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Chapter 1

Introduction

1.1 Motivation

Automatically extracting meaningful bulk shape and orientation statistics from a

stationary image can provide valuable information. For example, cell shape has

been shown to be an important indicator of stresses in an epithelium [6]. Another

example is the estimation of ice floe size in synthetic aperture radar (SAR) sea ice

images, in which floe size provides important information for assisting ship naviga-

tion in ice-infested waters [13]. Each object in imagery from these two examples

has its own geometrical properties (length, width, orientation). Taken together,

they can be used to describe a general characterization of all objects in the image.

Extracting these metrics, however, is a difficult task for a computer algorithm. The

object of this research is generate automated methods to produce such estimates.

1
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1.2 Thesis Summary

In this thesis, many of the issues involved with applying an automated bulk statistic

estimation algorithm to the power spectrum of an image will be discussed. The

following outlined will be used:

• Chapter 2 - Background

A description of the important biological issues that motivated much of this

work are discussed. The problem being considered is then discussed followed

by a more formal problem definition.

• Chapter 3 - Image Data

Several different types of images will be analyzed. Each type has unique noise

processes and structural issues associated with it. In this chapter, we discuss

those processes and introduce the data sets that will be inspected.

• Chapter 4 - Methods

The bulk statistics of several image sets will be estimated by four algorithms.

In Chapter 4, each of the algorithms are discussed in detail.

• Chapter 5 - Testing

Chapter 5 presents the results from applying the four algorithms to each of the

data sets. The results will be compared and inherent strength and weaknesses

of each algorithm will be discussed.

• Chapter 6 - Conclusion
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The thesis is concluded by elaborating on the results, stating some of the lim-

itations facing this work and providing direction for future work in estimating

bulk statistics.



Chapter 2

Background

2.1 Biological Considerations

The development of an explanation for embryonic development is far from com-

plete. An exhaustive mathematical description will require drawing from a variety

of disciplines such as biology, mechanics and image processing as we further our

understanding.

What we do know is that as embryos develop, they undergo precise and self-

driven changes of shape [5]. Acting as both muscle and skeleton, the cytoskeleton

and other structures are commonly recognized to drive these movements [14]. An

understanding of the exact causes and details of these movements is still in its

formative stages.
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2.2 Embryonic Modelling

Mathematically modelling the various stages of embryo development requires a

more complete understanding of the biomechanical forces that act at the cellular

level. Combining the principles and methods of biology and engineering, modelling

epithelial reshaping in embryos requires knowledge of how that epithelium reacts

in the presence of external forces.

What is known is that there is a strong relationship between the stresses that

are present in a epithelium and the actual shape of the cells themselves [6]. Not

only do the shape of cells affect the forces in an epithelium, but the forces also

affect cell shape [11]. What has been shown to be important in characterizing cell

shape is the aspect ratio and density of the cells, and the orientation in which the

cells are stretched [8].

Cells are mechanically complex. Finite-element software has be created in an

attempt to determine the forces that drive important morphogenetic processes [7].

By examining embryo development in this manner, morphogenetic movements can

be broken down, analyzed and modelled at the level of individual cells. By mak-

ing the mathematics more manageable, this method offers a scalable solution for

considering entire cell patches. That is, individual models can be reassembled and

expressed as a system of equations, the solutions to which gives spatial information

about each cell. Equipped with this knowledge, information about the internal

and external forces that drive the displacements can be inferred. As the embryo

develops over time, displacement information can be detected at each time step.

Measuring the displacements and updating force models as the embryo develops will
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lead to a description of morphogenetic processes which can then be tested against

observable phenomena.

Approaching the modelling problem of morphogenetic processes using finite-

element methods (FEM) has met considerable success [14]. Software capable of

accurately predicting shape changes produced by driving forces in the neural plate

of an axolotl (Ambystoma mexicanum) embryo during the process of neurulation,

the precursory morphogenetic process to the creation of the brain and spinal cord,

has been developed. The axolotl is a particularly useful animal in which to study

this process because they are easy to obtain and are able to withstand experimental

surgery [1]. Finite element software was able to demonstrate that only one of the

existing neurulation theories could produce the observed changes in shape, thus

demonstrating the model’s applicability to biological problems [5].

Combining existing FEM models with accurate descriptions of cell statistics will

help to further our understanding of the relationship between cell shape and the

forces that act upon them.

2.3 Problem Description

Techniques have been developed that return numerical descriptives of the global

structure present in an image based on a number of assumed and known properties

of the data. As was discussed in the previous section, the statistics that are useful in

characterizing a cellular texture are the aspect ratio (ratio of the major and minor

axes), the orientation of the major axis and the cell density in the epithelium. In

computing these descriptives, spatial-frequency domain techniques will be used.
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An explanation of the statistics used to characterize a cellular texture and the

spatial-frequency domain is presented in the subsections that follow.

2.3.1 Bulk Statistics and the Composite Cell

The problem being addressed in this thesis is in characterizing the statistical prop-

erties of an image by using the image’s spatial-frequency representation as a search

space. The complete set of statistics needed to robustly describe an epithelium are

the orientation (α), the aspect ratio (κ) and the density (ρ).

In developing computer simulations of mitosis, Brodland and Veldhuis [8] de-

scribed overall cell shape and orientation in an image by creating the concept of

a composite cell. This elliptical composite cell, conceptually the average cell in a

patch, was ‘constructed by summing separately the centroidal moments and prod-

ucts of inertia of the cells in the region and then dividing by the number of cells in

the region’. In their work, the geometric properties of the composite cell were used

in their computations of spatial deformation.

Numerically, the composite cell can be described by its orientation and major

and minor axis lengths, since aspect ratio and density are both functions of the

composite cell’s dimensions. When the term bulk statistics is used, it will refer to

three metrics: the composite cell orientation (θ), major axis length (Lmajor) and

minor axis length (Lminor). It is important to note that κ and ρ can be determined

if θ, Lmajor and ÃLminor are known. The term composite cell will denote that cell

characterized by a certain set of bulk statistics.

A composite cell is shown in Figure 2.1. Each algorithm uses a different approach
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Figure 2.1: Parameters that describe the fabric of the epithelium. A composite cell
is defined using the moments and products of inertia of the individual cells in the
rectangular patch. The angle, measured counter-clockwise from the horizontal axis
to the long axis of this composite cell, is called α∗ and the ratio of its maximum to
minimum axis lengths gives the shape parameter κ. [8]

to evaluate the values that describe the composite cell. The orientation is the angle

(−π/2 < α ≤ π/2) measured counter-clockwise from the horizontal axis to the

major axis of the composite cell [8].

2.3.2 Spatial-Frequency Representation

Filtering in the spatial-frequency domain is a powerful tool that is used routinely

in image processing applications [22]. Any practical signal can be expressed as

a sum of weighted sinusoids. The Fourier transform uses this property to take

a signal and transform it into a representation of the sinusoid coefficients. In

the spatial-frequency representation of an image (a two-dimensional signal), well-
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defined periodic structure found in an image produces peaks in the transformed

space. These peaks are used in estimating the bulk geometric characteristics from

a global perspective.

The Fourier Transform (FT), used to obtain the spatial-frequency representation

of an image, can provide the information from which to estimate the geometrical

parameters of interest. After every transformation, the origin is shifted to the centre

of the image. Similar to the spatial domain, the spatial-frequency domain can be

described by coordinates. The u- and v-axes are used in place of the x- and y-axes,

to describe the horizontal and vertical axes, respectively. The power spectrum

can determined by taking the magnitude of the Fourier transform [10]. All power

spectrums considered and displayed in this work have had their DC component set

to zero. This is done to compensate for a lack of calibration in the images and to

improve visualization. Shown in Figure 2.2 is a sample image and its corresponding

spatial-frequency representation.

If the resolution and magnification of a spatial image is known, objects can be

measured based upon their size in pixels. In the power spectrum, individual pixel

locations can be described by an orientation, taken counter-clockwise from the u-

axis, and a frequency in cycles per image (cpi), measured outward from the image

centre.

Note the similarity in shape, rotated by 90 degrees, between the power spectrum

distribution and what one might characterize as the composite cell in Figure 2.1, as

described in the previous subsection. This is an important property and one that

forms the basis of an assumption that will be stated later – that elliptical objects
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(a) (b)

Figure 2.2: Synthetic mesh representing cells in an epithelium (a) and its power
spectrum (b). A square root operator has been applied to the power spectrum to
enhance visibility.

in the spatial domain produce elliptically shaped power spectrums. Distances from

the origin in the spatial-frequency domain are represented as cycles per image (cpi)

while metrics associated with length in the spatial domain are presented in pix-

els. With known image dimensions, cycles per image can be converted into pixels

through an inverse relationship.

2.4 Problem Definition

The work in this thesis can be most succinctly described as using spatial-frequency

domain techniques to measure the orientation and major and minor axes lengths of

the composite cell that best describes the elements in an image. An sample image

(Figure 2.3(a)) and its power spectrum (Figure 2.3(b)) are used to explain this
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(a) (b)

Figure 2.3: Two overlapping sinusoids are shown (a), the first with a frequency of
32cpi oriented at 0◦, and the second of 16cpi at 90◦. These values are clear in the
image’s power spectrum (b).

definition.

In the spatial image, two perpendicular repeating patterns are clearly visible.

The first is a sinusoid oriented at 0◦ with a frequency of 32cpi (8ppc). The second

signal is also a sinusoid, but this time oriented at 90◦ with a frequency of 16cpi

(16ppc). In the power spectrum, these patterns show up as strong peaks at their

respective orientation and frequency coordinates.

Each of the algorithms presented in Chapter 4 will attempt to use the infor-

mation available in the spatial-frequency to measure the three statistics needed to

describe the composite cell: the orientation, the major axis length and the minor

axis length.



Chapter 3

Image Data

In determining what type of information would be analyzed, decisions regarding

the scope of the problem were made with biological considerations in mind. In

the type of data being analyzed, camera limitations (e.g. resolution and lighting)

and environmental issues (e.g. pigmentation variation and cell division) limit the

capacity for automatic geometrical interpretation.

Spatial domain techniques (e.g. edge detection [9], snake contours [2], watershed

algorithm [10]) are extremely sensitive to noise. Poorly defined cell boundaries and

the presence of additive noise render such computer algorithms insufficient for the

problem presented. As such, estimates of the bulk geometric characteristics are

made on a global basis using the spatial-frequency representation of the image under

consideration. Each algorithm will make use of a different approach to characterize

the composite cell described in Chapter 2.



3.1. UNDESIRABLE IMAGE PROPERTIES 13

3.1 Undesirable Image Properties

The epithelial cell images captured for this project are corrupted by a number

of processes: the presence of noise, poorly defined boundaries and discolouration.

These distortions restrict the ability for automated algorithms to extract the nec-

essary bulk statistics. A description of these distortions is presented next.

3.1.1 Presence of Noise

The presence of noise in the images being tested presents a serious challenge to

the effectiveness of the algorithms. Noise is considered to derive primarily from

three sources. The first, camera noise, is assumed to be sufficiently small so as to

not impact analysis results. The second is high frequency noise which results from

the natural pigmentation and textural variation in images. A third noise process,

discolouration, resulting in low frequency noise is considered in its own subsection.

Each of the algorithms developed to estimate the orientation of cellular textures

attempt to characterize the overall shape of a power spectrum. The power spectra

are symmetric. However, in textures that do not completely cover the image region

being analyzed, edge effects and zero padding may create artifacts along the u- and

v-axes originating from the image centre. To minimize this, images were chosen

or created to be approximately square and images containing extra non-textural

information had those regions cropped.

In a well-structured image, high-frequency noise is not likely to significantly

affect orientation estimates. The same cannot be said for low-frequency noise. Both

noise types, however, can notably affect measurements of the composite cells axis
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lengths. The effect of noise on a well-structured image is shown in Figure 3.1. A

checkerboard image is shown in its original state (foreground values set to one and

background values to zero) and with Gaussian noise (µ = 0, σ = 1) injected, along

with their respective power spectra. Negative values resulting from the zero-mean

noise are dealt with by rescaling the noisy image.

3.1.2 Poorly Defined Boundaries

Poorly defined boundaries between the cellular elements in an image can affect

measurements of both the orientation and size. For example, an indistinguishable

boundary between neighbouring cellular elements effectively gives the appearance

of a larger cell. If only a few poor boundaries exist, there may be sufficient global

information to accurately interpret the bulk statistics. However, too many poor

boundaries can result in a meaningless characterization of the image. Figure 3.2

illustrates the problem that poorly defined boundaries present. The outline of a

checkerboard is shown, as well as the same outline with some of its edges removed.

The resulting power spectra are shown to illustrate the effect of poor boundaries

on the search space. A small amount of noise was injected into the checkerboard

outlines to improve visibility of the power spectrum.

Notice that the resulting energy signal is not as strong in the image with some

boundaries removed. This is an important example in understanding the relation-

ship between spatial and spatial-frequency domains, since it is the boundaries of

cells, and not their colour or textural qualities, that are being determined.
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(a) (b)

(c) (d)

Figure 3.1: A checkerboard pattern (a) and the same pattern with noise injected
(b) are shown. To demonstrate the effect of noise on the spatial-frequency repre-
sentation of an image, the power spectrums are shown in (c) and (d), respectively,
with a fourth root operator applied to improve visibility.
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(a) (b)

(c) (d)

Figure 3.2: The edges of a checkerboard is shown (a), along with many of those
edges removed (b). The power spectrums of the original and the image used to
demonstrate poorly defined boundaries are shown in (c) and (d), respectively. A
fourth root operator is applied to enhance power spectrum visibility.



3.1. UNDESIRABLE IMAGE PROPERTIES 17

3.1.3 Discolouration

Two different types of discolouration exist that can significantly impact the effec-

tiveness of the algorithms. The first type – inconsistent illumination across an

image – is considered to be low frequency noise. A homomorphic filter can be

applied to an image to reduce the effects of the illumination [10], but some low

frequency noise may remain.

The other type of discolouration results from the natural pigmentation variation

in an epithelium. As cells undergo the process of mitosis, a visible darkening in

their colour is apparent. While the same homomorphic filter can be applied to

reduce such shading variation, some noise, probably non-linear, will remain.

To demonstrate the effect of natural cellular discolouration on an image’s power

spectrum, Figure 3.3 shows (a) a checkerboard outline, (b) a checkerboard and

their respectively power spectra ((c) and (d)). To create the checkerboard outline,

a simple edge detection operator was run on the checkerboard to create the outlines

that are visible. The result is two images with the same edges, but different shading.

As can be seen in the power spectra, the checkerboard outline is comprised primarily

of horizontal and vertical signals, but the checkerboard has its strongest signals

based at 45◦ and −45◦. Although similar representations of the images, the bulk

statistics as determined from looking at the power spectra are quite different.



18 CHAPTER 3. IMAGE DATA

(a) (b)

(c) (d)

Figure 3.3: The outline of a checkerboard are shown (a) beside a checkerboard (b).
Their respective power spectra, used to show the effect of shading (discolouration),
are shown in (c) and (d). The visibility of the power spectra was enhanced with
a Gaussian smoothing operator. The yellow ticks are used to denote the image
centre.
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3.2 Data

The algorithms presented in Chapter 4 are designed to operate on a specific type

of image. The type of images being used for testing are described in this section.

3.2.1 Image Characteristics

An image is said to be stationary if the statistics – mean, variance and spectrum –

of any subset accurately describe the statistics of the entire image [20]. It is not an

uncommon practice to assume stationarity when data is only approximately station-

ary. Approximate stationarity is important in this problem because it constrains

the resulting sinusoidal coefficients from the Fourier transform to those frequencies

and orientations from a single texture. As a result, all energy in a power spectrum

derives either from the image being considered or from noise associated with that

image. It is assumed that the data under investigation in this work are approxi-

mately stationary.

Algorithms are designed with the end goal of analyzing images that will be

obtained from an epithelium undergoing deformation in the presence of external

forces. Experience has shown that it is reasonable to assume that cells in the

epithelium will align themselves along an approximately common orientation. Fur-

thermore, since forces are expected to be consistently distributed across the patch,

it is anticipated that aspect ratio metrics, while varying, are sufficiently similar that

estimates of the composite cell aspect ratio can be made by analyzing the problem

from a global perspective. That said, the following two primary assumptions are

made for the image data being analyzed:



20 CHAPTER 3. IMAGE DATA

1. Images will be approximately stationary; and

2. Cells will be approximately elliptical in shape.

Subtle variations are to be expected in the individual cell characteristics, but

it is assumed they will be approximately similar and that approximate stationarity

will hold. The second assumption states that these images will contain elliptically

shaped cells. Stationary images with such elliptically shaped elements in the spa-

tial domain tend to have elliptically shaped power spectrums as well. This is an

important relationship as it is the shape of the energy in the power spectrum that

will be characterized. That is, from the shape of the energy in the power spectrum

will be derived the bulk statistics that describe the composite cell.

3.2.2 Sinusoidal Imagery

The first image considered is a simple 2d sinusoidal image. This image is shown

in Figure 3.4. It consists of two sinusoids, the first running along the y-axis (90◦)

at 16cpi, and the second along the x-axis (0◦) at 32cpi. This image, although a

fairly simple test case with a very high signal-to-noise ratio due to its simple and

uninterrupted pattern, represents an important test case. With so little energy

external to the two sinusoids, it is not unreasonable to assume such an example

would present the simplest case for an algorithm. While some algorithms perform

well on such simple images, it will later be shown that it is not necessarily true for

even the most consistent algorithm developed.
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(a) (b)

Figure 3.4: A 2D image (a) comprised of one sinusoid at 32cpi along the horizontal
and another at 16cpi along the vertical. A small amount of Gaussian noise has been
injected. The power spectrum is shown in (b), after being smoothed by a Gaussian
filter and rescaled to improve visibility.
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3.2.3 Brodatz Imagery

Images taken from the Brodatz collection [4] represent the second class of test

images being considered. This collection has its own labelling convention – a letter

’D’ followed by an image’s number. The three images used will be Brick (D95),

rotated Brick (also D95, herein denoted D95R) and Woven Aluminum Wire (D1).

Images D95 and D95R have been slightly modified from their original state: half-

sized bricks that were interspersed with the full-sized bricks were removed to create

consistent brick sizes. These images and their respective power spectra are shown

in Figure 3.5.

These images were selected to demonstrate specific principles. While the bulk

statistics of the Brodatz imagery had to be calculated manually, they were tested

because their complexity lies between that of the 2d sinusoidal image and the

more complicated imagery of the following subsections. That is, these images are

well-structured and have more variation associated with them than a 2d sinusoidal

image but lack the individual cellular element variation that will be presented in

the following subsection. The ability of an algorithm to discern the major and

minor axis lengths of the composite cell is imperative, even in cases where there is

no obvious dominant orientation in the texture.

3.2.4 Artificial Cellular Imagery

The second set of data was chosen to more closely resemble actual cellular data.

Created by annealing Voronoi tesselations [11], these images are well suited to

testing the algorithms. Not only are the cellular elements shaped similar to actual



3.2. DATA 23

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Three Brodatz images and their respective power spectra are shown:
Brick (D95) in (a) and (d), Brick (D95R) rotated by 47.5 degrees in (b) and (e),
and Woven Aluminum Wire (D1) in (c) and (f). A logarithmic operator has been
applied to the power spectra to enhance visibility.
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(a) (b)

Figure 3.6: A synthetic mesh representing cells in an epithelium (a) and its power
spectrum (b). Because their bulk statistics are known a priori, meshes play an
integral role in the testing of the algorithms.

cells, but since they were artificially generated, their bulk statistics are known a

priori. The variable nature of the individual cellular elements add complexity that

was not present in the 2d sinusoidal and Brodatz imagery, and produces a more

dispersed power spectrum. An example of this artificial cellular imagery, a synthetic

mesh representing cells in an epithelium, is shown in Figure 3.6.

3.2.5 Natural Cellular Imagery

The final data set to be considered will be actual cellular data captured while

an axolotl epithelium is undergoing natural deformation (a) and in the presence

of external forces (b). The embryos from which these images are taken follow a

natural progression which is readily understood and well-documented. Each stage
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has specific characteristics associated with it and are categorized according to their

stage number in the progression [1]. The image undergoing natural deformation

was captured approximately 20 hours (Stage 8) into development. This image was

captured using a DAGE-MTI CCD-C72 camera and associated optics (Wild M420

microscope). The cells in the presence of external forces were captured approxi-

mately 60-70 hours (Stage 18) into development using a Sony XCD-X700 with a

Flolite 6000II zooms lens.

Shown in Figure 3.7, this data represents the most challenging example used in

testing the robustness of the algorithms. It also represents the data that this work

is seeking to ultimately characterize. As can be seen from the images, a number

of noise processes are present which make even visual inspection difficult. Two

illumination processes are present in the natural data: the natural discolouration

that exists in cells undergoing mitosis and the larger scale noise that is a result of

illumination during image capture (lighting and reflection). In addition, there are

at least three other noise processes occurring: one from the camera, another from

the noise inherent in capturing digital imagery and a more significant third related

to natural pigmentation variation within individual cells (unrelated to mitosis).



26 CHAPTER 3. IMAGE DATA
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Figure 3.7: Two images of natural cellular data are shown: (a) an image with
fairly distinct boundaries between cells and (b) an epithelial patch that has been
stretched by external forces. Their respective power spectra are shown in (c) and
(d). A logarithmic operator is applied to the power spectra to enhance visibility.
Additionally, due to the concentration of energy near the image origin, the power
spectra are displayed in colour to improve visibility.



Chapter 4

Methods

Four techniques were developed to extract the bulk statistics of a cellular texture:

Area Moments, Correlation and Ellipse Fitting, Gabor Filters and Least Squares

Ellipse Fitting. The first algorithm makes use of area moments to determine the

orientation and then applies localized statistical analysis to determine the major

and minor axis lengths. The Correlation and Ellipse Fitting method computes the

orientation by comparing correlation measures of rotated power spectrums and then

fits an ellipse to estimate the axis lengths. The third algorithm uses Gabor filters

to obtain a response at a particular filter configuration and attempts to maximize

that response by comparing values in the search space. The final method makes

use of efficient mathematical algorithms to determine the ellipse that minimizes the

sum of the squares of the distances between energy in the power spectrum and a

best fit ellipse.

The algorithm that makes use of Gabor Filter and the Correlation and Ellipse

Fitting method both employ exhaustive searches in their attempts to characterize

27
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the image under investigation. As these techniques were intended to be proof of

concept, such a search is considered sufficient. However, experimentation was con-

ducted to adapt these algorithms for use in an optimization framework. While test-

ing is far from complete on the optimization algorithms, their potential is promising.

As such, the optimization algorithm is described in detail in Section 4.5.

The Matlab code for all techniques described in this chapter can be found in

Appendix B. The Optimization code is in Appendix C.

4.1 Area Moments

Area moments provide information about geometric characteristics of an object

about a fixed point. Often used in engineering analysis, moments can be used

to determine the resistance, or lack thereof, of a body to angular acceleration. By

determining the centroidal moments (Iuu, Ivv) and product of inertia (Iuv), statistics

associated with an objects centroid, orientation and aspect ratio can be measured

[23]. These inertial measures, if applied to the power spectrum, are determined as

follows:

Iuu =
rows∑
v=1

cols∑
u=1

F(u, v) · v2 (4.1a)

Ivv =
rows∑
v=1

cols∑
u=1

F(u, v) · u2 (4.1b)

Iuv =
rows∑
v=1

cols∑
u=1

F(u, v) · u · v (4.1c)
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where u is the column index, v is the row index, rows is the number of rows, cols

is the number of columns and F is the image power spectrum [23].

After computing the inertial measures, the orientation of the composite cell

major axis can be computed as:

θ = arctan(
2Iuv

Iuu − Ivv

) (4.2a)

provided Iuu 6= Ivv. In the case that Iuu = Ivv,

θ =





π/4 if Iuv > 0

0 if Iuv = 0

−π/4 if Iuv < 0

(4.2b)

In terms of physical objects, area moments can be used to compute the orien-

tation and aspect ratio, provided the object is of uniform density. However, the

spatial-frequency representation of each image being investigated is not uniform in

density. As such, preliminary testing indicated that the natural variability and the

noise in the images rendered a direct approach using area moments to compute the

aspect ratio as infeasible.

In order to extract the frequency values required to characterize the aspect ra-

tio and density, a statistical method is applied following the computation of the

orientation. Figure 4.1 is used to help describe the process. All points within a

narrow three pixel band of the composite cell major axis were projected onto a line.

The major axis is the light blue coloured line and the narrow band is shown by the



30 CHAPTER 4. METHODS

(a) (b) (c)

Figure 4.1: A Statistical techniques for estimating cell lengths using Area Mo-
ments. Shown is the narrow band superimposed on the power spectrum in (a), the
projection (b) and the projection after smoothing (c).

yellow lines in Figure 4.1(a). This narrow band was chosen to minimize the effects

of high frequency noise while maximizing the contribution of local pixels. A plot

of the resulting projection is shown in Figure 4.1(b). A Gaussian smoothing filter

(µ = 0, σ = 1) is then applied to the projection (shown in Figure 4.1(c)) and the

coordinate associated with the maximum value, measured outward from the distri-

bution centre, was taken to be the frequency most representative of the composite

cell major axis length. A similar metric was obtained along the perpendicular axis

to obtain the length of the composite cell minor axis.

Along a given projection, this algorithm is only capable of producing whole-

valued measures of the major and minor axes. Results obtained by this algorithm

not presented as a whole number are a result of computing lengths that have been

rotated. Should more precise estimates be required, an interpolation of the points

along the smoothed projections could be performed.
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4.2 Correlation and Ellipse Fitting

Correlation between two variables is a measure of the extent to which a change in

one variable will affect the other [25]. The second technique to be presented applies

concepts central to correlation in order to compute a similarity metric. This metric

is then used to determine the orientation which best describes the nature of an

image’s power spectrum. Once the orientation is known, the algorithm maximizes

the energy per pixel of an ellipse that is fitted to the power spectrum. In addition

to an orientation, this ellipse is completely described by its major and minor axis

lengths. Both the orientation and the axes length determination algorithms utilize

exhaustive searches.

The orientation algorithm operates by attempting to align the major and minor

axes of the composite cell (and therefore, the power spectrum) with the u- and

v-axes. That is, the image is rotated by every integer value between −45◦ ≤ θ <

45◦. After each rotation, another image is created by “flipping” the rotated power

spectrum about the vertical axis, bisecting the origin. A third image is created by

flipping about the horizontal axis. A measure of similarity is obtained by summing

the dot products of the original image with the horizontally flipped image and the

dot product of the original image with the vertically flipped image. For a symmetric

image, the orientation that best aligns with the u- and v-axes would produce the

largest correlation measure. An example of a power spectrum that has been rotated

to align with the u- and v-axes is shown in Figure 4.2. Only those pixels in an circle

with a diameter equal to the length and width of the image are used in computing

orientation estimates. This algorithm is repeated at one decimal place of resolution



32 CHAPTER 4. METHODS

(a) (b)

Figure 4.2: The orientation estimation portion of the Correlation and Ellipse Fitting
algorithm. The original image (a) is rotated by a certain amount (b). A measure of
correlation can be obtained as to how closely the top (and left) half of image lines
up with the bottom (and right) half. The angle producing the highest similarity
measure corresponds to the orientation.

about the integer-valued orientation that produces the largest correlation to obtain

a more precise solution.

Three methods were considered for characterizing the major and minor axis

lengths. The first two, Power Spectrum Rescaling (PSR) and Chi-Squared Curve

Fitting (CSCF), did not work effectively. PSR, in a manner similar to the orienta-

tion algorithm, was based on a correlation process. Two identical power spectrums

were used, but with the second spectrum offset by 90◦ from the original. By adjust-

ing the level of rescaling, the height and width of the rotated power spectrum would

change while retaining its volume. The idea was that the largest correlation mea-

sure would result when the spectra had been rescaled so as to appear superimposed

immediately on top of one another. However, the presence of noise, image distor-

tion during rescaling and the nature variation of some power spectrums rendered
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(a) (b) (c)

Figure 4.3: Correlation and Ellipse Fitting axis length estimation algorithm. The
dot product is taken between ellipses with varying major axis lengths and aspect
ratios and a power spectrum (a). The ellipse producing the highest energy per pixel
best describes the power spectrum. In this example, the response from the ellipse
in (b) would have a higher energy per pixel than that in (c). Although (c) might
capture more energy, its energy per pixel would be lower than that from (b).

such a technique incapable of accurately gauging the geometric statistics.

The CSCF attempted to fit a chi-square curve to those points along the major

and minor axes. In doing so, it was thought that the spatial extent of the power

spectrum might also provide valuable information about the variation associated

with the estimates. Two contributing noise processes – low frequency noise resulting

from discolouration and high frequency noise resulting from variations in the size

and orientation of the individual cells in an epithelial patch – resulted in this method

not producing meaningful results.

The third method and that which is used in this algorithm attempts to find

an ellipse that best characterizes the power spectrum. This method functions by

performing an exhaustive search of major axis lengths and aspect ratios once the

orientation has been estimated.
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A binary image is created in which an ellipse about the image centre is created

for every value of major axis length and aspect ratio. All pixels in the ellipse

image on which the ellipse is found is assigned a value of 1, while all other pixels

are assigned a 0. The dot product of this ellipse image with the original power

spectrum is computed, which is then divided by the number of pixels comprising

the ellipse. This creates a measure referred to as the energy per pixel. The major

axis length and aspect ratio generating the largest energy per pixel are taken as

descriptives of the composite cell. An example is shown in Figure 4.3.

4.3 Gabor Filters

Gabor filters are a class of multi-channel filters capable of decomposing an image

into a collection of frequency and orientation texture features using multiple reso-

lution techniques [16]. That is, a 2-d Gabor filter can be designed to be sensitive

to specific frequencies and orientations. As a result, spatial images that do not

contain a specific frequency and orientation produce a negligible response to the

filter. Measuring the image response to a filter establishes a basis for determining

the suitability of a frequency and orientation metric in describing the image being

considered.

Gabor filters have received a great deal of attention because their multi-channel

nature mimics characteristics of the human visual system. In experiments with

human subjects, Rao and Lohse were able to identify several low-level features used

in texture perception [24]. Two of these features – periodicity and directionality –

correspond to the frequency and orientation, respectively, in the spatial-frequency
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domain [12].

Clausi and Jernigan [15] extended the notion of localized filters by comparing

different techniques used in generating texture features for the purpose of optimal

texture separability. As modulated Gaussian filters, the spatial-frequency domain

representation of the complex Gabor filter is given by:

H(u, v) = exp [−2π2{(u− F)2σ2
x + v2σ2

y}] (4.3)

where F is the spatial-frequency, u and v are the spatial-frequency coordinates,

and σx and σy are the standard deviations of the Gaussian component of the filter

in frequency and orientation, respectively, as determined by [19]:

σx =

√
ln 2(2BF + 1)√
2πF(2BF − 1)

(4.4)

σy =

√
ln 2√

2πF tan(Bθ

2
)

(4.5)

It was argued [15] on psychovisual grounds that the frequency bandwidth BF should

be set to one octave, and the angular bandwidth, Bθ, to 30 degrees for accurate

coverage and to achieve resolution similar to the human visual system. Two ex-

amples of spatial-frequency Gabor filters are presented in Figure 4.4. Figure 4.4(a)

has a frequency of 16cpi and is oriented at −45◦ (as measured counter-clockwise

from the horizontal axis), and Figure 4.4(b) is tuned to a frequency of 64cpi and

oriented at 30◦.

The magnitude response serves as the basis for this algorithm, which searches
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(a) (b)

Figure 4.4: Spatial-frequency Gabor filters are shown. They are configured to (a)
16cpi oriented at −45◦ and (b) 64cpi oriented at 30◦

for the filter configuration that produces the strongest magnitude response using

a brute force search. In this framework, filter responses are tested at every other

whole value of frequency in the range minFreq ≤ F ≤ maxFreq, and every third

whole valued orientation in the range −90◦ < θ ≤ 90◦, where minFreq and maxFreq

are dependent upon the image size and chosen to ensure sufficient coverage of the

filter in the search space. The frequency and orientation of the Gabor filter that

produces the strongest magnitude response will be associated with the orientation

and length of one of the axes from the bulk geometrical parameters. The algorithm

then refines the search down to the nearest decimal value in both orientation and

length.

Once one length and its orientation are known, it is then a matter of estimating

the second axis length. A one dimensional exhaustive search is then performed

along a ray perpendicular to the orientation described in the previous paragraph to

identify the frequency along that ray producing the strongest response. This will
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correspond to the second axis length of the bulk statistics. The larger of the two

length measures is returned as the major axis length and the angle associated with

that axis is assigned to the orientation.

4.4 Least Squares Ellipse Fitting

The objective of curve fitting is to find a mathematical equation that best describes

a set of points. Generally, those points represent a solid relationship (i.e. signal) in

the presence of non-ideal results (i.e. noise). Linear least-squares is a method which

is often employed to find the coefficients to linear equations that are a straight line

“best fit” to a data set. Shown in Figure 4.5(a) is an example of linear least squares.

Figure 4.5(b) shows an example of least squares ellipse fitting.

(a) (b)

Figure 4.5: Examples of least squares: linear (a) and ellipse fitting (b).

To accommodate for non-linear relationships between data sets, coordinate

transformations are often employed. For this technique, a specialized least squares

approach was used to calculate the coefficients of the equation for an ellipse to a
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set of data points.

Numerous methods have been developed for fitting ellipses to data points, each

with varying levels of success. Many of these techniques [3][26][27] attempt to fit

data points to a general conic and rely on an additional constraint to force the

solution into an ellipse. Fitzgibbon et al. [17] present a direct least squares based

ellipse specific method, and contrast this method to earlier ones. In this method,

the general conic is represented by the second order polynomial:

G(r,x) = r · x = as2 + bst + ct2 + ds + et + f = 0, (4.6)

where

r =

[
a b c d e f

]T

(4.7)

x =

[
s2 st t2 s t 1

]T

. (4.8)

To ensure an ellipse specific conic, the following constraint is applied:

b2 − 4ac < 0. (4.9)

Fitting a general conic to the data was then a matter of minimizing the sum of

the squared algebraic distances of the points to the conic. For a set of data points

(si, ti), i = 1 . . . N , this is represented by the coefficients r as determined by:

min
r

N∑
i=1

G(si, ti)
2 = min

r

N∑
i=1

(Gr(xi))
2 = min

r

N∑
i=1

(xi · r)2 (4.10)
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The minimization in Eq. 4.10 can then be solved using the rank-deficient gen-

eralized eigenvalue system:

DTDr = Sr = λCr (4.11)

where D =

[
x1 x2 . . . xn

]T

is called the design matrix, S = DTD is called the

scatter matrix and C is the matrix that expresses the constraint in Eq. 4.9, written

as:

min
r
‖Dr‖2 subject to rTCr = 1 (4.12)

To estimate the composite cell metrics, the image power spectrum was rescaled

between 0 and 1, and vectors of column (x) and row (y) coordinates were created

by creating a coordinate at each pixel for every 0.1 value of intensity. Such a

bin value was chosen to create enough points to sufficiently characterize the power

spectrum without disregarding too many pixels with small, but not insignificant,

intensities. After building the design and scatter matrices, the eigensystem in Eq.

4.11 can be solved and the eigenvector corresponding to r computed. The code used

for this algorithm was that presented in Fitzgibbon et al. [17] and subsequently

incorporated by the author.

4.5 Optimization

The techniques described in the previous sections each have their own inherent

subtleties that impact their computational complexity. In an attempt to reduce

the algorithm time, optimization techniques were explored. The area moments and

least squares techniques were purely statistical in nature and therefore could not
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benefit from search-based optimization methods. However, for those algorithms

that utilized Gabor filters and ellipse fitting, their objective value based decision

algorithms lend well to non-derivative optimization methods.

The optimization framework applied to these algorithms was based on the

method proposed by Hooke and Jeeves [18], which first appeared in 1961 as a

method of finding the best solution through the ‘sequential examination of trial

solutions involving comparison at each trial solution’. In this method, a ‘step’ is

taken from the frequency and orientation producing the current largest objective

value, the acceptability of that step is measured, and either the new parameters

are selected or a revision in the search step length is made.

Torczon was able to show that this optimization method, which is often referred

to as a pattern search, converges when a sufficient number of directions are con-

sidered in finding a suitable search direction, unnecessarily short steps are avoided,

and unsuitable steps are restricted [21][28]. These requirements were satisfied by

checking along basis directions of the rational lattice, establishing a lower limit on

step size (based on sampling accuracy), and structuring the objective function in

such a way as to avoid steps that are too long.

The algorithm presented herein was implemented as a two-state system, and

the automated optimization search continued until a sufficient decrease had been

observed. An initial point was chosen centred in the search space so as to maximize

coverage. The basis for the search were unit vectors of the search parameters of

interest.

The pattern search begins in State 1 and progresses as follows:
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Optimization Algorithm

State 1

An exploratory step is taken. This is done by doubling the step length, evalu-

ating the response in each of the four basis directions, selecting the best value and

comparing it to the current best point. If the result is improved, the step length

is maintained at double the original and the best point is returned as the current

point. If the result is not lower, the step length is returned to its original value and

similar exploratory steps are taken. If a better value is found, that point replaces

the previous point and the next iteration begins in State 1. Otherwise, State 2 is

entered.

State 2

The purpose of State 2 is to check for sufficient decrease. Upon entering State 2,

the step length is checked, and if sufficient decrease is not satisfied, the step length

is halved and the state machine enters State 1. If sufficient decrease is met, the

algorithm stops and the current location is returned as optimal.
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Testing

Each of the algorithms presented in Chapter 4 takes a unique approach to deter-

mining the orientation and major and minor axis lengths that best characterize

the individual cellular elements in an image. How the energy is distributed in each

of the power spectra on which they operate can significantly impact the effective-

ness of the techniques. By applying each algorithm to a collection of images, each

with different bulk statistics, the strengths and weaknesses of each method will be

explored.

The testing of the algorithms is broken down into four stages based on the

images shown in Section 3.2: a 2d sinusoidal image, three Brodatz images, eight

images of artificial cellular data and two images of natural cellular data.

A 2d sinusoidal image is the first data tested. The purpose of this image is to

introduce the algorithms with a simple and relatively noiseless image. The bulk

statistics are also known a priori from the sinusoid parameters. Brodatz imagery is

the second data set tested and is used to quantify the effectiveness of the algorithms
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on well-structured, natural-looking imagery. The images chosen from the Brodatz

collection were chosen because of their rectangular shaped cellular elements and

consistent pattern. The actual bulk statistical values of these images were measured

manually.

Artificial cellular data – synthetic meshes representing cells in an epithelium –

offer a variety of advantages in testing. By virtue of the manner in which they

are created, synthetic meshes have known bulk statistics. Images were made with

varying bulk statistics to test the ability of the algorithms to detect small changes.

As a result, this section represents the most comprehensive test set of the four.

Natural cellular imagery, the final data set to be tested, presents a major chal-

lenge to automated bulk statistic measuring algorithms due to their irregularly

shaped individual cellular elements and poorly defined boundaries. This makes de-

termination of the bulk statistics far more difficult relative to the other three image

types.

5.1 Test Results

The results of applying the automated bulk statistic measuring algorithms to a

variety of images is shown in this section. In the Brodatz imagery, the measured

bulk statistics are shown superimposed on the power spectra of images considered.

In the data sets that have smaller individual elements, a composite cell is shown

superimposed on a magnified section of the image. Acronyms of the algorithms to be

used throughout this thesis include: Area Moments (AM), Correlation and Ellipse

Fitting (CEF), Gabor Filters (GF) and Least Squares Ellipse Fitting (LSEF).
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Results are presented in units of degrees for orientation measured counter-

clockwise from the horizontal, cycles per image for major and minor axis length

in the power spectrum, aspect ratio and pixels for major and minor axis length in

the spatial image. Cycles per image is the original metric determined and pixels

(actual pixel length) is computed based on the orientation and the image size. The

orientation refers to the angle, in degrees, of the major axis of the composite cell

in a spatial image. In each table that displays the results, the algorithm that best

approximates the actual values will be italicized.

5.2 Sinusoidal Image

A 2d sinusoidal image presents an opportunity to introduce the algorithms on an

image with simple statistics. While the images do not conform to the assumption of

being elliptically shaped, they are certainly stationary. The results from applying

the algorithms to this image are shown in Table 5.1.

A graphical representation of the results are shown in Figure 5.1. Here, a

Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 90.0 16.0 32.0 2.0 16.0 8.0
CEF 0.0 1.0 16.0 16.0 256.0 16.0
GF 90.0 16.0 32.0 2.0 16.0 8.0

LSEF 90.0 16.0 32.0 2.0 16.0 8.0
Actual 90 16 32 2.0 16.0 8.0

Table 5.1: 2d sinusoidal image test results. Results are shown for a 2d sinusoidal
image with one sinusoid of 32cpi at 0◦ and a second at 16cpi at 90◦. Actual values
to manually measured.
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(a) (b)

(c) (d)

Figure 5.1: Graphical results for the 2d sinusoidal image. The original image is
shown in (a), along with the power spectrum in (b). The composite cell is shown
superimposed on the noiseless sinusoid for each of the algorithms: AM, GF and
LSEF (c), and CEF (d). The image has been magnified by a factor of 2.

composite cell is superimposed on the actual image. Since the cellular elements are

quite small, the composite cell is shown superimposed on a magnified portion of

the image. To demonstrate what is happening in the spatial-frequency domain, the

ellipses that best fit the power spectrum are shown super-imposed on the spectrum

in Figure 5.2.

As can be seen, three of the algorithms (AM, GF and LSEF) were able to

correctly estimate the bulk statistics. The CEF method was able to correctly
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(a) (b)

(c) (d)

Figure 5.2: Spatial-frequency graphical results for the 2D sinusoidal image. The
original image is shown in (a), along with the power spectrum in (b). The composite
cell is shown superimposed on the power spectrum of the image for each of the
algorithms: AM, GF and LSEF (c), and CEF (d). The power spectra in (c) and
(d) are shown magnified by a power of 2.
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identify the minor axis length, but assumed this to be the major axis.

The AM method uses the statistics of the whole image to obtain an axis of

rotation, treating the power spectrum like a physical object. With only four points

in the power spectrum, the area moments was able to easily identify the axis of

rotation, which corresponds to the orientation.

In estimating the orientation, the CEF method attempts to maximize a cor-

relation measure through a series of rotations. The algorithm, however, attempts

to maximize the per pixel energy. This resulted in the best-ellipse going through

only two of the points–those closest together and on the same axis. Expanding the

ellipse to the other two points, along the u-axis, in the power spectrum actually

resulted in a lower energy per pixel. For that reason, this method identified the

orientation of the minor axis and its length, but not that of the major axis.

In terms of its ability to measure the orientation, the GF algorithm is actu-

ally well-suited for images with clearly defined and approximately perpendicular

patterns. The method seeks out the highest value and temporarily assigns the

orientation estimate to that value. It then looks along the perpendicular for the

”next highest” value, which, if responsive to a higher frequency, is assigned to the

major axis length and the permanent orientation metric. The LSEF technique is

also well-suited to operating on images with strong signals in the power spectrum

in the presence of a small amount of high frequency noise.
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5.3 Brodatz Images

The Brodatz images chosen for this part of testing are important in demonstrating

the approach that each algorithm takes in estimating the bulk statistics. The Bro-

datz images are well-structured and, as a result, their power spectra have energy

concentrated at a relatively small number of points, although they are still signif-

icantly more dispersed than the simple two-signal sinusoidal image. It must also

be observed that while these Brodatz images satisfy the first assumption listed in

Subsection 3.2.1 – that the images are approximately stationary – they do not sat-

isfy the assumption of having individual cellular elements that are approximately

elliptical.

The results of applying the algorithms to the Brodatz images are shown in the

tables that follow: Brick (D95) (Table 5.2), Rotated Brick (D95) (Table 5.3) and

Woven Aluminum Wire (D1) (Table 5.4). Shown in Figure 5.3 are the graphical

results associated with the Brodatz Brick (D95) image.

The actual statistics associated with the composite cell of each image are shown

in their respective tables. Since no such information exists for the actual bulk

Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -2.3 7.0 11.0 1.6 36.6 23.3
CEF 0.0 2.0 10.0 5.0 128.0 25.6
GF 0.0 7.2 10.0 1.4 35.6 25.6

LSEF 0.4 9.9 24.1 2.1 25.6 10.6
Actual 0 4 10 2.4 64.0 25.6

Table 5.2: Brodatz Brick (D95) test results. Actual values to manually measured.
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statistics of the images presented, the values shown as actual were, in fact, measured

manually. The best-fit ellipses are also shown super-imposed on the image in Figure

5.3 and on power spectrum in Figure 5.4.

As can be seen, the orientation was measured with reasonable accuracy by each

of the algorithms. With the exception of the LSEF algorithm, each algorithm was

able to produce a reasonable estimate of the major axis length. However, obtaining

a consistent measure of the minor axis length proved challenging. The AM and

GF algorithms estimated a minor length that was approximately twice that of the

actual, indicating that these algorithms were perhaps identifying an aliased version

of the desired signal.

The CEF algorithm, which attempts to maximize the energy per pixel of an

ellipse fit to the power spectrum, identified 2cpi as the minor axis length. While

this is not correct, it is easily explained. While not as strong a signal as at 4cpi,

there is a signal at 2cpi associated with the large bricks. Since the ellipse that

intersects that signal would be smaller, it would also require less energy at 2cpi to

generate the same, or greater, energy per pixel that an 4cpi.

The LSEF method, which attempts to characterize the bulk statistics of an

image based on the overall shape of its power spectrum, was unable to identify

either of the axis lengths. By minimizing the sum of the squares of the distances

between the ellipse and the energy contributions at all pixels, this method is ill-

suited to identifying specific signals in a spectrum with additional energy located

relatively far from those signals this work is looking to identify.

The results from running the algorithms on the rotated Brodatz Brick image
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Graphical results for the Brodatz brick (D95) image. The image (a),
the power spectrum (b) and the composite cell is shown for each of the algorithms
(AM (c), CEF (d), GF (e) and LSEF (f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Spatial-frequency graphical results for the Brodatz Brick (D95) image.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown super-imposed on the power spectrum for each of the algo-
rithms (AM (c), CEF (d), GF (e) and LSEF (f)). The power spectra in (c)-(f) are
shown magnified by a power of 2.
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Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -46.5 6.0 11.0 1.8 58.8 32.1
CEF 47.7 1.0 11.0 2.5 346.1 31.5
GF -44.1 9.9 15.2 1.5 36.0 23.5

LSEF -47.1 8.5 22.7 2.7 41.1 15.4
Actual 47.5 5.4 13.6 2.7 64.0 25.6

Table 5.3: Rotated Brodatz Brick (D95R) test results.

(D95R), which is rotated by 47.5◦, are shown in Table 5.3. Figure 5.5 depicts the

graphical results associated with these results. The best-fit ellipses are also shown

super-imposed on the power spectrum in Figure 5.6.

As can be seen in the results shown in Table 5.3, only the CEF algorithm was

able to correctly identify the major axis orientation. However, each of the other

algorithms identified the axis perpendicular to the orientation (i.e. the minor axis

orientation). In this example, none of the algorithms correctly identified the minor

axis length, but the CEF algorithm was close. Although the AM and GF techniques

appears to have correctly identified the minor axis length in Table 5.3, since those

techniques calculated the orientation as offset by 90◦ from the actual orientation,

this metric corresponds with the major axis length. As such, it is incorrect.

In this test case, there is a strong signal associated with the minor axis in

the power spectrum. However, the increase in the number of periods along the

minor axis (due to the rotation away from the shorter horizontal and vertical axes)

increases the strength of those signal relatives to the major axis. This explains

why the algorithms fared less well than in the unrotated Brick (D95) image in

determining both the orientation metrics and the axis lengths.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Graphical results for the rotated Brodatz Brick (D95R) image. The
image (a), the power spectrum (b) and the composite cell is shown for each of the
algorithms (AM (c), CEF (d), GF (e) and LSEF (f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Spatial-frequency graphical results for the rotated Brodatz Brick
(D95R) image. The original image is shown in (a), along with the power spec-
trum in (b). The composite cell is shown super-imposed on the power spectrum
for each of the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)). The power
spectra in (c)-(f) are shown magnified by a power of 2.
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Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 2.8 16.0 26.0 1.6 16.0 9.9
CEF 0.0 9.0 13.0 1.4 28.4 19.7
GF 89.9 42.6 50.0 1.2 6.0 5.1

LSEF -4.8 41.5 53.8 1.3 6.2 4.8
Actual 0 8 13.3 1.7 32.0 19.2

Table 5.4: Brodatz Woven Aluminum Wire (D1) test results.

The results of running the algorithms on the third Brodatz image (D1), are

shown in Table 5.4. The orientation was estimated reasonably well by the AM, CEF

and LSEF algorithms. The CEF algorithm was the only algorithm to approximate

the actual length statistics. The graphical results associated with the Brodatz

Woven Aluminum Wire (D1) image are shown in Figure 5.7. The best-fit ellipses

are also shown super-imposed on the power spectrum in Figure 5.8.

This texture was unique in that it presented a second pattern of 16cpi in the

direction perpendicular to the dominant orientation. This can be seen as the white

divide in the rectangular shapes of the spatial image. The AM method was able to

identify this, but was unsuccessful in identifying a strong signal along the relatively

noisy, dominant v-axis of the power spectrum. Neither the GF nor the LSEF

methods produced any meaningful measure of cellular element length. The Woven

Aluminum Wire image has, as can be observed in its power spectrum (Figure

5.7(b)), a strong component along the diagonals. With the LSEF attempting to

minimize the sum of the square of the distance between a best ellipse and the energy

in the power spectrum, the dispersed power spectrum and the isolated energy away

from the statistics the algorithms were designed to characterize resulted in answers
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Graphical results for the Brodatz Woven Aluminum Wire (D1) image.
The image (a), the power spectrum (b) and the composite cell is shown for each of
the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)).



5.3. BRODATZ IMAGES 57

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Spatial-frequency graphical results for the Brodatz Woven Aluminum
Wire (D1). The original image is shown in (a), along with the power spectrum in
(b). The composite cell is shown super-imposed on the power spectrum for each
of the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)). The power spectra in
(c)-(f) are shown magnified by a power of 2.
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uncharacteristic of the spatial image statistics.

The GF algorithm incorrectly identified both the orientation and the axis lengths.

The reason that the axis lengths were identified was simply that the power spec-

trum contained a large number of individual strong signals that are spread out over

much of the spectrum. At higher frequencies, the filters were capturing energy from

more than one signal and each contributed to creating a larger response. The fault

in determining the orientation was a result of the GF algorithm’s method for identi-

fying its composite cell axis lengths. The method identifies the centre frequency of

the filter at which the maximum response is measured. This pixel has a character-

istic length L1 and orientation θ. The algorithm then searches along the ray from

originating at the image centre at an orientation of θ+90, the strongest response at

which is assigned to length L2. The larger of these two values (max(L1, L2)) corre-

sponds with the major axis of the ellipse best describing the shape of the energy in

the power spectrum. In this case, a stronger response happened to correspond with

the shorter power spectrum ellipse axis. As a result, the orientation is incorrect,

but not completely uninformative.

In these samples, and in the much larger set of images used during testing

and algorithm development, the orientation, or its perpendicular, could be con-

sistently measured within a few degrees of the observable textural alignment in

well-structured images by one or more of the algorithms. It is important to note

that the Brodatz images considered in this section clearly do not satisfy the as-

sumption of having elliptical cellular elements.
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5.4 Artificial Cellular Data

Synthetic meshes representing cells in an epithelium present an opportunity to test

the algorithms on cellular elements with well-defined boundaries in a relatively

noiseless environment. The images also satisfy the assumptions in that the cellular

elements are approximately elliptical and stationary.

The results of applying the algorithms to this artificial cellular data will be

shown as part of two data sets. The first collection of images have cellular elements

with fixed aspect ratios but varying orientation. The second set of images have a

fixed orientation with varying aspect ratios. The bulk statistics of the images are

known. However, the known values are not the major and minor axes lengths, but

rather, the aspect ratio (the ratio of the two lengths). Due to the very small size and

the irregular shape of the cells, manually measuring the lengths and orientations is

not only extremely difficult, but would also have a significant variability associated

with the accuracy. A single example will be shown in which the estimated values are

shown superimposed on the actual images. All other images are shown in Appendix

A. Only the composite cell shown superimposed on the spatial image is shown in

the appendix.

Table 5.5 shows the results from the first data set, in which cellular elements

have a consistent aspect ratio of 1.8, but varying orientations from 0◦ to 45◦. Shown

in Figure 5.9 are the graphical results of the image with θ=20◦ and κ=1.8. The

best-fit ellipses are also shown super-imposed on the power spectrum in Figure 5.10.

Whereas the algorithms operating on the Brodatz data set were capable of con-

sistently estimating the dominant orientation (or its perpendicular), such regularity
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Image One
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -0.5 32.0 65.0 2.0 7.4 3.6
CEF 0.0 31.0 57.0 1.8 7.6 4.1
GF -88.9 64.0 64.0 1.0 3.7 3.7

LSEF 1.4 70.9 85.7 1.2 3.3 2.8
Actual 0.1 n/a n/a 1.8 n/a n/a

Image Two
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 3.0 26.0 54.0 2.1 8.8 4.2
CEF 6.7 28.0 50.0 1.8 8.2 4.6
GF -81.0 55.0 62.0 1.1 4.2 3.7

LSEF -0.4 70.0 82.0 1.2 3.3 2.8
Actual 10.1 n/a n/a 1.8 n/a n/a

Image Three
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 8.7 28.0 38.0 1.4 8.2 6.0
CEF 16.9 25.0 45.0 1.8 9.4 5.2
GF -72.6 50.6 60.0 1.2 4.7 3.9

LSEF -4.3 68.8 79.8 1.2 3.3 2.8
Actual 20.3 n/a n/a 1.8 n/a n/a

Image Four
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -51.7 23.0 36.0 1.6 12.8 8.2
CEF 40.0 22.0 40.0 1.8 13.7 7.5
GF -49.3 43.6 62.0 1.4 7.0 4.9

LSEF -35.6 75.2 78.5 1.0 3.8 3.6
Actual 45.1 n/a n/a 1.8 n/a n/a

Table 5.5: Synthetic mesh data, fixed aspect ratio results. The aspect ratio is fixed
at 1.8 while the orientation varies between 0◦ and 45◦. Known values for this data
are θ and κ. Lmajor and ÃLminor were not measured due to the uncertainty that
would have been associated with manually measuring such a large number of small
cells.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Graphical results for artificial cellular data with θ=20◦ and κ=1.8
(Image #3 from Table 5.5). The original image is shown in (a), along with the
power spectrum in (b). The composite cell is shown superimposed on the image
(magnified by a factor of 4) for each of the algorithms: AM (c), CEF (d), GF (e)
and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Spatial-frequency graphical results for the Brodatz Woven Aluminum
Wire (D1). The original image (Image #3 from Table 5.5) is shown in (a), along
with the power spectrum in (b). The composite cell is shown super-imposed on the
power spectrum for each of the algorithms (AM (c), CEF (d), GF (e) and LSEF
(f)). The power spectra in (c)-(f) are shown magnified by a power of 2.
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did not exist with the more varied artificially generated cellular images. As is clear

if the power spectrum in Figures 5.5(b) and 5.9(b) are compared, the power spec-

tra of the synthetic cells were much less concentrated than those computed from

the Brodatz images. This is an important observation because the appearance

(distribution) of the power spectrum significantly impacts the effectiveness of an

algorithm in estimating the bulk statistics.

As can be seen from the results of Table 5.5, the methods capable of measuring

the orientation varied from case to case. However, it can be stated that the CEF

algorithm was able to identify the orientation with relative consistency, and the

GF algorithm routinely estimated a reasonable measure of the angle perpendicular

to the actual orientation. The LSEF and AM methods, while closer to one of the

axes’ orientations than not, were inconsistent in their estimates. The problems

associated with the LSEF algorithm were unique. The LSEF seeks to minimize

the sum of the squares of the distances between points on the ellipse and those in

the image. However, the information contained at the outer edges of the power

spectrum contributed relatively more than those in the elliptical band we were

seeking to characterize. As a result, the “best ellipse” fit to the data tended to

be pulled outward toward the sides of the power spectrum, resulting in an almost

circular characterization in every example. Due to this, the LSEF algorithm did

not produce meaningful results.

The GF method, like the LSEF method, was drawn towards the outer areas

of the images by the high frequency information in the power spectrum, and as a

result, measures of axis lengths were consistently high. Similarly, the AM method
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was attempting to physically, and then statistically, describe a shape that was too

dispersed to accurately distinguish.

The results from testing the second artificial data set is shown in Table 5.6. In

this example, the orientations are fixed at 30◦ and aspect ratios vary from 1.0 (i.e.

no dominant orientation) to 2.3.

With respect to performance, the results shown in Table 5.6 match closely with

those in Table 5.5. The CEF method performed quite well, only deviating away from

the known aspect ratio in a couple test cases. Once again, the GF algorithm was

able to correctly identify the orientation, but consistently generated poor estimates

related to axis length. The inability of the AM and LSEF methods to identify

either the orientation or the aspect ratio suggest that these techniques are poorly

suited to images with large variation in the individual cellular elements. Graphical

results of the composite cell shown superimposed on the spatial image are shown

in Appendix A.

Regarding the capacity of the algorithms to accurately estimate the bulk statis-

tics, in which we only have the orientation (θ) and aspect ratio (κ) on which to

base algorithm performance, only the CEF method produced consistent results.
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Image One
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 0.1 39.0 41.0 1.1 6.1 5.8
CEF -25.6 41.3 41.5 1.0 6.4 6.4
GF 79.2 50.3 64.0 1.3 4.8 3.8

LSEF 4.1 80.7 81.9 1.0 3.0 2.7
Actual 68.7 n/a n/a 1.0 n/a n/a

Image Two
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -74.6 32.0 33.0 1.0 7.6 7.4
CEF 22.4 28.0 43.0 1.5 9.1 5.9
GF -65.3 47.1 62.0 1.3 5.5 4.2

LSEF -9.4 75.6 81.2 1.1 3.2 2.9
Actual 30.3 n/a n/a 1.5 n/a n/a

Image Three
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -74.0 25.0 27.0 1.1 9.3 8.6
CEF 23.5 21.0 45.0 2.1 11.6 5.4
GF -61.6 43.9 60.0 1.4 5.8 4.2

LSEF -9.8 67.0 77.8 1.2 3.4 2.9
Actual 30.0 n/a n/a 1.9 n/a n/a

Image Four
Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM -73.9 23.0 36.0 1.6 10.4 6.6
CEF 26.9 20.0 41.0 2.1 12.8 6.3
GF -63.3 44.6 62.0 1.4 5.7 4.1

LSEF -10.4 65.2 80.5 1.2 3.6 2.9
Actual 30.0 n/a n/a 2.3 n/a n/a

Table 5.6: Synthetic mesh data, fixed orientation results. The orientation is fixed at
30circ while the aspect ratio varies between 1.0 and 2.3. Lmajor and ÃLminor were not
measured due to the uncertainty that would have been associated with manually
measuring such a large number of small cells.
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Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 90.0 5.0 6.0 1.2 90.0 75.0
CEF 97.9 5.0 7.0 1.4 90.9 64.9
GF 85.0 6.0 6.0 1.0 75.3 75.3

LSEF 93.8 7.8 13.4 1.7 56.4 33.7
Actual 85 8 13 1.6 56.5 34.7

Table 5.7: Natural cellular data with elongated cells results.

5.5 Natural Cellular Imagery

The final test set belongs to actual images of epithelial cells. In the synthetic meshes

considered in the previous section, the individual cellular elements were created by

linking each cell’s control points with a line. The result was a test image with ideal

illumination and an absence of high frequency noise. This data set, however, does

not possess such ideal characteristics.

The graphical results associated with the natural cellular image with elongated

cells are shown in Figure 5.11. The best-fit ellipses are also shown super-imposed

on the power spectrum in Figure 5.12.

The elongated cells depicted in Table 5.7 and in the Figures 5.11 and 5.12, de-

spite having poorly defined boundaries, have an apparent orientation approximately

along the y-axis. This corresponds to an elongation of the power spectrum distri-

bution in the u-direction. Since the bulk statistics for this imagery are not known

a priori, the actual results are only estimates measured manually. As can be seen

from the results, there is a large variation in the estimates derived to characterize

the image. The orientation values match approximately with the actual estimates.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Graphical results for the natural cellular image with elongated cells.
The image (a), the power spectrum (b) and the composite cell is shown for each of
the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Spatial-frequency graphical results for the natural cellular image with
elongated cells. The original image is shown in (a), along with the power spectrum
in (b). The composite cell is shown super-imposed on the power spectrum for each
of the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)). The power spectra in
(c)-(f) are shown magnified by a power of 4.
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Method θ Lmajor Lminor κ Lmajor Lminor

(cpi) (cpi) (pixels) (pixels)
AM 9.3 5.0 5.0 1.0 61.4 61.4
CEF 77.0 4.0 5.0 1.3 77.7 62.2
GF 22.0 6.9 8.4 1.0 47.4 38.9

LSEF 88.4 15.7 19.0 1.2 19.3 16.0
Actual n/a 17 17 1.0 17.8 17.8

Table 5.8: Natural cellular image with well-defined boundaries and no discernable
stretching. In this case, there was no discernable stretching. As a result, an aspect
ratio of approximately 1.0 was identified and the Lmajor and Lminor are recorded as
being equal.

The length metrics for all of the algorithms except the LSEF over-estimated the

actual cell’s spatial metrics. The LSEF method was able to almost exactly measure

the cell lengths. In the artificial cellular data, the spectra were very dispersed. This

resulted in large amounts of high frequency noise that tended to pull the ellipse out-

ward from what might be visually considered the best-fit ellipse. In this example,

however, the vast majority of the information is contained very near the origin.

Relatively, even with the squaring associated with the distance in the LSEF algo-

rithm, the best-fit ellipse remained close to the concentrated energy and produced

quite meaningful results.

The results from a natural image with well-defined boundaries are shown in

Table 5.8. In this case, no strong orientation exists. The same accuracy in length

associated with the LSEF algorithms was found in this example. The graphical

results associated with well-defined boundaries are shown in Figure 5.13. The best-

fit ellipses are also shown super-imposed on the power spectrum in Figure 5.14.

As can be seen from the power spectra in Figures 5.12 and 5.14, the hollow
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Graphical results for the natural cellular image with well-defined
boundaries. The image (a), the power spectrum (b) and the composite cell is
shown for each of the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Spatial-frequency graphical results for the natural cellular image with
well-defined boundaries. The original image is shown in (a), along with the power
spectrum in (b). The composite cell is shown super-imposed on the power spectrum
for each of the algorithms (AM (c), CEF (d), GF (e) and LSEF (f)). The power
spectra in (c)-(f) are shown magnified by a power of 3.
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elliptical shapes in the power spectra that were present in the artificially gener-

ated data are not present in the natural imagery. This shape is better described

as a Gaussian-like distribution centred on the origin. As a result, attempting to

characterize the shape with an ellipse was unlikely to generate meaningful results.

This explains why none of those algorithms (AM, CEF, GF) that attempted to

directly estimate the major and minor axis lengths failed. The LSEF algorithm,

which looks at a spectrum not in terms of orientations and lengths, but in terms

of mathematically minimizing a metric associated with its relative position to all

points in the spectrum, was able to generate meaningful results.

5.6 Comparison of Results

Of the algorithms implemented and discussed in this paper, several show promise

for estimating the bulk geometric statistics in specific types of images. The AM

algorithm performed well on the simple sinusoidal image, as well as some of the less-

dispersed Brodatz data. While not producing exact results, it was able to discern

the major axis in one example and a multiple of the original major axis (i.e. an

aliased version of the signal) in several others. However, its performance on the

artificial and natural cellular imagery indicates that it can not produce meaningful

results on this type of data.

The CEF algorithm has proven quite successful, most notably on images with

moderate to high shape variability in the individual cellular element statistics. On

the simplest example, the sinusoidal image, the CEF algorithm actually incorrectly

identified the minor axis as that of the major, and produced a minor axis value that
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was converging on zero. This result was also observed in the unrotated Brodatz

Brick image. This estimate is a result of the energy per pixel maximization of

the algorithm. For example, in the 2d sinusoidal image, despite the existence of a

strong signal at 32cpi, the energy per pixel was still lower when that axis of the

ellipse was close to the origin. This convergence to the origin could be restricted

by applying a minimum axis length constraint, but there is no guarantee that such

a condition would restrict the ellipse from converging to the constraint. The ellipse

will simply always move to where its energy per pixel is maximized. The CEF

algorithm was also the only algorithm of the four capable of routinely producing

accurate statistical results for the noisier artificial cellular data. However, the CEF

was unable to produce a meaningful description of the natural cellular data.

The algorithm based on the Gabor filter algorithm also performed well on the

sinusoidal image. On both the Brodatz images and the artificial cellular data, it was

unable to identify the major axis orientation, but in every case, estimated the angle

perpendicular to the desired orientation. The reason for this lies in the nature of

the algorithm, and is best explained by contrasting with another method. The CEF

algorithm operates by attempting to fit an ellipse to a set of data points. Inherent

in this method is the notion of bulk statistics and the composite cell. That is, in

fitting an ellipse, all statistics are used at once to get an overall picture of the power

spectrum. The Gabor filter algorithm, as implemented in this work however, does

not make use of all the bulk statistics at the same time. Instead, it seeks out the

individual maximum response and assigns the centre coordinates corresponding

to that filter to two of the bulk statistics. As a result, and in particular due to
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the large extent of the spatial-frequency Gabor filter at higher frequencies, pixel

locations at relatively large distances from the image centre tended to produce

stronger responses in power spectrums in which the energy was not concentrated

at only a few points. The algorithm often detected one of the desired signals, but

in searching along the perpendicular orientation, drifted out further to obtain a

stronger response. This led to a rotation in the major axis orientation.

The Least Squares Ellipse Fitting algorithm had varying results. It was able

to correctly identify the statistics in the simple sinusoidal image, made successful

approximations of the orientation in the Brodatz images, was unable to estimate

any worthwhile characterization of spatial statistics in the artificial cellular data

and was the only algorithm capable of correctly estimating the bulk statistics in

the natural cellular images. By attempting to minimize the sum of the squares of

the distances between the ellipse and pixels in the power spectrum, this method

is very sensitive to energy related to high-frequency noise or caused by natural

variability in the image being tested (i.e. the high-frequency components in the

artificial cellular data). However, the nature of the algorithm in characterizing

overall spectrum shape, rather than measuring localized areas of the spectrum,

proved advantageous in testing the natural imagery.

5.7 Computation Time

As with any automated algorithm, the length of time required to produce a result

can be a major factor in determining usefulness. In this section, we present the

length of time required for each algorithm on images of varying sizes. Square images
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Image Size AM CEF GF LSEF
(pixels)

16 0.1 8.1 1.0 0.1
32 0.3 19.3 5.1 0.2
64 1.3 71.8 42.6 0.9
128 5.4 532 615 3.5
256 21.8 5648 5191 14.0

Table 5.9: Computational requirements, in seconds, for algorithms based on image
size. Computation times are reported in seconds, as measured on a Pentium IV,
1.6GHz computer running Windows 2000 and Matlab 6.1.0.450 Release 12.1 with
512MB RAM.

with lengths of 32, 64, 128 and 256 pixels will be used. The results are shown in

Table 5.7. Computation times are reported in seconds, as measured on a Pentium

IV, 1.6GHz computer running Windows 2000 and Matlab 6.1.0.450 Release 12.1

with 512MB RAM, are shown in Table 5.9.



Chapter 6

Conclusion

A unique approach to estimating the bulk geometric statistics of a stationary image

was presented in this thesis. Four algorithms were developed to demonstrate the

utility in quantifying spatial statistics using spatial-frequency domain techniques.

This chapter contains a brief summary of the findings, a discussion of the limitations

facing such an approach and an elaboration on the future potential of the algorithms

developed.

6.1 Summary

Several of the algorithms developed in this thesis show promise in quantifying spa-

tial statistics in the spatial-frequency domain. Each technique will be discussed

separately.

The Area Moments technique proved useful when the images being considered

were well-structured and devoid of noise. In future work, they could very well be
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used on imagery matching this description.

The most promising method developed in this work, due primarily to its con-

sistency across data sets, was the Correlation and Ellipse Fitting algorithm. This

method was able to produce meaningful estimates for every image type except the

natural imagery. Further work conducted on this research should focus on advanc-

ing this method.

Gabor filters have proven enormously effective in feature extraction and texture

segmentation applications. However, unless constrained to determining the orien-

tation, their usefulness appears to be limited in the context of quantifying spatial

statistics of highly variable cellular textures.

Of the four algorithms, the Least Square Ellipse Fitting technique proved to be

ineffective on the Brodatz and artificial cellular data, but was the only algorithm to

correctly identify the bulk statistics in the natural cellular imagery. This technique

is highly sensitive to noise that is located at relatively distant pixels from the best-

fit ellipse. As a result, the ellipse that would best characterize the power spectrum

tended to be “pulled” away from its ideal location, resulting in almost circular

composite cells in images with high frequency noise or variability in the individual

cellular elements. However, in the natural cellular data, in which most of energy

was concentrated around the image centre, the best-fit ellipse seemed quite effective

in capturing the bulk statistics.
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6.2 Limitations

The results of applying the algorithms to a selection of images with increasing com-

plexity indicates that there is merit in using spatial-frequency domain techniques

to solve the problem outlined in this thesis. However, the varying results between

image test sets for each algorithm imply that the suitability of each algorithm is

limited to a certain type of data. As such, no algorithm can be used with a cer-

tainty of producing accurate statistical estimates without knowing more about the

nature of the cellular texture being considered.

The Correlation and Ellipse Fitting algorithm consistently produced strong re-

sults on the artificial cellular images. This effectiveness is related to the strong

elliptical shape of this test set’s spectra. It was believed that an algorithm that

was effective in characterizing the artificial cellular images would also be effective

in producing meaningful results when applied to the natural cellular imagery. How-

ever, the natural data set did not have the elliptically shaped power spectra that

the CEF algorithm was designed for. If the CEF algorithm is going to produce

meaningful results, the spatial image under consideration will need to undergo sig-

nificant pre-processing. Despite well-defined boundaries and fairly consistent cell

shape and size, the low frequency noise that is predominant in the power spectrum

will need to be reduced.

In addition to the natural noise processes present in the images, other factors

likely affected the performance of the algorithms. During the image capture process

for the natural cell images, a non-linear noise component may have been introduced

(i.e. reflectance and illumination). Improvements in the image capture process may
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help to minimize these imperfections.

In each algorithm, errors would have been introduced as a result of operating

on a digital image. This is a necessary trade-off between computation time, and

resolution and image size. In each computation that required decision-making based

on a neighbourhood of pixels, bicubic interpolation was performed. However, any

form of interpolation has associated imperfections.

6.3 Future Work

This thesis has demonstrated the utility in using the spatial-frequency domain to

quantify spatial statistics. However, there are opportunities to expand upon the

work in this thesis. General areas of improvement and technique-specific suggestions

are outlined in this section. Of those algorithms presented here, two have areas

where changes could significantly impact performance – LSEF and CEF.

While the LSEF algorithm was able to estimate the bulk statistics in the natural

imagery, its failure to perform well on the artificial cellular data, especially given

the strong elliptical shape of the spectra needs to be addressed. The fault in this

algorithm lies in the technique central to the naming – least squares. If instead of

summing the squares of the distances between pixels and the best ellipse, only the

absolute differences in distance were summed, pixels farther from the ideal ellipse

would have much less of an impact on determining the ellipse location. The current

methods, which make use of efficient matrix properties associated with squares,

would have to be abandoned and a more computationally expensive algorithm would

likely result. Such a change may lead to an improvement in the performance when
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testing the artificial cellular data while preserving the performance when testing

the natural data.

Another improvement that could be made to allow for a correct estimation of the

bulk statistics in the artificial cellular data while still employing the computation

efficient least square method would be to apply thresholding to the power spectra.

Even tiny amounts of noise or variations, if a sizable distance from optimal ellipse,

can significantly impact the estimate accuracy. By disregarding all pixel contribu-

tions below a certain intensity, which could be determined based on the variation

in the image, the LSEF could be made considerably more effective. Also, if the

algorithm were to be operating on a consistent type of calibrated image, it is not

unreasonable to assume that a threshold could remain constant for the duration of

testing, as similar images tend to have similar power spectrums.

The CEF and LSEF methods, as previously stated, varied as to which data

types they were effective with, but show the most promise for future work.

Image properties can significantly affect the performance of any algorithm. Since

we are looking exclusively at spatial-frequency domain techniques, it is important

that information related to spatial statistics are optimally captured. In order to best

characterize the bulk statistics, there must be sufficient periodicity in the cellular

elements to create strong signals. In the case of the natural imagery, this means

that the more cells exhibiting similar shape characteristics that can be captured

in one image, the stronger the spatial-frequency domain search space will be. For

future testing on natural cellular data, images should be captured with as great a

spatial extent with as many periods as possible.
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It is also worth noting that all of the algorithms, with the exception of the CEF

method, were able to estimate the spatial statistics of the simple 2d sinusoidal

image. Future direction for this work could lead to using different algorithms for

different data types, but via an automated estimation program that would select

the method most suitable for a certain type of image. If certain images required

more complex and computationally expensive algorithms, those would be available,

but if the spatial statistics could be estimated with a simple and quick method like

the AM or LSEF algorithms, such a decision could be made automatically.

It was originally stated that the images being considered in this thesis are ill-

suited to spatial domain techniques. This may be true, but to most effectively

describe the utility in employing spatial-frequency domain techniques, a comparison

should be drawn between the performance of spatial and spatial-frequency domain

techniques. A similar comparison made, but with varying pre-processing techniques

(i.e. smoothing, edge detection, homomorphic filtering, etc.) could provide insight

into the effect of such pre-processing on each algorithm.

This study presented a novel approach to solving a complicated computer prob-

lem. While there is room for improvement, results were produced that indicate

there is merit in employing spatial-frequency domain techniques to estimate spatial

statistics.



Appendix A

Additional Results

This appendix contains the remainder of the images showing the graphical results

from testing on the artificial cellular data.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Graphical results for artificial cellular data with θ=0◦ and κ=1.8. The
original image is shown in (a), along with the power spectrum in (b). The composite
cell is shown superimposed on the image (magnified by a factor of 4) for each of
the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Graphical results for artificial cellular data with θ=10◦ and κ=1.8.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown superimposed on the image (magnified by a factor of 4) for
each of the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Graphical results for artificial cellular data with θ=45◦ and κ=1.8.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown superimposed on the image (magnified by a factor of 4) for
each of the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Graphical results for artificial cellular data with θ=30◦ and κ=1.0.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown superimposed on the image (magnified by a factor of 4) for
each of the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: Graphical results for artificial cellular data with θ=30◦ and κ=1.5.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown superimposed on the image (magnified by a factor of 4) for
each of the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: Graphical results for artificial cellular data with θ=30◦ and κ=1.9.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown superimposed on the image (magnified by a factor of 4) for
each of the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.7: Graphical results for artificial cellular data with θ=30◦ and κ=2.3.
The original image is shown in (a), along with the power spectrum in (b). The
composite cell is shown superimposed on the image (magnified by a factor of 4) for
each of the algorithms: AM (c), CEF (d), GF (e) and LSEF (f).
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Matlab

This appendix contains the Matlab functions written to implement each of the

algorithms.

B.1 Area Moments

function results = am(im)

%

% am(im) takes a power spectrum ’im’ and returns the statistical

% information about the bulk statistics of the shape of the

% power spectrum it is analyzing. This algorithm functions

% by first using area moments to determine the orientation

% that the power spectrum is rotated by, and then uses

% projections and a smoothing operator to estimate the

% distance from the image centre at which ‘most’ of the power

% spectrum information is contained at.

% results will be reported as follows:

%

% results(1): orientation of the major axis in degrees
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% measured from the rightmost horizontal

% results(2): length of the major axis in cpi

% results(3): length of the minor axis in cpi

%

% Assumption: Power spectrum ‘im’ must be square.

%

imLength = length(im);

centre = ceil((imLength+1)/2-1) + 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%

% orientation estimation %

%%%%%%%%%%%%%%%%%%%%%%%%%%

% 2D matrix containing column and row pixel values

x=meshgrid(1:imLength,1:imLength);

y=meshgrid(1:imLength,1:imLength)’;

% Compute moment-based summations

x = x - centre;

y = y - centre;

a = sum(sum(double(im).*(x.*x)));

b = sum(sum(double(im).*(x.*y)))*2;

c = sum(sum(double(im).*(y.*y)));

determ = sqrt(b^2 +(a-c)^2);

if determ ~= 0

sin2theta = b/determ;

cos2theta = (a-c)/determ;

theta = atan2(sin2theta,cos2theta)/2;

else

theta = 0;
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sin2theta = 0; %sin(0)

cos2theta = 1; %cos(0)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% major and minor axis length estimation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Requires orientation from above in radians

% Create coordinate matrix

x = zeros(imLength);

y = zeros(imLength);

for i=1:imLength,

for j=1:imLength,

x(i,j) = j-centre;

y(i,j) = i-centre;

end;

end;

% Create 1X3 matrix of all (x-coord, y-coord, pixel intensity)

vec = zeros(imLength^2,3);

index = 0;

for i=1:imLength,

for j=1:imLength,

index = index + 1;

vec( index, 1 ) = x(i,j);

vec( index, 2 ) = y(i,j);

vec( index, 3 ) = im(i,j);

end

end

% Rotate coordinates by angle determined above
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newVec = zeros(length(vec),3);

for i=1:length(vec),

newVec(i,1) = vec(i,1)*cos(theta)-vec(i,2)*sin(theta);

newVec(i,2) = vec(i,1)*sin(theta)+vec(i,2)*cos(theta);

newVec(i,3) = vec(i,3);

end

% Ensure all coordinate values are integer valued. This is

% required since these will be matrix indices.

for i=1:length(vec),

newVec(i,1) = round(newVec(i,1));

newVec(i,2) = round(newVec(i,2));

end

% Create projection for major and minor axes

majorVec = zeros(length(vec),2);

minorVec = zeros(length(vec),2);

for i=1:length(vec),

majorVec(i,1) = newVec(i,1);

majorVec(i,2) = newVec(i,3);

minorVec(i,1) = newVec(i,2);

minorVec(i,2) = newVec(i,3);

end

% Compute minimum and maximum values of x and y coordinates

temp = max(newVec);

maxMajor = temp(1);

maxMinor = temp(2);

temp = min(newVec);

minMajor = temp(1);

minMinor = temp(2);
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% Determine length necessary for the projection

majorLen = maxMajor - minMajor + 1;

minorLen = maxMinor - minMinor + 1;

% Create axis for projection

majorProj = zeros(majorLen,1);

minorProj = zeros(minorLen,1);

% Project points onto the line

for i=1:length(majorVec),

if ( abs(newVec(i,2)) < 2 )

majorProj(newVec(i,1)-minMajor+1) = \\

majorProj(newVec(i,1)-minMajor+1) + newVec(i,3);

end

if ( abs(newVec(i,1)) < 2 )

minorProj(newVec(i,2)-minMinor+1) = \\

minorProj(newVec(i,2)-minMinor+1) + newVec(i,3);

end

end

% Zero pixel associated with image centre

majorProj( ceil( (length(majorProj)+1)/2) ) = 0;

minorProj( ceil( (length(minorProj)+1)/2) ) = 0;

% Rescale projection so max value = 1

SmajorProj = majorProj / max(majorProj);

SminorProj = minorProj / max(minorProj);

% Create 1D Gaussian for smoothing

xg = -20:0.5:20;

sig = 1;

g = exp( -xg.^2 ./ (2*sig^2) );
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% Convolve projections with Gaussian to smooth projection

yMajor = conv( SmajorProj, g);

yMinor = conv( SminorProj, g);

% Determine centre point of projection

yMajorStartPoint = ceil(length(yMajor)/2);

yMinorStartPoint = ceil(length(yMinor)/2);

% Create a new projection including only half the points

% along the projection. Points should correspond

% with being one pixel out from the image centre

newMajor = zeros(length(yMajor)-yMajorStartPoint,1);

newMinor =zeros(length(yMinor)-yMinorStartPoint,1);

for i=1:length(newMajor),

newMajor(i) = yMajor(yMajorStartPoint+i);

end

for i=1:length(newMinor),

newMinor(i) = yMinor(yMinorStartPoint+i);

end

% Determine max values and associated indices along

% projections

[val,majorVal]=max(newMajor);

[val,minorVal]=max(newMinor);

angle = theta*180/pi;

results = [-angle, majorVal, minorVal];
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B.2 Correlation and Ellipse Fitting

B.2.1 CEF Code

function results = cef(im)

% cef(im) takes a power spectrum ‘im’ and returns the

% statistical information about the bulk statistics of the shape

% of the power spectrum it is analyzing. This algorithm

% functions by first using a correlation technique to determine

% the orientation that the power spectrum is rotated by, and

% then a brute force ellipse fitting algorithm to determine the

% ellipse parameters resulting in the strongest energy per pixel.

%

% results will be reported as follows based on spatial-frequency:

%

% results(1): orientation of the major axis in degrees measured

% from the rightmost horizontal

% results(2): length of the major axis in cycles per image

% results(3): length of the minor axis in cycles per image

%

% Assumption: Power spectrum ‘im’ must be square.

% This section adds an row and column of zero padding if the power

% spectrum dimensions are not odd. This is done to compensate for

% the manner in which the built-in Matlab functions ‘flipud’ and

% ‘fliplr’ operate and ensures the image centre’s line up.

imLength = length(im);

if mod(imLength,2)==0

temp_im = zeros(imLength+1);

for i=1:imLength,

for j=1:imLength,

temp_im(i,j)=im(i,j);

end
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end

imLength=imLength+1;

im=temp_im;

end

% This section estimates the power spectrum orientation

max_corr = 0;

best_angle = 0;

for angle = -45:1:45,

% Create new image of image rotated by ‘angle’

rot_img = double(imrotate(im,angle,’nearest’,’crop’));

% Create new images by flipping image about the image

% centre (Matlab functions)

flip_hor_img = fliplr(rot_img);

flip_ver_img = flipud(rot_img);

% Compute a correlation measure

corr = sum(sum(rot_img.*flip_hor_img)) + \\

sum(sum(rot_img.*flip_ver_img));

% Compare correlation to current highest & replace if higher.

if corr > max_corr,

max_corr = corr;

best_angle = angle;

end

end

% Refine orientation search down to the nearest 0.1

% Same code as previous section, but to a more precise angle

for factor = -0.5:0.1:0.5,

angle = best_angle+factor;

rot_img = double(imrotate(im,angle,’nearest’,’crop’));

flip_hor_img = fliplr(rot_img);

flip_ver_img = flipud(rot_img);
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corr = sum(sum(rot_img.*flip_hor_img)) + \\

sum(sum(rot_img.*flip_ver_img));

if corr > max_corr,

max_corr = corr;

best_angle = angle;

end

end

% Need to multiply by -1 because orientation algorithm above

% actually rotates power spectrum opposite to the orientation

% when computing the correlation

best_angle = -best_angle;

% This section estimates the major and minor axis lengths by

% employing an ellipse fitting brute force search

max_resp = 0; best_major = 0;

centre = ceil((imLength+1)/2-1)+1; % ellipse centre

thickness=1; % thickness of ellipse to draw

theta = best_angle*pi/180; % convert best_angle to radians

% Create ellipses for varying major and minor axis lengths. That

% generating the highest energy per pixel corresponds to the

% best ellipse. a=major axis, b=minor axis.

for a=1:floor(0.65*imLength/2),

for b=1:floor(0.65*imLength/2),

% Create ellipse

testImage = rescale( \\

make_ellipse(centre,centre,theta,a,b,thickness,imLength) );

% Compute energy per pixel

resp = sum(sum( im .* testImage ) ) / sum(sum(testImage));

% If higher energy per pixel, change stored values

if resp>max_resp

max_resp = resp;
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len_one = a;

len_two = b;

end

end

end

% Refine Axis Lengths Measurement

% Same code as previous section, but to a more precise value

len_one_temp = len_one;

len_two_temp = len_two;

for a_factor = -0.5:0.1:0.5,

for b_factor = -0.5:0.1:0.5,

a = len_two + a_factor;

b = len_one + b_factor;

testImage = rescale( \\

make_ellipse(centre,centre,theta,a,b,thickness,imLength) );

resp = sum(sum( im .* testImage ) ) / sum(sum(testImage));

if resp>max_resp

max_resp = resp;

len_one_temp = a;

len_two_temp = b;

end

end

end len_one = len_one_temp;

len_two = len_two_temp;

% The bulk statistics are analyzed. The longest axis is chosen

% as the ellipse major axis, and the orientation is assigned

% the value associated with this axis. The minor axis length

% is the smaller of the two lengths.

if len_one > len_two

theta = best_angle;
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major_len = len_one;

minor_len = len_two;

else

if (best_angle>=-90) & (best_angle<=0)

theta = best_angle + 90;

else

theta = best_angle - 90;

end

major_len = len_two;

minor_len = len_one;

end if theta>90

theta = theta - 180;

elseif theta<-90

theta = theta + 180;

end

% results are returned as the ellipse parameters in the SF domain.

results = [theta, major_len, minor_len];

B.2.2 CEF Function Calls

function outimg=make_ellipse(x,y,theta,maj,min,thickness,N)

% make_ellipse(x,y,theta,a,b,thickness,N)

%

% This routine plots an ellipse with centre (x,y), axis lengths a,b

% with major axis at an angle of theta (radians) from the

% horizontal, in an NxN image.

%

% Assumption: Power spectrum ‘im’ must be square.

if nargin<5,

error(’Too few arguments to Plot_Ellipse.’);

end;
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np = 1000;

ang = [0:np]*2*pi/np;

pts = [x;y]*ones(size(ang)) + \\

[cos(theta) -sin(theta); sin(theta) cos(theta)] * \\

[cos(ang)*min; sin(ang)*maj];

outimg = zeros(N);

for i=1:size(pts,2),

if (pts(1,i) >= 1)&(pts(2,i) >= 1)&(pts(1,i) <= N)&(pts(2,i) <= N)

outimg(round(pts(1,i)),round(pts(2,i))) = 1;

end

end outimg = double(imdilate(outimg,ones(thickness)));

B.3 Gabor Filters

B.3.1 GF Code

function results = gf(im)

%

% gf(im) takes a power spectrum ‘im’ and returns the statistical

% information about the bulk statistics of the shape

% of the power spectrum it is analyzing. This algorithm

% functions by using gabor filters to determine the orientation

% that the power spectrum is rotated by and the major axis

% lengths that best describes the width of elements in a

% cellular texture. It them identifies the minor axis length

% using a similar search.

%

% results will be reported as follows, all as spatial frequency

% statistics:

%

% results(1): orientation of the major axis in degrees measured
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% from the rightmost horizontal

% results(2): length of the major axis in cycles per image

% results(3): length of the minor axis in cycles per image

%

% Assumption: Power spectrum ‘im’ must be square.

imLength = length(im);

initialSearchSpacing = 3;

% Determine range of search space. min/max frequency are determined

% based to ensure Gabor filter overlap with edges beyond two

% standard deviations does not occur

minFrequency=ceil( sqrt(log(4))/(sqrt(log(4))-1));

maxFrequency=floor((imLength-2)/2*sqrt(log(4))/(sqrt(log(4))+1));

% This section performs a brute force search for strongest the

% response. This value will correspond with the

% orientation of one of the axis lengths

max_resp = 0;

best_ang = 0;

len_one = 0;

for freq=minFrequency:2:maxFrequency,

for ang=-90:2:90,

% Determine response

resp = mag_response( im, ang, freq );

if resp > max_resp

max_resp = resp;

len_one = freq;

best_ang = ang;

end

end

end



B.3. GABOR FILTERS 103

% Search refinement

for freq_factor=-1:0.1:1,

for ang_factor=-1:0.1:1,

freq = len_one + freq_factor;

ang = best_ang + ang_factor;

resp = mag_response( im, ang, freq );

if resp > max_resp

max_resp = resp;

len_one_temp = freq;

best_ang_temp = ang;

end

end

end len_one=len_one_temp best_ang=best_ang_temp

% This section searches along the ray perpendicular to the

% orientation measured in the previous section. The

% strongest response is recorded as the second axis length.

max_resp = 0;

len_two = 0;

for freq=minFrequency:2:maxFrequency,

resp = mag_response( im, best_ang+90, freq );

if resp > max_resp

max_resp = resp;

len_two = freq;

end

end

% Search refinement

for freq_factor=-1:0.1:1,

freq = len_two + freq_factor;

resp = mag_response( im, best_ang+90, freq );

if resp > max_resp

max_resp = resp;
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len_two_temp = freq;

end

end len_two = len_two_temp;

% The bulk statistics are analyzed. The longest axis is chosen

% as the ellipse major axis, and the orientation is assigned

% the value associated with this axis. The minor axis length

% is the smaller of the two lengths.

if len_one > len_two

theta = best_ang;

major_len = len_one;

minor_len = len_two;

else

if (best_ang>=-90) & (best_ang<=0)

theta = best_ang + 90;

else

theta = best_ang - 90;

end

major_len = len_two;

minor_len = len_one;

end if theta>90

theta = theta - 180;

elseif theta<-90

theta = theta + 180;

end

% results are returned as the ellipse parameters in the SF domain.

results = [theta, major_len, minor_len];

B.3.2 GF Function Calls

function resp = mag_response( im, ang, freq )

%
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% mag_response(im, ang, freq) takes a power spectrum ‘im’, an angle

% ‘ang’ (in degrees) and a frequency ‘freq’ (in cycles per image)

% and returns the resulting magnitude response of applying

% a Gabor filter with parameters ‘ang’ and ‘freq’ to ‘im’.

%

% Assumption: Power spectrum ‘im’ must be square.

imLength = length(im);

% Create Gabor Filter based on freq and ang

gS = complex_sf_gabor(freq,ang,imLength);

% Filter image in spat-freq domain

gimS = (gS.*im);

% Bring filtered image back to spat domain

gimS = ifft2(ifftshift(gimS));

% Determine magnitude response via real & imaginary components

m_gimS = sqrt( real(gimS).^2 + imag(gimS).^2 );

% Calculate average response based on image size

resp = sum(sum(m_gimS));

function [result]=complex_sf_Gabor(freq, ang, imLength)

% complex_sf_Gabor(freq, ang, imLength) generates a complex

% spatial-frequency domain Gabor filter. Frequency ‘freq’

% must be in cpi and angle ‘ang’ in degrees. Angular and

% frequency bandwidths of the Gabor filter are chosen to be

% similar to the human visual system.

%

% For details in filter construction, see:

% D.A. Clausi and M.E. Jernigan, "Designing Gabor filters for

% optimal texture separability". Pattern Recognition,

% 33, 1835-1849, 2000.

%

% Two imLength-by-imLength basis matrices are created
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[u,v]=meshgrid(-0.5:1/imLength:0.5-1/imLength, \\

-0.5:1/imLength:0.5-1/imLength);

% Filter bandwidth chosen to match human visual

% system sensitivity

Bf = 1;

Btheta = pi/6;

% angle ‘ang’ is converted to radians (from degrees)

ang = ang * pi / 180;

% Basis matrices are rotated by ‘ang’ radians

if (ang == 0)

up = u;

vp = v;

else

up = xrotate(u,v,ang);

vp = yrotate(u,v,ang);

end

% Frequency tuning is based on the length of the image. As

% such, must convert from cpi to ratio with image length.

if freq~=0

freq = freq/imLength;

else

freq = 1;

end

% Gaussian standard deviation parameters are determined

sigmax = ( sqrt(log(2))*(2^Bf+1) )/( sqrt(2)*pi*freq*(2^Bf-1) );

sigmay = sqrt(log(2))/(freq*pi*sqrt(2)*tan(Btheta/2));

% Create modulated Gaussian
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result = exp(-2*pi^2*(((up-freq).^2)*sigmax^2+(vp.^2)*sigmay^2));

B.4 Least Square Ellipse Fitting

function results = LSEF(im)

%

% lsef(im) takes a power spectrum ‘im’ and returns

% the statistical information about the bulk statistics of the

% shape of the power spectrum it is analyzing. This algorithm

% functions by fitting an ellipse to the data using least

% squares.

%

% This is information is of the form:

%

% results(1): orientation of the major axis in degrees

% measured from the rightmost horizontal

% results(2): length of the major axis in cpi

% results(3): length of the minor axis in cpi

%

% Assumption: Power spectrum ‘im’ must be square.

% Measure image dimensions

imLength = length(im);

% Pixel intensities are broken into individual points based on

% ‘stepsize’. In this case, it is set to 0.1. Therefore, a

% pixel location with an intensity of 0.72 would have seven

% points associated with its location.

points = zeros(imLength);

stepSize = 0.10;

count = 0;

for i=1:imLength,
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for j=1:imLength,

if im(i,j)>stepSize

num = floor(im(i,j)/stepSize);

points(i,j) = points(i,j) + num;

count = count + num;

end

end

end

% Create and fill x and y vectors, and fill with binned points

x = zeros(count,1);

y = zeros(count,1);

count = 0;

for i=1:imLength,

for j=1:imLength,

for k=1:points(i,j)

count = count + 1;

x(count) = j;

y(count) = i;

end

end

end

% Determine bulk statistics using ‘fitellipse’ least squares

% algorithm of Fitzgibbon et al., The ‘fitellipse’ function

% call is described and available as Matlab code in the

% following paper:

%

% Fitzgibbon, M. Pilu , R.Fisher, "Direct least-square

% fitting of Ellipses", IEEE PAMI, June 1999.

%

a = fitellipse(x,y);
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ang = a(5)*180/pi;

maj = a(3);

min = a(4);

results = [ang, maj, min];



Appendix C

Optimization Matlab

This appendix contains the Matlab code associated with the optimization algo-

rithms. This algorithm was used with the Gabor filter algorithm, but could be ex-

panded to include the ellipse fitting segment of the Correlation and Ellipse Fitting

algorithm. While the Gabor filter has three parameters that need to be computed,

for simplicity, this algorithm is presented using only a two parameter optimization.

C.1 Pattern Search

function [values]=pattern_search_optimization( im );

%

% pattern_search_optimization(im) takes a power spectrum ‘im’

% with DC component set to zero and returns the orientation

% and frequency pair that generate the largest response

% from a Gabor filter.

%

% [values] will be reported as follows:

% values(1): orientation in degrees, measured counter-

% clockwise from the u-axis.

% values(2): frequency in cycles per image.
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%

% Assumption: Power spectrum ‘im’ must be square.

%

% Dimensions of image. Used to determine upper and

% lower bounds. minFreq and maxFreq represent constraints

% on the permissible search space. Orientation is

% automatically set to look between -90 and 90 degrees.

imLength=length(im); minFreq =

ceil(sqrt(log(4))/(sqrt(log(4))-1));

maxFreq=floor((imLength-2)/2*sqrt(log(4))/( sqrt(log(4))+1 ) );

% The algorithm searches along a rational lattice. With this

% in mind, a search basis much be created. Unit vectors, one

% associated with orientation and the other with frequency

% are used.

basis = [0,1;0,-1;1,0;-1,0];

% stepData holds information relevant to the optimization

% algorithm. Since the optimization functions by moving

% around in the search space, stepData(1) defines the

% current movement length, and stepData(2) defines the

% minimum allowable step length (i.e. the accuracy of

% the final answer).

stepData = zeros(1,2);

stepData(1) = min([(imData(5)-imData(4))/4,32 ] );

stepData(2) = 0.5;

% pointData is the vector that holds information about the

% current best solution

% pointData = [best_response_value, best_angle, best_frequency]

pointData = [ 0, 0, (maxFreq-minFreq)/2];
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% Initialize optimization state machine. The optimization

% algorithm has two states: exploring and reducing step

% length. ‘stop’ is used as a flag to denote the algorithm

% has achieved the desired accuracy in measurement.

temp_values=zeros(1,5);

state = 1;

stop = 0;

while (stop == 0)

% take an exploratory step

if state==1

temp_values = exploratory_moves( \\

IM, pointData, basis, stepData(1), minFreq, maxFreq);

if temp_values(5)==1

% values(5) is a flag to denote the new ’best-values’ have

% been obtained. This conditional updates the pointData

% information. If not improve was found in the exploratory

% steps, state 2 is entered.

pointData(1) = temp_values(1);

pointData(2) = temp_values(2);

pointData(3) = temp_values(3);

stepData(1) = temp_values(4); % current step length

else

state = 2;

end

else % check for sufficient decrease

if stepData(1)>=stepData(2)

stepData(1) = stepData(1)/2;

state = 1;

else

stop=1;
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end

end

end

values = [pointData(1), pointData(2)]

C.2 Pattern Search Function Calls

function [value] = exploratory_moves(im, pointData, basis,

step_length, minFreq, maxFreq);

bestx = zeros(1,2); % current best orientation and frequency

bestf = pointData(1); % current highest response

% param contains values important to keeping track of the optimization

% and passing information back and forth between this function

% and the pattern search itself

% param(1) = current highest response

% param(2) = current best orientation

% param(3) = current best frequency

% param(4) = current step_length

% param(5) = improvement flag (1=>higher response found)

param = zeros(1,5);

x = zeros(1,2); % temporary orientation & frequency register

% Start exploratory search by doubling the step length

% i.e. taking bigger steps

step_length = 2*step_length;

% Search along each of the basis direction at a distance

% step_length and check each response to see if it is

% higher than that already computed

for i = 1:length(basis),
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search_dir = [basis(i,1),basis(i,2)];

% x(1)=orientation, x(2)=frequency

x(1) = pointData(2) + step_length*search_dir(1);

x(2) = pointData(3) + step_length*search_dir(2);

% Determine response. See code in Appendix B.3.1

f = mag_response( im, x(1), x(2) );

% Check if there was an improvement in response. If so

% update temporary ’best’ registers

if f>bestf

bestx = x;

bestf = f;

end

end

% Check to see is there was an improvement between in

% response. If so, update param register and set

% improvement falg (param(5)) to 1.

if bestf < pointData(1)

param(1) = bestf;

param(2) = bestx(1);

param(3) = bestx(2);

param(4) = step_length;

param(5) = 1;

end

if value(5)==0

step_length = step_length/2;

for i = 1:length(basis),

search_dir = [basis(i,1),basis(i,2)];

% x(1) = Orientation, x(2) = Frequency

x(1) = pointData(2) + step_length*search_dir(1);

x(2) = pointData(3) + step_length*search_dir(2);
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% Determine response. See code in Appendix B.3.1

f = mag_response( IM, x(1), x(2) );

% Check if there was an improvement in response. If so

% update temporary ’best’ registers

if f>bestf

bestx = x;

bestf = f;

end

end

% Check to see is there was an improvement between in

% response. If so, update param register and set

% improvement flag (param(5)) to 1.

if bestf>pointData(1)

param(1) = bestf;

param(2) = bestx(1);

param(3) = bestx(2);

param(4) = step_length;

param(5) = 1;

% Else pass back updated step length, set improvement

% flag (param(5)) to 0, and restore pointData values

else

param(1) = pointData(1);

param(2) = pointData(2);

param(3) = pointData(3)

param(4) = step_length;

param(5) = 0;

end

end
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