Domain Conditional Histograms

Now we take one step further and consider higher order de-
pendencies. Here, we examine the conditional probability
densities of pairs of coefficients, illustrated via conditional
histograms (or “butterfly” plots, as in [22]).

For the spatial statistics Px we consider the thin-plate
(Fig. 3(a)), a third-order Gaussian Markov Random Field
(GMRF) with the covariance structure shown in Fig. 4. The
linearity of the wavelet transform then implies that {w/}
will be jointly Gaussian, as can be seen in Fig. 5, which
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Fig. 5 Conditional histograms of a horizontal coefficient at position
wi(x, y) conditioned on coefficients at the same scale and orientation
(a, b), at the same orientation but adjacent scales (c—e), and at the same
scale but across orientations (f—j). In each plot, brightness indicates
probability, with each column being independently rescaled to cover
the whole range of intensities. CC shows correlation coefficient value
calculated directly from the plot. The spatial domain texture is a GMRF
thin-plate decomposed into the db2 basis function

plots the conditional histograms of a single horizontal sub-
band db2 wavelet coefficient w{ (x, y) conditioned on eight
other coefficients across space, orientation, and scale. These
eight coefficients consist of those used in previous works
and some new promising ones. These plots highlight the fol-
lowing important aspects:

— Panels (a-b): the correlation direction of two spatially ad-
jacent coefficients is a function of subband: within its sub-
band, a vertical coefficient is positively and more strongly
dependent on its vertical neighbors than with its horizon-
tal ones. This observation is intuitive: the row elements
in the vertical channel result from the application of a
high-pass filter, and are thus less correlated and conse-
quently less dependent than the column elements which
result from low-pass filtering.

— Panels (c—e): there is a relationship beyond just the
common child-parent assumption, i.e. a child coefficient
strongly depends not only on its parent (a fact observed
by many researchers) but also on its parent’s neighbors.

— Panels (f—g): coefficients at the same location but across
different orientations are uncorrelated (although possibly
still dependent).

— Panels (h—j): there are inter-orientation correlations, but
with pixels at other locations, dependent on the orienta-
tion of the associated subband.

Thus, we see confirmed the expected child-parent relation-
ship, but also a strong subband dependence in the spatial
correlations.

The assumption of a GMREF prior allowed the simple def-
inition of spatial statistics, however this leads to unrealis-
tically simple wavelet-domain statistics. In order to show
that the above patterns are not a direct impact of the GMRF
assumption, the wavelet joint statistics were computed em-
pirically over a large class of real images.' The panels in
Fig. 6 are parallel to those of Fig. 5. Comparing these two
sets of histograms one can enumerate these important con-
tradistinctions:

— First and foremost is that the real-image histograms are
not linear, while synthetic histograms are. This observa-
tion is quite intuitive. Our synthesized texture is the prod-
uct of a GMRF, an MRF realization whose variable in-
teractions can be represented comprehensively by linear
terms. This texture then undergoes a linear wavelet trans-
form that won’t introduce non-linear dependencies. More
formally, the joint and conditional distributions of GMRF
variables and their wavelet transformed peers can be de-
rived to be Gaussian. On the other hand, real image inten-
sities are proven to follow complex non-linear joint distri-
butions; hence their non-linear histograms.

ICalifornia Institute of Technology CVI Database (http:/www.vision.
caltech.edu/html-files/archive.html).
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Fig. 6 Conditional histograms of a horizontal coefficient correspond-
ing to the plots in Fig. 5. In each plot, brightness indicates probabil-
ity, with each column being independently rescaled to cover the whole
range of intensities. The associated spatial domain images were a col-
lection of photographs, taken from an image database
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— The next inconsistency corresponds to the value zero on
the horizontal axis. Real-image histograms have a special
sensitivity to the abscissa of zero. As evident in all the
ten plots in Fig. 6, a nil value for the conditioning vari-
able dooms the conditioned variable to be nil. To explain
this phenomenon we have to note that a real image usu-
ally consists of large patches of smooth areas and lengths
of sparse edges separating them. In the wavelet domain
this translates into a majority of zero coefficients and a
minority of adjacent significant coefficients. Smooth ar-
eas induce zero coefficients in all orientations and edges
bring about non-zero values usually (and not always), in
all orientations. As a result, if some particular wavelet co-
efficient is zero there is a great chance that it has been in
a smooth area and so the neighbors are zero too, other-
wise it should correspond to a perfect horizontal, vertical
or diagonal edge (an edge which causes significant values
only in one orientation) which is too scarce because of the
superposition each scale of wavelet decomposition brings
in. Meanwhile, our synthesized texture histogram is not
troubled around zero because none of above arguments
hold true for it. As opposed to real images, the GMRF tex-
ture is fraught with edges to an extent that smooth areas
are restricted to boundaries between positive and negative
edges. Consequently, there are much fewer zero coeffi-
cients compared to the real case and whenever they occur
they are surrounded by significant values. That is why a
zero conditioning variable in the GMRF case doesn’t limit
the conditioned variable. As for a mathematical explana-
tion, we can say, because every GMREF coefficient can be
expressed by a linear combination of its neighbors, if one
of the contributing neighbors happen to be zero, others
may still make up for it. On the other side however, a zero
neighbor of a real-image coefficient has probably a mul-
tiplicative effect on the coefficient making it restricted to
Zero.

— Another prominent difference is in the crests. Synthetic
histograms have wide blunt crests implying low kurtosis
(quite reasonable because of the Gaussian nature) while
real-image histograms have very sharp crests suggesting
high kurtosis (an observation compliant with the belief es-
tablished in the literature about wavelet coefficient statis-
tics).

Although the details in Fig. 6 are considerably richer and
more complicated, the signs and degrees of correlation are
very similar to those in Fig. 5, leading to the same conclu-
sions of subband-dependent structure.

With the conditional distributions of Figs. 5-6 by way
of introduction, we see that existing wavelet joint models
consider only a subset of these inter-relationships; further-
more the two-mixture Gaussian marginals of [1], which have
an underlying binary state (high/low variance), will be un-
able to capture the correlations such as in the distribution of
Fig. 6(a).
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Fig. 7 Wavelet (db2) correlation structures averaged over the textures
displayed in Fig. 3. Each panel plots the correlation of a selected coeffi-
cient (o) with all other coefficients at all orientations and scales (the co-

3.2 Wavelet Domain Correlation Structure

Examining wavelet individual joint distributions, such as
in Figs. 5-6, precludes a high-level, comprehensive study.
Henceforth, we will focus on correlation rather than depen-
dency since the treatment of an elaborate map of non-linear
dependency is beyond the scope of this article and needs a
thorough study in a separate work.

Although we readily acknowledge the limitations of us-
ing correlation as a measure of joint behavior (e.g. the un-
correlated, but dependent behavior of Fig. 6(g)), in general
the coefficients correlations in Fig. 6 give a reasonable sense
of the joint behavior. That is, the dependence between coef-
ficients are mostly due to correlation. The great advantage
of correlation, is the lower complexity the algorithms using
it have, letting us opt for a larger (more inclusive) and in

efficient’s parent is marked by [J). The top panels show correlation co-
efficients; the bottom panels plot the MSE estimation significance [25]
of the interrelationships

turn a more efficient map, the primary contribution of this
paper.

Figure 7(a) shows the correlation coefficients, averaged
over the four wavelet priors P, corresponding to the tex-
tures of Fig. 3: the observed behaviors are thus persistent
patterns, not the peculiar behavior of a single, particular tex-
ture. For simplicity of interpretation, we use the traditional
2-D wavelet plot to display the correlations of a selected
coefficient with all other coefficients on the entire wavelet
tree.

Because correlation coefficients can be misleading (a
high correlation between two tiny-variance wavelet ele-
ments may not be of modeling significance), we also plot
the correlation significance [25], measured as the reduc-
tion in mean squared estimation error induced by includ-
ing the correlation relationship (Fig. 7(b)). Thus our de-
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Fig. 7 (Continued)

pendence monitoring techniques illustrated important in-
teracting neighbors and took care of necessity of pres-
ence of a coefficient. With correlation significance we can
show which neighbors will not contribute to a better per-
formance and tell where we should decide our map is suffi-
cient.

There is a very clear consistency between both of these
maps and the conclusions reached from the conditional his-
tograms. In particular, the correlation structure is spatially-
localized and sparse, and there is clear persistence [11]
across scales, basic attributes which nearly all wavelet mod-
els have in common. The local neighborhood for any given
pixel is not limited to the pixel’s subband: every coeffi-
cient exhibits correlations extending across multiple scales
and strong correlations with spatially near neighbors both
within subband and across orientations. The correlation
structure for horizontally and vertically aligned coefficients
are almost symmetrically identical. There are, however,

@ Springer

striking patterns which are not reflected in other mod-
els:

1. A given coefficient is not linearly correlated with sib-
lings at other orientations, although a statistical depen-
dence may remain, as in Fig. 6(g). Within any partic-
ular scale, across-subband siblings are nearly decorre-
lated, whereas across-subband neighbors of siblings are
linearly related.

2. Within-subband correlations are orientation-dependent:
vertical-band coefficients are positively-correlated verti-
cally, negatively horizontally, and vice versa for horizon-
tal coefficients.

3. Inter-subband correlations are orientation-dependent:
horizontal-band coefficients are correlated with horizon-
tal neighbors in the diagonal subband, vertical coeffi-
cients are correlated with vertical neighbors.

4. Inter-scale correlations are orientation-dependent: in ad-
dition to its parent, a coefficient is correlated with the



J Math Imaging Vis

_I_ 0.4

0.3

10.2

horizontal

vertical

04
s=HN

0.3

10.2

10.1

- TEE-EEE

0.3

10.2

10.1

[ B |

diagonal

Correlation Coefficients (db2)

Fig. 8 Wavelet (db2,4) correlation structures averaged over a collec-
tion of 5000 real images. Each panel contains three plots illustrating the
correlations of a given coefficient (marked by e) with its local neigh-

spatial neighbors of its parent, e.g. a vertical-band coef-
ficient is positively correlated with vertical neighbors of
its parent, and weakly negatively with horizontal neigh-
bors.

Finally, to confirm that our conclusions are not the re-
sult of Markovianity, Gaussianity, or other coincidences
associated with our choices of textures, Fig. 8 plots the
correlation maps for db2 and db4 wavelets averaged over
a collection of 5000 randomly cropped and subsampled
real-world images. The consistency between Figs. 7-8 is
very clear and both panels of Fig. 8 support the essen-
tial conclusions, above, of sibling uncorrelatedness and
within-subband/inter-subband/inter-scale orientation depen-
dent correlatedness.

Regarding our observations and the trade-off between
complexity and accuracy we propose neighborhood struc-

borhoods in the horizontal, vertical, and diagonal subbands. The stan-
dard location of parent is marked by [J. Clearly, the location of parents
and siblings is a function of the mother wavelet length

tures, already reported in our previous short paper [27], that
we shall use in the next section to test for viability. For the
sake of completeness, we include the neighborhood struc-
ture here too.

For a coefficient w; belonging to the wavelet coefficients
setw ={w,, w,, w,} we define

i) ={p" (@), ..., p*G)}
c@) =1{c' @), ..., 0

L] L]
sud(i): X s;r(i): e X e s2(): e X o

L] L]
where p* (i) is the ancestor of w; of @ generations (scales),
c“(i) is the set of descendants of w; of o generations
(scales), and s, (i) defines various sibling sets (on the same
scale as w;). This allows us to propose two asymmetric
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neighborhood structures:

(s (@), p1@D}; wi €wy,
Ni(@) = {sua (), p1(D}: w; e w,
{s2), p1(D}; wiewy
{s1- (@), 2(v(@)), 51,(d (@), p1(D)};  w; €Ewy,
Na(i) = | {sua (i), s2(h (D)), sua(d (D)), pr1(D)};  wi € w,
{52(0), sua (@), s1r (h(P)), p1()};  wi €wy

where operators d, v, and h return diagonal, vertical, and
horizontal subband counterparts.

4 Results

In previous sections we studied the correlation structure
governing wavelet coefficients of real images and random

@ Springer

textures. First we examined sufficiency of including a map
of correlation with conditional histograms and correlation
coefficients of a sample wavelet coefficient. Then necessity
of inclusion of a given correlation between two coefficients
was investigated by correlation significance. Finally a neigh-
borhood structure or map was proposed meant to include
crucial linear dependence information.

With this correlation map in place, ideal is to adopt it in
a probabilistic framework capable of efficiently circulating
information through the network and calculating proper es-
timated coefficient values. However, as pointed out earlier,
this should be addressed in a separate paper for the diffi-
culty of handling networks with cycles in their adjacency
graphs. Our intention here has been to empirically inspect
coefficient dependence and correlation in particular and to
introduce a reliable neighborhood which can be used as a
basis for future analysis of wavelet coefficients. That being
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said, we content ourselves with a result section overhaul-
ing the map in two simple yet efficient estimation frame-
works.

4.1 Local Linear Estimator

Based on the correlation map of Fig. 8, one can define vari-
ous different neighborhoods. A typical neighborhood N, as
defined above is used for the experiments below. Since we
put more focus on linear dependence of coefficients through-
out the paper, we try out our map in a typical linear estima-
tion framework, Local-Estimate, which is introduced in our
previous work [28] and serves only as a means of examining
the efficiency of our map:

1. The given random field x is projected into the wavelet
domain with the resulting coefficient vector w. Assuming
additive disturbance v we get the observation y:

Yi=w; + v
Let us form two neighborhood vectors:

y, =i tyjs j e NilT
w; = [wi, {wj; j € Ni}T

2. If w; is assumed jointly Gaussian (as an approximate as-
sumption), an intermediate linear relaxing operation on
the noisy coefficients is

giZPEisX,- .P;l Y (5)
where we are only interested in
2 =2;(1) = E[wily,]

For every individual wavelet coefficient the quantities
Py.y. and Py are obtained numerically (by sampling).
Thus far we derived the Local-Estimate output.

The performance of the Local-Estimate with the pro-
posed correlation map is compared with that of HMT in sev-
eral denoising tasks. With this comparison we seek to vindi-
cate the virtue of our map by showing that even with a linear
estimator the results are better than a fairly-good non-linear
estimator. The behavior of BayesShrink is also set forth as a
reputable non-linear independent shrinkage method. By this,
we want to recognize the position of our neighborhood sys-
tem adopted in the Local-Estimate with another famous al-
gorithm in the literature.

In this experiment Goldhill image is corrupted with addi-
tive white Gaussian noise with different standard deviations.
The performance measure used, is the Root Mean Squared
Error (RMSE). The results are plotted in Fig. 9. Obviously
the linear Local-Estimate does much better in denoising

0.12 T T T T Py
0.1 . 1
L ° d
0.08 % %
° X
g o ©
S 0.06 X Lod ]
[~ <o
X
&
0.04 & 1
&
0.02k ° HMT i
X BayesShrink
F ¢  LocalEstimate
ol L L L L L
0.01 0.1 0.3 0.5 0.75 1
Noise STD

Fig. 9 Denoising performance of the HMT algorithm, BayesShrink
and Local-Estimate (using the proposed correlation map) in terms of
Root Mean Squared Error

the image as compared to HMT specifically when noise
standard deviation is high. The linear method also beats
BayesShrink in this experiment. The resulting denoised im-
ages from the HMT and Local-Estimate are illustrated in
Fig. 10. HMT fails to produce genuine edges and introduces
aliasing effects. This is due to the lack of detail coefficients
to trim edges. Because HMT decides the significance of a
coefficient based on its coarser parent it may eliminate many
significant finer-scale values because of a fault coarser-scale
coefficient. Also, since there are four children to each coarse
coefficient in the quad-tree representation of the HMT is
prone to mistakenly encourage insignificant children of a
truly significant parent or frustrate significant children of a
truly insignificant parent. Although these faults may occur in
any dependency-based framework, the problem here is that
these faults are always biased to liken children of a parent
and hence produce coarser edges. The Local-Estimate im-
age, albeit unbecoming to the eyes, very well follows promi-
nent edges.

Although non-linear denoisers have an essential advan-
tage over the experimented Local-Estimate (as a linear es-
timator), the latter has the upper hand in time matters.
The point here however, is just to verify the fitness of
our proposed map and not to introduce a novel denoising
algorithm and compare it to the latest algorithms in the
field.

It is important to note that, increasing the span of the
neighborhood leads to better estimation achievements. But
the time and computation costs will grow exponentially only
to get dwindling performance gains. According to this phi-
losophy was our map organized, to stay small while employ-
ing the most of correlation information.
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Fig. 10 Visual comparison of the output of the denoisers on the Gold-
hill image with o = 0.15 noise (a). HMT image is (b) and Local-Esti-
mate (c)

4.2 Correlated Non-linear Shrinkage

We now extend our previous experiment by developing non-
linear correlated wavelet shrinkage [28]. As in previous sub-

@ Springer

section we derive the Local-Estimate output and then use it
as a basis for non-linear estimation:

1. The noisy wavelet-domain random field is observed as:
Vi = w; + V.

2. Wavelet coefficients w; are assumed jointly Gaussian,
and we derive the Local-Estimate output.

3. The final estimate w; is found via some non-linear
shrinkage method. For the case of state-of-the-art Prob-

Shrink [29],
w; = Elwilzi] >~ P(Hilyi)yi
A schematic display of our Correlated Shrinkage algo-

rithm is:

w Corrupted
—_—

|

Local-map

— I=

State-of -the-art

>
>

w
W-1 7 IndependentShrinkage

As before, we apply our proposed combinational algo-
rithms to a real image, Goldhill. The estimation performance
of the algorithms as a function of noise strength is visualized
in Fig. 11. As can be seen, all of the independent approaches
are significantly improved when used together with a local
estimator based on wavelet correlations. In particular, the
Correlated Empirical Bayes is more efficient than the Inde-
pendent Empirical Bayes. The performance of SUREShrink
and ProbShrink are also significantly improved. Addition-
ally, considering the best performing hybrid technique (Cor-
related ProbShrink) as an example, visual quality of the de-
noised image is better than that of sole ProbShrink (Figs. 11
and 12). There are evident blurring artifacts in the Prob-
Shrink image. This is because ProbShrink is trying to choose
the Generalized Laplacian distribution shape parameters in
such a way that no noisy coefficient qualifies as significant.
But this also eliminates significant (uncorrupt) coefficients
since it is judging solely on the value corresponding to each
coefficient. That is, since we have a large amount of noise,
the threshold for a given coefficient to be original is very
high and this bars even those uncorrupt coefficients that are
not necessarily prominent but account for the small details
in edges. Furthermore, ProbShrink fails to produce uniform
edges because it does not consider neighboring coefficients
to fine-tune the estimate for a given position while we know
different coefficients are differently affected by noise and
cannot be treated independently. Therefore, the ProbShrink
(or any other independent approach) image both lacks in
edge details and nearly bereft of smooth edges. As a re-
sult, the mother wavelet (db2) reveals itself in the image
because of some sharp changes in the estimated wavelet
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performance of different d
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Fig. 12 Experimental results of
correlated wavelet shrinkage:
(a) Noisy image (¢ =0.15), (b)
Non-linear transform function
of the hybrid algorithm, (c)
Linear Local Estimate denoised
image, (d) Combined Local
Estimate and ProbShrink
denoised image
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coefficients due to the independence assumption. Our pro-
posed method’s denoised image has yet another desirable
aspect, namely better edge preservation. Even fine edges as
the window frames are preserved in the new method where
as the individual independent approach fails to feature these
singularities. Figure 12(b) depicts the fact that the proposed
approach, i.e., the combination of Local Estimate in consid-
ering correlations and the non-linear methods in fitting the
problem nature, efficiently exhibits a non-linear shrinkage
performance.

With these observations in place, the advantage of shrink-
age algorithms taking advantage of wavelet correlations
both the virtue of our neighborhood system have been ver-
ified. In particular, there are some striking improvements
in Fig. 11 which merit further study. An interesting re-
search direction is to incorporate the correlation structures
of Figs. 7-8 into promising HMT’s [2, 10, 11]. We shall use
the observed relations to adapt an efficient tree model (or
graph model as there are cyclic dependencies) for the cor-
relations between hidden states instead of the coefficients
themselves.

5 Conclusions

A thorough study of empirical 2-D wavelet correlations
has been presented in this paper. The expected patterns—
correlation sparsity and parent-child persistence—are clear,
however there are additional striking relationships which, as
yet, are not normally found in wavelet models. In particular,
coefficients are very nearly decorrelated with siblings across
orientations, however, there is a very strong orientation-
dependence governing correlations within subbands, across
orientations, and across scales. To address the primary mo-
tivation of this study, the proposed correlation structures
can be considered as a map to refine other wavelet-domain
probabilistic models, such as HMMs, and to examine those
model’s neighborhood sufficiency and necessity.

Since most of the state-of-the-art denoising algorithms
consider dependencies between wavelet domain coeffi-
cients, a careful study of dependencies (instead of corre-
lations) in a neighborhood of a coefficient seems indispens-
able. In a future work we will address this issue to find a
map of dependencies in a wavelet tree.

The inefficiency of the 2D wavelet transform in detect-
ing one-dimensional image singularities (edges) , in addition
to point singularities, has led to a new generation of mul-
tiresolution representations including Contourlet [16] and
Shearlet [30] transforms, which combine ideas of multiscale
analysis and directional filtering in transform design. These
frameworks result in many subbands (more than the three
subbands associated with the classical wavelet transform),

@ Springer

adapting in scale, position and orientation to the edges. Be-
cause of this multitude of subbands and since these trans-
forms are overcomplete, there exists a significant amount of
across-subband correlations. Statistics of these recent trans-
formations can be examined by extensions of our wavelet
modeling taking into account their individual idiosyncrasies.
Although, there are already a couple of works addressing
coefficient joint statistics analysis from different points of
view, such as those considering Curvelets [13—15] or Con-
tourlets [16], our work would be different in terms of the
goals and means. We will try to find relation maps usable
in different correlation-based and graph-based estimation
frameworks using a conclusively large real image set and
cross examining each neighborhood position by its signifi-
cance measure.
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