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Spectral clustering has become an increasingly adopted tool and an active area of research in the

machine learning community over the last decade. A common challenge with image segmentation

methods based on spectral clustering is scalability, since the computation can become intractable for

large images. Down-sizing the image, however, will cause a loss of finer details and can lead to less

accurate segmentation results. A combination of blockwise processing and stochastic ensemble

consensus are used to address this challenge. Experimental results indicate that this approach can

preserve details with higher accuracy than comparable spectral clustering image segmentation

methods and without significant computational demands.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, spectral clustering has become a very active
area of research in the machine learning community, with many
extensions and applications of the algorithm being developed.
One of the more popular applications of spectral clustering
algorithms is image segmentation. Image segmentation plays a
fundamental role in computer vision as a requisite step in
such tasks as object detection, classification, and tracking [1].
Application areas of image segmentation include content-based
image retrieval, automated industrial inspection, medical image
processing, and remote sensing [2,3].

One of the challenges of image segmentation algorithms based
on spectral clustering is scalability. Spectral clustering involves
the eigendecomposition of a pairwise similarity matrix, which is
intractable for sufficiently large images. Down-sizing the image,
however, will cause a loss of finer details and can lead to
inaccurate segmentation results. The proposed method solves this
problem by successfully applying spectral clustering to large
images using a combination of blockwise processing and
stochastic ensemble consensus.

Section 2 briefly outlines the basic spectral clustering
algorithm. Section 3 discusses related work in spectral clustering
image segmentation. Section 4 describes the proposed method for
scalable and detail-preserving spectral clustering image segmen-
tation. Experimental results are presented in Section 5, and
conclusions and directions for future work are presented in
Section 6.
ll rights reserved.
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2. Spectral clustering

Like other clustering algorithms, spectral clustering attempts
to partition data points into groups such that the members
of a group are similar to each other and dissimilar to data
points outside of the group. Spectral clustering has a simple
formulation and can be solved by standard linear algebra
techniques, however, it typically produces better results than
traditional clustering algorithms such as k-means and mixture
models [4–7].

Spectral clustering requires the construction of a weighted
graph that encodes the similarity (or affinity) between data
points. Nodes in the graph correspond to data points; the weight
of the edge between two nodes is a function of the similarity
between the corresponding two data points. Given data points
x1,y,xn, this weighted graph can be represented by a weighted
adjacency matrix W, where wij is a measure of the similarity
between xi and xj. In the case of image segmentation, n is the total
number of pixels in the image.

The degree di of node i is the sum of all edge weights incident
on xi:

di ¼
Xn

j ¼ 1

wij ð1Þ

The degree matrix D is defined as the n�n diagonal matrix with
d1,y,dn on the diagonal. Finally, the graph Laplacian matrix can
be defined as [5,8]

L¼D�W ð2Þ

Note that this is just one possible definition of the graph Laplacian
and variants do exist (e.g., as found in [4]).
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The basic spectral clustering algorithm can now be formulated
as follows [5,8]:

Given: Data points x1,y,xn, number of clusters k
1.
 Calculate a weighted similarity graph over the data points,

2.
 Calculate the Laplacian matrix L ¼ D�W, where D is the

degree matrix and W is the weighted adjacency matrix
induced by the similarity graph, as described above,
3.
 Calculate the first k eigenvectors (the eigenvectors correspond-
ing to the k smallest eigenvalues) v1,y,vk of the generalized
eigenproblem Lv¼ lDv, where 1rkrn,
4.
 Construct a matrix V with eigenvectors v1,y,vk as columns,

5.
 Create a new set of points y1,y,yn, such that yiARk is the ith

row of V,
6.
 Cluster the new set of points y1,y,yn using k-means [9] to
obtain clusters C1,y,Ck.

Return: Set of clusters A1,y,Ak, in which xj is assigned to Ai if yj is
assigned to Ci.

In the case of image segmentation, L and D are n�n matrices.
Solving the generalized eigenproblem can easily become intract-
able, for even small images. A larger 1000 �1000 image would
involve 106

�106 matrices. The operation is commonly made
tractable by considering only each pixel’s local spatial neighbour-
hood in the construction of the weighted similarity graph; that is,
a pixel has zero similarity to pixels outside its local neighbour-
hood. This produces sparse W, D, and L matrices, that allows an
efficient algorithm for approximating only the first k eigenvalues
[8]. However, for sufficiently large images and neighbourhood
sizes, this computation can still be impractical in terms of
memory requirements.

The interested reader can find a more complete treatment of
the theory behind spectral clustering in [10]; a good introduction
to spectral clustering can also be found in [5].
3. Related work

Possibly the first image segmentation algorithm based on
spectral clustering was developed by Shi and Malik [8]. Shi and
Malik formulated the problem from a graph theoretic perspective
and introduced the normalized cut to segment the image. Malik
et al. applied the normalized cut formulation to segment
grayscale images based on a combination of contour and texture
cues [11].

Zelnik-Manor and Perona [7] proposed a method for auto-
matically determining an appropriate number of clusters
(segments) and adaptively selecting an appropriate neighbour-
hood size or scale. The number of clusters is determined by
minimizing the cost, for a range of possible numbers of clusters,
associated with rotating the columns of V in alignment with a
canonical coordinate system, such that every row of the rotated
V contains at most one non-zero entry. A local neighbourhood
scale is determined for each pixel based on the distance to its kth
nearest neighbour.

Chang and Yeung [12] integrated robust statistics methods in
their development of a path-based spectral clustering algorithm
for image segmentation. M-estimation is applied to reduce the
effect of noise and outliers on the pairwise similarity matrix.

Xiang and Gong [6] proposed a method for both estimating an
appropriate number of clusters and dealing with noisy data. In
their method, only those eigenvectors that are likely to help
separate y1,y,yn are selected to be included in V. The relevance of
each eigenvector is estimated based on how much of the data can
be explained by a unimodal Gaussian distribution versus
a multimodal Gaussian distribution, using the expectation
maximization (EM) algorithm. Instead of the final k-means step,
the authors propose fitting a Gaussian mixture model in which
the number of mixture components determined by the Bayesian
Information Criterion [13]. Applications in both image segmenta-
tion and behaviour clustering in video are demonstrated.

Fowlkes et al. [14] explicitly addressed the scalability issue
by applying the Nyström approximation to the normalized
cut framework [8]. Their method is able to efficiently find an
approximate segmentation using the pairwise similarities
between a small random subset of the image pixels and the
entire image. Segmentation results are visually comparable to
those obtained by normalized cut.
4. Proposed method

The proposed method addresses a common challenge faced by
image segmentation algorithms based on spectral clustering:
scalability. To address this challenge, the proposed method
combines a blockwise segmentation strategy with stochastic
ensemble consensus. The overarching idea is to perform an
over-segmentation of the image at the pixel level using spectral
clustering, and then merge the segments using a combination of
stochastic ensemble consensus and a second round of spectral
clustering at the segment level. The purpose of using stochastic
ensemble consensus is to integrate both global and local image
characteristics in determining the pixel classifications. The
stochastic ensemble consensus step also removes blockwise
processing artifacts. The rest of this section elaborates on the
specifics of the algorithm.

4.1. Blockwise segmentation

In the first step of the algorithm, the image is partitioned into
non-overlapping blocks of fixed size 32 �32. An over-segmenta-
tion of the image is performed by segmenting each 32 �32 block
in sequence using spectral clustering. In essence, each 32 �32
block is treated as a separate image. For each block, a 322

�322
¼

1024 �1024 similarity matrix is calculated over the pixels. The
similarity between a pixel xi and another pixel xj in the
neighbourhood of xi is determined by an exponentially decaying
function of the squared difference in their intensity values:

sij ¼
expð�aðIðxiÞ�IðxjÞÞ

2
Þ xj is in the neighbourhood of xi

0 otherwise

(
ð3Þ

where I(x) denotes the intensity of pixel x and a is a scaling
constant that controls a penalty based on intensity difference. The
constant a is set to 30 in all experiments. Empirically, values in
the range of 25–30 tend to be effective and produce similar
results. As described in Section 2, pixels outside of the local
neighbourhood are assigned similarity values of zero to allow for
a sparse representation of the similarity matrix. A neighbourhood
size of 9 �9 is used in all experiments.

Segmentation of the block is now performed using basic
spectral clustering on the calculated similarity matrix. The
number of clusters k is set to a fixed constant. Normally, setting
k this way would be non-robust and give poor segmentation
results; however, two reasons make it a feasible option here. First,
as will be discussed below, the subsequent merging step with
stochastic ensemble consensus effectively handles any over-
segmentation performed at this stage. Therefore, setting k higher
than necessary poses no serious problems. Second, to handle the
case of setting k lower than necessary, a splitting step is included
to ensure that all pixels assigned to the same segment are actually
connected in the similarity graph. This is done by constructing an
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adjacency matrix based on the non-zero similarity values
and finding the connected components. Under-segmentation is
detected when the pixels assigned to the same segment do not
form a single connected component. Intuitively, two pixels in the
same segment should be similar to each other, either directly or
indirectly via other neighbours. If pixels are completely discon-
nected in the similarity graph, then they should be assigned to
different segments. Thus, the proposed algorithm is not very
sensitive to the value of k at this step, and we set k to 7 in all of
our experiments. Using a fixed k in this over-segmentation step
has the advantages of simplicity and computational efficiency: for
example, estimating k using the eigenvector selection method [6]
increases the computation time of this step by several-fold, and,
as mentioned above, is unnecessary.

As previously mentioned, the blockwise over-segmentation
step is followed by a merging stage. The aim of the merging stage
is to integrate the results of the blockwise over-segmentation at
the image level to obtain the final segmentation. The merging
stage consists of stochastic ensemble consensus followed by
segment-level spectral clustering.

4.2. Stochastic ensemble consensus [15]

The merging stage begins with an ensemble voting process
based on the stochastic ensemble consensus (SEC) method [15]. In
SEC, the segmentation of a pixel xs is determined by a weighted
vote of an ensemble of pixels x1,y,xN in the image. The ensemble
is formed by stochastic sampling, in which the probability of a
pixel being selected to be part of the ensemble is inversely
proportional to its spatial distance from xs. The weight of a pixel in
the ensemble is proportional to its similarity to xs. The intuition is
that nearby pixels with similar intensity should have greater
influence in the consensus clustering.

As a very simple example, suppose in an ensemble of size
N ¼ 10, five pixels are classified as segment A and five
are classified as segment B. If the pixels classified as segment A

have the same intensity value as s, whereas the pixels classified as
segment B have intensities very different from s, then the
consensus classification of s would be segment A.

Using the notation in [15], the influence of a pixel xt on the
consensus decision-making process of xs is given by

CsðxtÞ ¼ expð�bðIðxsÞ�IðxtÞÞ
2
Þ ð4Þ

where b is a regularization parameter that depends on the image
noise. The ensemble of pixels is constructed by stochastic
sampling. For a given pixel xs to be classified, a set of random
pixels x1,y,xN is selected to form the ensemble based on a
spatially-adaptive probability distribution function p,

pðxtjxsÞ ¼
1

jxt�xsj
ð5Þ

where jxt�xsj is the spatial distance between xt and xs. Identical to
the original work [15], an ensemble size of N¼20 is used. The
ensemble size is independent on the image size.

This stochastic sampling scheme attempts to integrate global
and local image information to determine the underlying
classification of image pixels. The spatially adaptive probability
distribution function helps preserve local spatial relationships
while incorporating statistics over a broad area of the image. SEC
re-classifies pixels in the image over several iterations until
convergence. In the proposed method, the application of stochas-
tic ensemble consensus has two key functions: (1) it removes
blockwise processing artifacts (namely sharp corners and bound-
aries between segments) by re-classifying and smoothing
segment boundaries, and (2) it simultaneously reduces the effects
of noise and outliers by merging spurious segments.
4.3. Segment-level clustering

After the SEC step, a second round of spectral clustering is
performed. The clustering is now performed at the segment level
instead of at the pixel level. That is, the weighted adjacency
matrix W compares pairs of segments instead of pixels. To
preserve spatial locality relationships, the neighbourhood of a
segment consists of only spatially adjacent segments. Non-
adjacent segments are assigned similarity values of zero. The
similarity between two adjacent segments is measured by the
similarity of their intensity distributions, where the intensity
distribution of a segment refers to the probability distribution of
intensity values over its constituent pixels. A segment’s intensity
distribution is represented using a normalized histogram of
intensity. Given two normalized intensity histograms p and q,
their similarity is given by rg, where g is a scaling constant and r
is a similarity metric based on the Bhattacharyya coefficient [16]:

rðp,qÞ ¼
Xm

u ¼ 1

ffiffiffiffiffiffiffiffiffiffi
puqu
p

ð6Þ

The term m is the number of bins in the histogram and is set to
16 as per [16], and g is set to 8 in all experiments. Hence, the
similarity between two segments is determined by constructing
their normalized histograms of intensity and calculating the
similarity metric r between the two histograms. Instead of using
the segments produced by SEC directly, more accurate results were
obtained by first conservatively merging adjacent segments as a
pre-processing step; adjacent segments are merged only if their
intensity distributions are extremely similar ðr40:98Þ. Noisy
segments containing very few pixels are also excluded since
histogram representation is unreliable with insufficient samples.

The number of clusters ku in the spectral clustering is a
user-specified parameter and should be an estimate that is larger
than the ‘‘true’’ number of segments in the image. The parameter
ku is more favourable than k in traditional spectral clustering
because k0 can be over-estimated. The use of ku is difficult to avoid
even in spectral clustering algorithms that automatically estimate
the number of clusters: for example, it is comparable to the user-
specified Km in spectral clustering with eigenvector selection [6].

4.4. Post-processing

Finally, since ku is an over-estimate of the number of segments in
the image, a post-processing step is performed to obtain the final
segmentation. A greedy iterative strategy is taken to further
merge the segments. At each iteration, the two adjacent segments
with the highest pairwise similarity are merged, subject to the
constraint that the boundary between the segments is not a strong
edge. The boundary between two segments is considered a strong
edge if a sufficient proportion of the boundary pixels are identified
as edge pixels by an edge detector. The current implementation uses
a simple Sobel edge detector [3], which generated effective
segmentations. In future work, the applicability of more sophisti-
cated edge detection algorithms could be assessed. Similarity is
measured in the same way as in the spectral clustering step
described above. The iterative merging continues until the highest
pairwise similarity falls below a threshold, set to r¼ 0:4 in all
experiments.

4.5. Space complexity

As outlined in Section 2, the basic spectral clustering algorithm
has memory requirements that scale with the square of the number
of data points, or in the case of image segmentation, the square of the
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Fig. 1. Some segmentation results for natural scene images from the Berkeley segmentation database [17]. Left to right: normalized cut [8,11]; self-tuning spectral

clustering [7]; proposed method. Detailed structures are better preserved, such as the distant mountains in image 1, the building outcroppings in image 2, and the tree line

in image 5.
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number of pixels. In contrast, since the blockwise over-segmentation
is performed sequentially, the memory requirements in the first
(pixel-level) round of spectral clustering do not change with the
number of pixels. The memory requirements of the proposed method
scale only with the square of the number of segments in the second
(segment-level) round of spectral clustering.
1 The images are actually 321 �481—in these experiments, one row and one

column of pixels are trimmed to obtain uniform blocks.
5. Experimental results

This section presents experimental results on a set of natural
scene images from the Berkeley segmentation database [17].
Segmentation results obtained by the normalized cut [8,11] and
self-tuning [7] spectral clustering algorithms are shown for
comparison.
Although the proposed method can be applied directly to the
320�480 images1 from the Berkeley database, the MATLAB

implementations of normalized cut and self-tuning spectral
clustering encounter memory errors at this image resolution
(running 32-bit MATLAB on a machine with 1014 MB RAM). Hence,
the images are down-sized to 160 �240 for the purposes of
comparison as per Figs. 1 and 2, and full scale image results only
for the proposed method are presented in Fig. 3.

Results for the Berkeley images are shown in Figs. 1 and 2. To
obtain an approximate quantitative measure of classification
performance, we also use the simple precision and recall
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Fig. 2. Additional segmentation results for natural scene images from the Berkeley segmentation database [17]. Left to right: normalized cut [8,11]; self-tuning spectral

clustering [7]; proposed method. Detailed structures are better preserved, such as the roofs and walking path in image 10, and the tree and animals in image 11.
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methodology described by the authors of the Berkeley database in
[18]. Precision is a measure of accuracy, and is defined as the
proportion of detections that are true positives:

precision¼
TP

TPþFP
ð7Þ

where TP is the number of true positives and FP is the number of
false positives. Recall is a measure of completeness, and is defined
as the proportion of positives that are detected:

recall¼
TP

TPþFN
ð8Þ

where TP is the number of true positives and FN is the number
of false negatives. Similar to [18], a distance tolerance of
2 pixels is used in the calculation of these measures. This
means that in calculating recall, a ground-truth boundary
pixel is considered to be successfully detected if the algorithm
detects a boundary within 2 pixels, and in calculating
precision, an algorithm-detected boundary pixel is considered to
be a true positive if it is within 2 pixels of a ground-truth boundary.

The Berkeley segmentation database contains ground truth in the
form of boundary maps that are marked by third-party human
observers. Each image in Figs. 1 and 2 is marked by 4–7 humans.
Following [19], detections that do not match any ground truth
boundary are counted as false positives, and recall is averaged over
all ground truths.

The precision and recall measures for the Berkeley images are
summarized in Table 1. In Table 1, images 1 to 6 correspond to the
images in Fig. 1 from top to bottom; images 7 to 11 likewise
correspond to those in Fig. 2.

Overall, the proposed method achieves segmentation results that
are comparable to or better than the other two methods. In
particular, detailed structures are better preserved in the segmenta-
tion, as reflected in the higher recall values. Examples include the
distant mountains in image 1 (overall recall of the segmentation:
0.82); the building outcroppings in image 2 (recall: 0.81); the tree



Fig. 3. Segmentation results for natural scene images from the Berkeley segmentation database [17] processed at their full resolution. Fine details such as the building

outcroppings in image 2, the pillars in image 3, and the windows in image 4, are better preserved in the full resolution segmentation.

Table 1
Precision and recall measures for the segmentations in Figs. 1 and 2.

Image Normalized cut Self-tuning Proposed

Precision Recall Precision Recall Precision Recall

1 0.95 0.55 0.66 0.25 0.92 0.82
2 0.80 0.62 0.89 0.63 0.85 0.81
3 0.82 0.39 0.88 0.47 0.84 0.63
4 0.70 0.36 1.00 0.01 0.80 0.66
5 0.66 0.28 0.44 0.05 1.00 0.80
6 0.75 0.34 0.90 0.19 0.87 0.61
7 0.76 0.59 0.71 0.53 0.83 0.67
8 0.80 0.48 0.82 0.46 0.78 0.66
9 0.81 0.43 0.86 0.38 0.72 0.58
10 0.75 0.36 0.73 0.43 0.76 0.71
11 0.95 0.52 1.00 0.54 0.97 0.86
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line in image 5 (recall: 0.80); the roofs and the walking path
in image 10 (recall: 0.71); and the tree and animals in image
11 (recall: 0.86). However, the proposed method also sometimes
over-segments highly textured areas. Examples include the trees in
images 9 and 10 (overall precision of the segmentation: 0.72 and
0.76, respectively). This limitation is not surprising since the present
implementation considers only intensity values.

Segmentation results obtained by the proposed method on the
images at their full resolution are included in Fig. 3. The results are
very similar to the results in Figs. 1 and 2, but fine details such as
the building outcroppings in image 2, the pillars in image 3, and the
windows in image 4, are better preserved in the full resolution
segmentation. Fig. 4 shows magnified examples of better detail
preservation at full resolution. As mentioned earlier, the
normalized cut and self-tuning implementations cannot process
the images at full resolution since they encounter memory errors.
6. Conclusion and future work

In conclusion, this paper has presented a novel spectral
clustering image segmentation algorithm that addresses one of
the main challenges faced by image segmentation methods based
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Fig. 4. Magnified examples of better detail preservation when segmenting images at full resolution. Fine details such as the building outcroppings in the top image and the

pillars in the bottom image are better preserved in the full resolution segmentation.
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on spectral clustering: scalability. Experimental results indicate
that the proposed method is able to preserve details more
accurately than comparable spectral clustering algorithms and
without significant computational demands.

In the current implementation, only intensity is used to
segment the images; an interesting direction of future work
would be to incorporate texture information to improve the
segmentation precision. We also plan to experiment with more
advanced edge detection techniques for the post-processing step.
Furthermore, we would like to investigate how ku might be
estimated automatically based on image characteristics. Finally,
we plan to explore the usefulness of the proposed method in
applications where robust segmentation is needed for very large
images, such as in remote sensing.
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