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Abstract—Classification of hyperspectral imagery using few
labelled samples is a challenging problem considering the high
dimensionality of hyperspectral imagery. Classifiers trained on
limited samples with abundant spectral bands tend to overfit,
leading to weak generalization capability. Therefore, it is crucial
to develop classification approaches that are capable of reducing
model variance, while at the same time learning general structure
from the training samples in an efficient manner. To address this
problem, we have developed an enhanced ensemble method called
multiclass boosted rotation forest (MBRF), which combines the
rotation forest algorithm and a multiclass AdaBoost algorithm.
The benefit of the combination can be explained by bias-variance
analysis, especially in the situation of inadequate training samples
and high dimensionality. Further, MBRF innately produces
posterior probabilities inherited from AdaBoost, which are served
as the unary potentials of the conditional random field (CRF)
model to incorporate spatial context information. Experimental
results show that the classification accuracy of MBRF as well
as its integration with CRF consistently outperforms the other
referenced state-of-the-art classification methods when limited
labeled samples are available for training.

Index Terms—Hyperspectral data classification, rotation
forests, AdaBoost, conditional random fields.

I. INTRODUCTION

Classification of hyperspectral imagery is more difficult than
other remote sensing imagery due to the Hughes phenomenon
[1], also known as “curse of dimensionality”. Given sufficient
labeled training samples, the difference between different
classifiers is negligible because they all converge at or close
to the Bayes error rate. However, this is unrealistic in practice,
especially for classification of remote sensing data for which
the acquisition of ground truth is usually expensive and time-
consuming. Due to the difficulty and costs of obtaining ground
truth for remote sensing imagery, classification using few
labeled samples, i.e., the “small-sample-size (SSS) classifica-
tion” has attracted the attention of remote sensing researchers
in recent years [2], [3]. This problem of inadequate training
samples is deteriorated by the high dimensionality of spectral
bands in hyperspectral images. One way to address this prob-
lem is to incorporate unlabeled samples using semi-supervised
classification methods [4], [5]. However, previous empirical
experiments show that it is possible that semi-supervised meth-
ods make no improvement or even have detrimental impact on
classification performance [6]. Other ways to overcome the
limitation of labeled samples include exploiting the spectral-
spatial information of hyperspectral data by feature extraction

and feature selection techniques [3] or leveraging its sparsity
nature by sparse representation methods [7].

Ensemble methods have been successfully applied for hy-
perspectral image classification. Besides well-known methods
such as random forests [8] and AdaBoost [9], more and more
advanced ensemble methods have been recently proposed
[10]–[13]. Compared to other classifiers, dimension reduction
is usually unnecessary for ensemble methods because they deal
fairly well with high-dimensional data [14]. In recent years,
ensemble methods have been shown in particular to achieve
high classification performance when the number of training
samples is limited. Waske et al. [15] demonstrated that clas-
sifier ensembles using support vector machines and random
feature selection can significantly improve classification per-
formance. Yang et al. [2] proposed a dynamic subspace method
for hyperspectral image classification which achieves better
classification accuracy than the random subspace method. Xu
et al. [16] investigated different classifiers for marine oil
spill identification, and found that bagging-based methods
significantly outperform other classification methods.

A recent trend of hyperspectral image classification research
is the prevalence of spectral-spatial classification methods that
incorporate spatial context to improve classification perfor-
mance [1]. It has been demonstrated that global random field
methods are better than local filtering methods [17]. The
most commonly-used random field model for remote sensing
imagery is Markov random field (MRF) [1]. Previous literature
showed that the classification performance can be improved
by combining MRF with a unary classifier that can generate
probabilistic outputs [18]–[20]. In recent years, a powerful
discriminative random field model, i.e., the conditional random
field (CRF) model has been used for remote sensing imagery.
Zhong and Wang [21] first introduced CRF to classification
of hyperspectral images using multinomial logistic regression
(MLR) as its unary classifier, and demonstrated its superiority
to MRF. Zhang and Jia [22] modified the CRF model in [21]
by incorporating a boundary constraint in order to reduce
model parameters to train. They all demonstrated that the
CRF models have better classification performance than the
traditional MRF models.

This paper addresses the training sample inadequacy is-
sue by proposing a novel spectral-spatial hyperspectral im-
age classification approach based on an enhanced ensemble
classifier and the conditional random field (CRF) technique.
First, the proposed multiclass boosted rotation forest (MBRF)
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algorithm that integrates rotation forest and AdaBoost is used
to obtain pixelwise estimation. The motivation is based on
bias-variance analysis, i.e., the two ensemble classifiers have
relative advantages in terms of decreasing model bias and
model variance. Therefore, the combination of the two, as
conducted in the proposed enhanced ensemble classifier, is
able to take advantage of merits of both classifiers, especially
in this small training sample size context. Second, in order
to model the spatial contextual information in hyperspectral
image, the proposed algorithm is incorporated into the CRF
framework, serving as the unary term in the CRF objective
function. Experiments on benchmark hyperspectral images
demonstrate that the proposed MBRF algorithm is capable
of outperforming other referenced state-of-the-art classifiers,
and is better able to aid the CRF approach for spectral-
spatial classification of hyperspectral image, especially when
the number of training samples is small.

The rest of this paper is organized as follows: Section II
discusses the relative advantages and inadequacies of two
mainstream ensemble methods, i.e., boosting and bagging,
from a perspective of the trade-off issue between model bias
and variance, which motivates the proposed enhanced ensem-
ble method. Section III introduces the proposed framework,
including the details of the MBRF algorithm, its ability to
approximate posterior probability estimates, and its incor-
poration into CRF to achieve spectral-spatial classification.
Section IV shows the comparison of the proposed method
and several referenced state-of-the-art classification methods
on three hyperspectral datasets. Section V concludes the paper
by summarizing the above sections.

II. REVIEW OF ENSEMBLE METHODS

Ensemble methods are computational techniques that com-
bine a large number of base classifiers for improved prediction
[23]. They have been widely used for supervised classification
due to their flexibility, ease of implementation, and outstanding
performance.

The benefit of ensemble methods can be explained from a
bias-variance decomposition perspective, which was originally
proposed by Geman et al. for a regression model of squared
loss [24]. Domingos [25] provided a unified bias-variance
decomposition which can be applied to any loss function. The
predicted loss ED,y[L(y, h)] for a given loss function L can
be decomposed into intrinsic noise, bias and variance:

ED,y[L(y, h)]

= c1Ey[L(y, h∗)] + L(h∗, hm) + c2ED[L(hm, h)]

= c1N(x) +B(x) + c2V (x)

(1)

where D is the training set, x is the example, y is the true
value, h is the prediction, h∗ is the optimal prediction that
minimizes Ey[L(y, h∗)], hm is the main prediction [25] which
is the mean of the predictions under squared loss, c1 and c2 are
constants, and N(x), B(x), and V (x) represent noise, bias,
and variance respectively.

Since the noise is irreducible, we only consider the bias
and the variance. The bias describes the error of the classifier

in expectation, and the variance reflects the sensitivity of the
classifier to variations in the training samples. For squared loss,
c1 = c2 = 1, so both bias and variance increase the predicted
loss. However, for zero-one loss used in classification prob-
lems, it has been demonstrated that c2 is negative for biased
examples, and therefore there is a much higher tolerance for
variance [20], [25].

Ideally, we wish the classifiers to have both low bias and
low variance. However, there is usually a tradeoff between
bias and variance [26]. When the complexity of a classifier
goes up, the bias tends to decrease while the variance will
increase. Ensemble methods can largely reduce the variance
by majority voting of the results by base classifiers, without
affecting the bias or event reducing it [27]. Therefore, weak
learners that are sensitive to small changes in data are selected
as base classifiers, such as decision trees and perceptron [26].

Two mainstream ensemble approaches are boosting [28]
and bagging [23]. The idea of boosting methods is to learn
classifiers iteratively by adjusting the distribution of training
samples based on the classification error, and predict labels
by weighted majority voting. Both bias and variance can
be reduced by boosting. Empirical experiments show that
boosting is not easy to overfit [29], but when the sample
size is small, boosting tends to have large variance and thus
cause overfitting [30]. One of the most popular boosting
methods is the AdaBoost Algorithm [28]. It can be viewed as
a forward stagewise additive modeling algorithm to minimize
the exponential loss function.

The standard bagging aims to reduce model variance by
performing majority voting among base classifiers that are
trained on bootstrap subsets of training samples. Compared
to boosting, the bagging technique can reduce more model
variance, but the model bias is unchanged. In recent years,
there are also some variants of the bagging method that have
become popular. The random forest algorithm [31] is a method
that combines bagging and random subspace method [32].
A reduction in the variance can be achieved by reducing
the correlation between the trees, at the expense of a slight
bias increase. Another typical method is the rotation forest
algorithm [33], which performs feature transformation with
some randomness on the data for each base classifier, and
also combine the results by majority voting. Previous empirical
experiments show that rotation forests have smallest variance
compared to other ensemble methods such as boosting and
random forests. Also, unlike bagging and random forests, the
rotation can reduce bias even though the reduction of bias is
not as significant as boosting [34].

Motivated by the above bias-variance analysis, an ensemble
method integrating rotation forests and AdaBoost is proposed
in this paper so that both bias and variance can be further
reduced by taking advantage of both methods. A similar ap-
proach to our proposed method is the RotBoost algorithm [35],
but it is not developed for small-sample-size context. More-
over, RotBoost adopts standard AdaBoost algorithm which
requires the training error of the base classifiers to be less
than 1/2, which is too strict for a multiclass classification
problem. Instead, we use here a multiclass AdaBoost algorithm
that is more tolerant about the training error. We also show
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that the proposed method allows the posterior probability to
be naturally obtained without requiring the base classifiers to
estimate probabilities. The posterior probability is used into
the CRF framework to incorporate spatial context information.
The implementation details will be introduced in the next
section.

III. PROPOSED FRAMEWORK

In this section, we propose a two-stage framework for
hyperspectral image classification with limited number of
training samples. The first stage is to perform ensemble
learning to obtain posterior probability of class labels for
pixels in hyperspectral image using only spectral information.
The MBRF algorithm that combines rotation forests and
AdaBoost is proposed for improving label prediction based
on the motivation in Section II. Using a multiclass AdaBoost
algorithm, the posterior probability can be naturally generated
without requiring the base classifiers to output probability
estimates. In the second stage, based on the posterior prob-
ability, the proposed MBRF classifier is incorporated into the
CRF framework, in order to simultaneously incorporate both
spectral and spatial information in hyperspectral imagery.

A. Multiclass Boosted Rotation Forest
The MBRF method is a bagging-based method that com-

bines multiple classifiers which are independent from each
other. Instead of performing bootstrap sampling, the data
is first perturbed by performing feature transformation with
randomness, and then it is trained by adaptive boosting.
Therefore, the individual classifier for MBRF is not a single
base classifier, but a boosted ensemble of base classifiers
which is called meta-base classifier (MBC). Any rotation-
variant classifier, i.e., the decision boundary will be changed
by rotating the feature space of the data, can be used as
base classifiers. The posterior probabilities by an MBC can be
naturally approximated, and the probabilities by all the MBCs
are finally combined. The flow chart of the MBRF algorithm
is shown in Fig. 1.

To train a classifier hi, the first step is to perturb the original
data by multiplying by a rotation matrix. To increase the
randomness of the rotation matrix, the original feature set
is randomly divided into Q subsets, and a random number
of classes are eliminated. Then a bootstrap sample of 75%
sample size is selected [33]. Afterwards, a feature extraction
method is performed on the bootstrap sample without reducing
the dimensions. Empirical experiments show that principal
component analysis (PCA) is the feature extraction method
that can achieve best classification performance [10], [36]. The
coefficients by PCA obtained for each subset are incorporated
into a rotation matrix:

R =


c
(1)
1 , c

(2)
1 , · · · , c(M1)

1 · · · [0]
[0]
...

. . .
...

[0] · · · c
(1)
Q , c

(2)
Q , · · · , c(MQ)

Q

 (2)

where Q is the number of subsets, Mi is the number of
variables in each subset i (i = 1...Q), and c(M1)

i , · · · , c(Mi)
i are

Mi × 1 coefficient vectors of principal components obtained
from the bootstrap samples with variables in the ith subset.

The columns in R are rearranged according to the order of
the original feature set to obtain the final rotation matrix Ra.
The procedure of calculating the rotation matrix is shown in
Alg. 1.

Algorithm 1 Calculating rotation matrix Ra

1: Split the feature set F into Q subsets: Fi, (i = 1, ..., Q);
2: for i = 1...Q do
3: Let Xi be the dataset X for features in Fi;
4: Remove a random subset of classes from Xi;
5: Select a bootstrap sample of 75% sample size from Xi

to form a new sample set X ′i;
6: Apply PCA on X ′i to obtain the coefficients cji , (j =

1, ...,Mi);
7: end for
8: Construct R with the obtained coefficients using Eq. (2);
9: Output Ra by rearranging the columns of R by matching

the order of features in F .

The second step is to perform AdaBoost on the rotated
data. The original AdaBoost algorithm [28] is for binary
classification. For multiclass problems, it may easily fail when
the training error by base classifiers is greater than 1/2. One
way is to use one-versus-rest or one-versus-one strategies
to decompose into multiple binary classification problems
[37], such as AdaBoost.MH [38] and AdaBoost.M2 [39]. A
disadvantage of these methods is the posterior probability
cannot be directly generated. In the proposed method, we use
a multiclass AdaBoost algorithm called SAMME [40]. It can
be considered as forward stagewise additive modeling using
a multiclass exponential loss function, which has the same
statistical explanation as the original AdaBoost algorithm.
Given K classes, it only requires the error rate by a base
classifier to be less than 1/K rather than 1/2 which is
very rigid for multiclass classification. We can also see that
SAMME will reduce to AdaBoost when K = 2.

At the beginning, the training data are sampled from the
training set D in the uniform distribution, i.e.,D1(x) = 1/n,
where n is the number of training samples. Then, a base
classifier ht is trained on the sampled data, and the error εt is
calculated:

εt = Pxt∼Dt(ht(x) 6= y) (3)

where x is the training samples and y is their true labels.
The sampling distribution is updated in the way that mis-

classified samples are assigned larger weights:

Dt+1(x) =
1

Zt
Dt(x) · exp { αtI(ht(x) 6= y) } (4)

where Zt is a normalization factor, I(·) is the indicator
function, and αt is the model parameter based on the training
error:

αt = log
1− εt

εt
+ log(K − 1) (5)
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Fig. 1. Flow charts of the proposed MBRF algorithm. The left is training stage and the right is test stage. S rotation matrices and S classifiers are learned
based on training data X in the training stage. They are used to estimate the posterior probabilities of test data Y in the test stage.

For a new sample x, the posterior probability P (y = k | x)
for each MBC can be approximated:

P (y = k | x) = e
1

K−1 f∗k (x)

e
1

K−1 f∗1 (x) + · · ·+ e
1

K−1 f∗K(x)
(6)

where

f∗k (x) =

T∑
t=1

αt · δ(ht(x), k) (7)

and

δ(ht(x), k) =

{
1 ht(x) = k

− 1
K−1 otherwise

(8)

After the posterior probabilities for each MBC are obtained
by SAMME, the final probability estimates are calculated
by averaging over all the boosted classifiers. The MBRF
algorithm is described in Algorithm 2. Eq. (6) provides a way
to obtain class probability with good theoretical meaning, so
that it is not necessary for a single base classifier to generate
probability estimates.

Algorithm 2 The MBRF algorithm
1: for s = 1 to S: do
2: Calculate the rotation matrix Ras as shown in Alg. 1.
3: Perturb the data by multiplying the rotation matrix:

xs = x ·Ras ;
4: Initialize the weight distribution Ds1(xs) = 1/n, i =

1, 2, ..., n.
5: for t = 1 to T : do
6: Train a classifier hst from the training set D under

distribution Dst: hst = L(D,Dst);
7: Update the sampling distribution Ds,t+1 using Eq.

(4);
8: end for
9: Output conditional probability Ps(y = k | xs) using

Eq. (6).
10: end for
11: Output final probability estimates by averaging:

P (y = k | x) = 1
S

∑S
s=1 Ps(y = k | xs).

B. Conditional random fields

The traditional MRF model is formulated in a probabilistic
generative framework modeling the joint probability of the
image and its labels [41], [42]. It assumes that a set of random
variables have a Markovian property, which means the random
variables are only dependent on their neighborhood. According
to Bayes rule, the posterior probability is modeled as P (y |
x) ∝ P (x | y)P (y), where y is the labels and x is the
observations. P (y) is modeled as Gibbs distribution. P (x |
y) can be represented as a factorized form if we assume the
conditional probability P (xi | yi) is independent:

P (x | y) =
∏
i

P (xi | yi) (9)

Contrary to MRF, CRF [43] discriminatively models the
posterior probability directly so that the rigid conditional
independence assumption can be relaxed:

P (y | x) = 1

Z(x)
exp

{
−
∑
c∈C

ψc(yc,x)

}
(10)

where Z(x) =
∑

y exp { −
∑
c∈C ψc(yc,x) } is the partition

function and ψc is a potential defined on clique c.
For simplification, only unary and pairwise clique potentials

are usually considered. Eq. (10) can be rewritten as

P (y | x) = 1

Z(x)
exp {− [

∑
i∈S

φi(yi,x)

+
∑
i∈S

∑
j∈ηi

ξij(yi, yj ,x)] }
(11)

where φi(·) and ξij(·) are unary and pairwise clique potentials
respectively, ηi is the set of neighbors of site i, and S is the
sample set.

In this paper, an 8-connected CRF is used. The unary
and pairwise clique potentials can be defined as arbitrary
domain-specific local discriminative classifiers [21]. In previ-
ous remote sensing literature, the unary potentials have been
defined as posterior probabilities by various discriminative
classifiers such as multinomial logistic regression [22], [44]
and support vector machines [18], [45]. In this paper, we use
the probability estimates by the proposed MBRF method as
shown in the previous section. Thus, the unary potential can
be defined as
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φi(yi,x) =

K∑
k=1

δ(yi = k) {− logP (yi = k | xi) } (12)

where P (yi = k | xi) is calculated using Eq. (6).
For the pairwise potentials, the standard MRF model only

allows the contextual information of the labels to be used
(i.e., the standard Potts model [46]), while both the labels
and the observed data can be formulated in the CRF model
as ξij(yi, yj ,x) in Eq. (11). We note that pairwise connected
terms will tend to have different labels at discontinuities in
image structure. As a result, we use a generalized Potts model
as the discontinuity preserving smoothness constraint:

ξij(yi, yj ,x) =

{
βexp{−α(Ei + Ej)/2} yi 6= yj

0 otherwise
(13)

where E is the edge image obtained using the Gaussian
derivative per band then per pixel maximum over all the bands,
α = 1/(0.25 · Totsu), Totsu is the Otsu Threshold of the
edge image E which will adapt the edge strength based on
global edge strength of the image [47], and β is a constant
representing the degree of smoothness.

In practice, the optimum β is usually selected using cross
validation [45]. In the inference step, the optimal labeling is
assigned by maximizing the posterior probability in Eq. (11),
i.e., to solve the energy minimization problem below:

argminy
∑
i∈S

φi(yi,x) +
∑
i∈S

∑
j∈ηi

ξij(yi, yj ,x) (14)

In previous literature, loopy belief propagation (LBP) [48] is
usually used to solve this combinatorial optimization problem
[21], [45], but recently graph-cut based methods have become
popular. For binary labeling problem, graph-cuts method can
find the global optimum [49]. Boykov et al. [50] developed an
efficient graph-cut based algorithm, i.e., α-expansion and α-β-
swap algorithms, which are able to find approximate solution
to the multiclass labeling problem. The α-expansion algorithm
has been demonstrated to outperform other state-of-the-art
energy minimization methods on benchmark problems [51].
Furthermore, it has been proved [50] that a local minimum
within a known factor of the global minimum can be found
using α-expansion. As a result we use the α-expansion algo-
rithm to solve the energy minimization problem.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experiments are conducted for testing the
performance of the proposed MBRF method and the combi-
nation with CRF. First, MBRF is compared with several state-
of-the-art pixelwise classification methods, including support
vector machines (SVM), random forests (RF), SAMME, and
rotation forests (RoF). SVM is one of the most commonly-
used classifier for remote sensing imagery. RF and SAMME
are advanced versions of Bagging and standard AdaBoost
respectively. Previous literature showed that feature extraction

can improve the classification performance of RF [20]. There-
fore, we also test the performance of RF after using minimum
noise fraction (MNF) [52], which is a noise-adjusted version
of PCA. Then, the combination of MBRF and CRF without
using edge strength (MBRFCRF-NE) and with edge strength
(MBRFCRF-E) is tested with two recently proposed spectral-
spatial methods: SVMMRF-E [18] and MLRCRF-E [22]. It
is noted that SVMMRF-E is actually a CRF-based method
because it uses posterior probabilities by a discriminative
classifier and uses edge strength in the pairwise potentials.

We use three standard hyperspectral datasets: the Universtiy
of Pavia, the Indian Pine, and the Kennedy Space Center
datasets for testing in our experiments. The main objectives
of this section are testing and evaluating the performance of
the aforementioned pixelwise and spectral-spatial classification
methods in different numbers of training samples for the three
datasets.

A. Experimental Setup

For SVM, the radial basis function (RBF) is used as
the kernel function, and the optimum parameters, i.e., the
regularization parameter C and the bandwidth parameter of
the RBF kernel γ are found using 5-fold cross-validation.
The number of trees is set to 500. The number of variables
randomly selected at each split is set by default, i.e., the square
root of the total number of variables. For MNF, we use all the
projected features whose performance has been tested to be
better than that using a subset. For SAMME, the number of
base classifiers are set to 100. For RoF and MBRF, the number
of classes eliminated from the original data to calculate the
rotation matrix is fixed to 3. In previous literature, the number
of trees in the rotation forest algorithm is usually set to 10
[10], [33]. In our paper, the small-sample-size problem might
leads to slow convergence, so the number of trees in rotation
forests is set to 50. For MBRF, the number of MBCs is set
to 30, and the number of trees in an MBC is set to 20.
Decision tree classifier is used as the base classifier for all
the ensemble methods. Due to the incapability of generating
posterior probabilities directly by SVM, pairwise coupling [53]
used in [18] is also adopted in our experiment.

We use the same setting for the number of training samples
as [3]. Different numbers of randomly selected training sam-
ples per class (3, 5, 10, and 15) are used for testing. The overall
accuracy (OA), average accuracy (AA), and Kappa statistic
are calculated to evaluate the classification performance. We
also notice that the classification performance is very sensitive
to the selection of training samples when the number of
training samples is limited, so all the methods are tested for
50 times using different randomly selected training samples,
and the mean is used for all the statistics. For the smoothness
parameter β in the CRF model, the traditional cross-validation
is usually incapable of selecting the optimal parameter because
the number of training samples is limited. Therefore, we
conduct multiple tests using different β (20, 21, 22, ..., 28) and
report the highest test accuracy. To investigate the usefulness
of the edge penalty information used in the smoothness
constraint, we make a comparative study between the CRF
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model using edge penalty in Eq. 13 and without using edge
penalty (i.e., α→ +∞).

B. Experiments with the University of Pavia dataset

The first dataset for testing was acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor in Uni-
versity of Pavia, Italy (Fig. 2). The original image has 115
spectral bands with a spectral range from 0.43µm to 0.86µm.
103 spectral reflectance bands are used for the analysis after
the noisy bands are removed. The spatial resolution of the
image is 1.3 meters. The size of the dataset used in the
experiment is 610×340 pixels. There are nine classes in total.

(a) Data (b) Ground truth
Fig. 2. The false-color composition of the University of Pavia data and its
ground truth

The classification result of the University of Pavia dataset
is shown in Table I. It is observed that MBRF achieves
best classification performance for different number of labeled
training samples. When there are only three samples per
class, MBRF generally achieves about 5.5% OA higher than
SVM, 9.2% higher than RF, 13.6% higher than MNF-RF,
16.0% higher than SAMME, and 2.4% higher than RoF. The
classification accuracy increases more than ten percent on
average by combining with CRF. The classification accuracy
of each class in the case of 10 training samples per class is
shown in Table II. MBRF has highest classification accuracy in
five out of nine classes and has the highest average accuracy.

Among the spectral-spatial methods, MBRFCRF-E achieves
highest classification accuracy in all the cases. Also, we can
see that CRF with edge penalty is significantly better than
that without edge penalty, with an improvement of 5.3% clas-
sification accuracy on average. Fig. 3 shows the segmentation
result using MBRF and CRF with different number of training
samples in one test. The object boundaries are well-delineated
due to the high spatial resolution and the urban scene of
the dataset, which can help extract a clean edge map for
the CRF model. Using edge penalty, neighboring pixels with
strong edges can be prevented to be assigned the same label.
Meanwhile, higher smoothness parameter can be selected so
that pixels with high within-class variation can be smoothed
out in the labeling.

C. Experiments with the Indian Pine dataset

The Indian Pine dataset as shown in Fig. 4 was acquired
from the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) sensor from Northwest Indiana rural area on June
12, 1992 [54]. It has 224 spectral reflectance bands ranging
from 0.4µm to 2.5µm. The spatial resolution is 20 meters.
The dataset used in this experiment is in the size of 145×145
pixels which is extracted from a larger scene. Also, 24 bands
covering the water absorption bands are removed [54]. The
number of classes is 16.

(a) Data (b) Ground truth
Fig. 4. False-color composition of the Indian Pine data and its ground truth

The classification result of the Indian Pine dataset is shown
in Table III. The overall accuracy achieved by proposed
method is 9.5% higher than SVM, 11.4% higher than RF,
6.9% higher than MNF-PCA, 15.7% higher than SAMME,
and 2.5% higher than RoF on average.

The pixelwise classification map using 10 samples per class
in one test is shown in Fig. 5. Due to the high within-class
variation nature of the Indian Pine dataset, it is not enough to
achieve satisfactory classification result by using only spectral
information. In this case, the CRF model which serves as
a smooth labeling method can help improve classification
significantly. Both MBRFCRF-E and MBRFCRF-NE increase
OA by about 14 percent in all the cases compared to the
pixelwise MBRF method. Also, they both achieve more than
five percent higher OA than SVMMRF-E and MLRCRF-E.
However, it seems that edge penalty does not help improve
the classification performance in this dataset. Compared with
the above ROSIS dataset, this dataset has relatively low
spatial resolution and high within-class variation, so the extract
gradient map is noisy and does not reflect the true edges in
the scene.

D. Experiments with the Kennedy Space Center dataset

The Kennedy Space Center (KSC) dataset as shown in Fig.
6 was acquired by the AVIRIS instrument over the Kennedy
Space Center, Florida on March 23, 1996 [8]. The original
image has 224 bands with a spectral range from 0.4µm to
2.5µm. 176 bands are used in the experiment after the water
absorption and noisy bands are removed. The spatial resolution
of the image is 18 meters. The size of the dataset used in the
experiment is 512×614 pixels. There are 13 land cover types
in the training area of the reference data.
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TABLE I
OVERALL ACCURACY (OA%) AND AVERAGE ACCURACY (AA%) , AND KAPPA COEFFICIENT ([κ]) OF DIFFERENT NUMBER OF TRAINING SAMPLES BY

DIFFERENT METHODS FOR THE UNIVERSITY OF PAVIA DATASET.

Classifier Labeled samples per class
3 5 10 15

SVM 56.6 (68.0) 60.0 (71.4) 68.9 (77.3) 73.8 (80.7)
[0.47] [0.51] [0.61] [0.67]

RF 56.7 (68.1) 59.8 (70.6) 62.4 (73.7) 65.5 (75.6)
[0.47] [0.51] [0.54] [0.57]

MNF-RF 39.5 (54.1) 54.6 (66.9) 63.5 (74.6) 69.1 (77.9)
[0.29] [0.45] [0.55] [0.61]

SAMME 42.6 (51.4) 53.2 (62.9) 58.6 (69.3) 62.8 (72.7)
[0.32] [0.43] [0.49] [0.54]

RoF 59.2 (67.9) 64.1 (73.9) 71.9 (79.3) 76.5 (82.5)
[0.50] [0.56] [0.65] [0.70]

MBRF 61.6 (71.9) 67.6 (76.2) 73.7 (80.7) 78.3 (84.0)
[0.53] [0.60] [0.67] [0.72]

SVMMRF-E 52.2 (61.3) 66.0 (71.5) 83.9 (86.1) 90.8 (92.4)
[0.43] [0.58] [0.79] [0.88]

MLRCRF-E 71.2 (76.2) 79.6 (82.6) 88.1 (88.5) 91.7 (92.3)
[0.64] [0.74] [0.85] [0.89]

MBRFCRF-NE 69.1 (75.9) 78.2 (82.7) 85.6 (88.6) 90.2 (92.5)
[0.61] [0.72] [0.82] [0.87]

MBRFCRF-E 75.2 (80.3) 83.7 (86.9) 90.9 (92.9) 94.6 (95.9)
[0.69] [0.79] [0.88] [0.93]

TABLE II
CLASS ACCURACY ACHIEVED BY DIFFERENT PIXELWISE CLASSIFIERS FOR THE UNIVERSITY OF PAVIA DATASET IN THE CASE OF 10 TRAINING SAMPLES

PER CLASS.

Classifier C1 C2 C3 C4 C5 C6 C7 C8 C9 AA
SVM 65.9 64.3 58.5 90.5 99.1 58.4 85.8 73.2 99.9 77.3
RF 65.0 53.4 52.3 87.1 99.0 50.1 82.7 70.6 99.9 73.4

MNF-RF 51.9 58.9 69.9 92.2 99.9 62.0 83.9 52.1 99.8 74.5
SAMME 62.2 49.7 50.0 81.2 97.1 52.6 77.1 66.4 91.4 69.8

RoF 67.6 67.3 61.5 91.0 99.0 66.9 83.8 76.0 99.8 79.2
MBRF 70.4 70.0 67.4 91.9 99.4 68.7 87.2 75.5 99.9 81.2

TABLE III
OVERALL ACCURACY (OA%) AND AVERAGE ACCURACY (AA%), AND KAPPA COEFFICIENT ([κ]) OF DIFFERENT NUMBER OF TRAINING SAMPLES BY

DIFFERENT METHODS FOR THE INDIAN PINE DATASET.

Classifier Labeled samples per class
3 5 10 15

SVM 40.5 (52.1) 46.2 (58.7) 54.7 (67.3) 60.5 (71.1)
[0.34] [0.40] [0.49] [0.56]

RF 41.1 (52.4) 44.9 (57.2) 51.9 (63.9) 56.6 (67.0)
[0.34] [0.39] [0.46] [0.51]

MNF-RF 37.5 (51.1) 50.3 (64.4) 60.3 (74.3) 64.4 (76.9)
[0.31] [0.45] [0.56] [0.60]

SAMME 32.3 (41.4) 40.6 (52.3) 49.5 (61.9) 54.8 (65.7)
[0.26] [0.34] [0.44] [0.49]

RoF 44.5 (56.8) 53.1 (65.7) 63.5 (74.8) 68.9 (78.2)
[0.39] [0.48] [0.59] [0.65]

MBRF 47.6 (58.9) 56.0 (67.6) 65.8 (76.4) 70.6 (79.3)
[0.42] [0.51] [0.62] [0.67]

SVMMRF-E 28.5 (38.6) 42.9 (55.8) 68.9 (77.7) 77.2 (83.8)
[0.22] [0.37] [0.65] [0.74]

MLRCRF-E 55.9 (65.3) 64.1 (72.1) 74.3 (81.9) 77.2 (84.2)
[0.51] [0.60] [0.71] [0.74]

MBRFCRF-NE 61.1 (67.5) 69.9 (78.3) 79.8 (87.7) 83.4 (90.1)
[0.56] [0.66] [0.77] [0.81]

MBRFCRF-E 62.6 (70.1) 70.7 (77.4) 80.2 (86.4) 83.1 (88.6)
[0.58] [0.67] [0.77] [0.81]
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n=3, OA=68.5% n=5, OA=81.1% n=10, OA=87.7% n=15, OA=88.6%

n=3, OA=74.6% n=5, OA=83.0% n=10, OA=90.9% n=15, OA=98.1%
Fig. 3. Segmentation map by MBRFCRF-NE (top) and MBRFCRF-E (bottom) in different number of training samples (n per class) with optimal smoothness
parameter in the University of Pavia dataset. Results in the same column are based on the same probability outputs by MBRF.

SVM (OA=56.9%) RF (OA=50.9%) MNF-RF (OA=60.7%)

SAMME (OA=48.2%) RoF (OA=62.6%) MBRF (OA=65.5%)
Fig. 5. Pixelwise classification results using 10 labeled training samples per class on the Indian Pine dataset with overall accuracy (OA%) of test samples in
one test.
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TABLE IV
OVERALL ACCURACY (OA%) AND AVERAGE ACCURACY (AA%) IN PERCENTAGE, AND KAPPA COEFFICIENT ([κ]) OF DIFFERENT NUMBER OF

TRAINING SAMPLES BY DIFFERENT METHODS FOR THE KENNEDY SPACE CENTER DATASET.

Classifier Labeled samples per class
3 5 10 15

SVM 73.1 (67.5) 79.1 (74.2) 86.0 (82.2) 88.4 (85.0)
[0.70] [0.77] [0.84] [0.87]

RF 68.5 (62.2) 73.5 (68.0) 78.1 (73.6) 80.9 (76.5)
[0.65] [0.70] [0.76] [0.79]

MNF-RF 65.8 (60.3) 79.4 (74.1) 86.0 (81.5) 88.5 (84.5)
[0.62] [0.77] [0.84] [0.87]

SAMME 56.0 (51.2) 69.2 (64.5) 77.9 (73.7) 81.9 (77.8)
[0.51] [0.66] [0.75] [0.80]

RoF 73.2 (67.6) 80.0 (75.3) 85.8 (81.8) 88.2 (84.4)
[0.70] [0.78] [0.84] [0.87]

MBRF 78.0 (72.7) 82.7 (78.2) 87.5 (83.6) 89.8 (86.2)
[0.76] [0.81] [0.86] [0.89]

SVMMRF-E 68.1 (62.0) 82.8 (78.8) 92.7 (91.0) 95.2 (94.2)
[0.65] [0.81] [0.92] [0.95]

MLRCRF-E 84.3 (81.3) 89.2 (87.0) 94.4 (93.0) 96.3 (95.2)
[0.82] [0.88] [0.94] [0.96]

MBRFCRF-NE 87.8 (84.5) 91.9 (89.3) 96.2 (94.7) 98.0 (96.7)
[0.86] [0.91] [0.96] [0.98]

MBRFCRF-E 86.8 (84.4) 90.9 (88.4) 95.3 (94.0) 97.3 (96.2)
[0.85] [0.90] [0.95] [0.97]

(a) Data (b) Ground truth
Fig. 6. The false-color composition of the Kennedy Space Center data and
its ground truth

The classification result is shown in Table IV. Compared to
the two datasets, this dataset is relatively easy because the pix-
elwise classification can achieve over 90% accuracy by MBRF
using only 15 training samples for each class. Considering
the classification accuracy for all the cases, MBRF averagely
outperforms SVM by 2.8%, RF by 9.2%, MNF-RF by 4.6%,
SAMME by 13.2%, and RoF by 2.7%.

After combining with CRF, the highest overall accuracy
using 15 training samples per class can reach 98% by
MBRFCRF-NE. There is no improvement of using the edge
penalty in the CRF model. Similar to the Indian Pine dataset,
this dataset has relatively low spatial resolution. Also, there
is not much strong edge information in the rural area of
the image where most of the training areas are located. As
shown in Fig. 7, both methods achieve similar classification
accuracy inside the training areas. However MBRFCRF-NE
tends to oversmooth over the image, while MBRFCRF-E is
better at preserving details, especially in small regions with
strong boundary information.

E. Summary of Classification Results and Sensitivity Analysis

Observed from the pixelwise classification results (Table III,
Table I, and Table IV), the overall classification accuracy by
SAMME is not satisfactory because it is prone to overfitting
when there are limited training samples. RF is less prone
to overfitting because it reduces model variance, however, it
cannot reduce bias of the decision tree classifiers. SVM is
slightly better than RF, especially in the cases of n = 10
and n = 15. However, SVM is sensitive to the selection
of model parameters, which are often determined by cross
validation. When the number of training samples is limited,
the parameters that achieve best cross-validation performance
are less likely to be the optimal parameters. This could be
improved using unsupervised heuristics or semi-supervised
heuristics. Using an additional feature extraction step, MNF-
RF achieves better performance than RF in 8 out of 12 cases,
especially when the training samples are more than ten per
class. However, its performance is still no better than RoF
that has an inherent PCA transformation step. The rotation
forest classifier which reduces both bias and variance perform
well very in small-sample-size problems. It achieves higher
overall classification accuracy than other comparing methods
except MBRF in most of the cases. MBRF achieves the highest
OA, AA, and Kappa for all the cases, and it gains additional
improvement of 2.5% classification accuracy over RoF. This
is because the combination of RoF with SAMME can further
reduce model bias. Moreover, the high variance and overfitting
drawback of boosting in small-sample-size problem turns into
a benefit because it can de-correlate the MBCs from each
other, and thus increase diversity.

From the spectral-spatial classification results, we observe
that OA achieved by SVMMRF-E is not satisfactory in the
cases of n = 5 and n = 10, which is even worse than the
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n=3,OA=80.8% n=5, OA=94.0% n=10, OA=96.2% n=15, OA=98.6%

n=3,OA=81.9% n=5, OA=93.4% n=10, OA=96.8% n=15, OA=97.1%
Fig. 7. Segmentation map by MBRFCRF-NE (top) and MBRFCRF-E (bottom), in different number of training samples (n per class) with optimal smoothness
parameter β in the Kennedy Space Center dataset. We can see that details are more preserved in the results using edge penalty. Results in the same column
are based on the same probability outputs by MBRF.

pixelwise SVM result. The reason might be that the pairwise
coupling method [53] fails to generate satisfactory posterior
probabilities when there are insufficient training samples.
Instead, MLR is a classifier that learns posterior probabilities
discriminatively, and results show that the OA achieves by
MLRCRF-E is achieved better than that by SVMMRF-E. Sim-
ilarly, MBRF allows the natural approximation of posteriors.
We can see that the highest classification accuracy is achieved
by either MBRFCRF-E or MBRFCRF-NE in all the datasets.
Also, MBRFCRF-E achieves higher classification methods
than MBRFCRF-NE in the University of Pavia dataset which
has high spatial resolution and strong edge strength.

Fig. 8. Overall classification accuracy (OA%) as a function of the number of
inner iterations T in MBRF for the University of Pavia dataset using different
randomly-selected training samples (5 per class).

Compared to the rotation forest classifier, there is one more
parameter to determine in the MBRF method, i.e., the number
of trees T for the embedded SAMME algorithm. When
T = 1, MBRF is reduced to RoF. Fig. 8 shows the overall
classification accuracy as the number of trees increases for the
University of Pavia dataset. The number of outer iterations S
is fixed to 20, the same as the previous experimental setting.
As shown in Fig. 8, the classification performance is improved
as T increases, and the accuracy becomes stable when T is
greater than 15.

Fig. 9. Overall classification accuracy (OA%) as a function of the number
of (outer) iterations S for the Indian Pine dataset using different randomly-
selected training samples (10 per class).

We also test the convergence rate of MBRF by comparing
with the rotation forest classifier. Fig. 9 shows the overall
classification accuracy as the number of trees increases. For
MBRF, the number of inner iterations T is set to 20. It is
observed that MBRF converges after about 20 iterations, while
SAMME and RoF converge after about 40 iterations. For the
computation time, MBRF requires to train T base classifiers
in an outer iteration compared to RoF, but the computational
cost is still low considering the small training sample size, and
the testing speed is very fast if the decision tree classifier is
used.

Compared to other ensemble methods such as bagging and
boosting, MBRF might be slower due to the innate PCA
step. The computational complexity of PCA is O(D3) if
the eigendecomposition of the D × D covariance matrix is
performed using a power method [55]. But in MBRF, D is
only a small subset of features, which is set to three in our
experiment. Therefore, the PCA does not increase computation
cost very much.

Finally, we test the sensitivity of the smoothness parameter.
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Fig. 10. Overall classification accuracy (OA%) for different smoothness parameter (β) and different number of training samples (n per class) in three datasets.
The results in the left column are created by CRF without edge penalty, and the results in the right column are created by CRF with edge penalty.

The test accuracy related to different number of training
samples for all the datasets is shown in Fig. 10. It is observed
that the smoothness parameter for CRF with edge penalty is
less sensitive than that without edge penalty. Also, the optimal
smoothness parameter varies for different number of training
samples. Based on the observations, it slightly increases when
there are more training samples. One explanation is that the
spatial context is only helpful when the probability estimates
are reliable. If a majority of pixels in a region are misclassified,
random fields or any other kind of smooth labeling methods
tend to make the result worse.

V. CONCLUSIONS

A spectral-spatial classification method was proposed in
this paper to deal with the situation when there are limited
labeled training samples available. It is based on a novel
ensemble method combining rotation forests and multiclass
AdaBoost. The classification performance can be enhanced by
combining both methods because the rotation forest algorithm
reduces model variance while the AdaBoost algorithm reduces
model bias. Also, we showed that the posterior probability can
be naturally approximated by the proposed MBRF method
and incorporated into the conditional random field frame-
work. Experimental results showed that MBRF as well as
its combination with CRF outperforms other state-of-the-art

classification methods when the number of labeled training
samples is limited.
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