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Abstract— A method is proposed to determine the average cel-
lular geometry in high-resolution images of embryonic epithelia.
The concept of a ‘composite cell’ is used to represent the average
cell shape. This composite cell can provide evidence of stresses
present in the epithelia. A new adaptive contrast enhancement
routine is applied to the input image first, followed by an
iterative watershed segmentation. The composite cell is calculated
from the segmentation results. Qualitative results show that this
computationally inexpensive algorithm produces accurate results
for a variety of image sizes, contrast levels, cell shapes and
appearances.

Index Terms— composite cell, adaptive contrast enhancement,
watershed segmentation, shape detection.

I. INTRODUCTION

THERE are many applications for shape recognition, such
as automated product inspection and image data mining.

This paper proposes an approach to one such application:
determining the average cellular geometry in high-resolution
images of embryonic epithelia. This approach is shown to
be computationally inexpensive and robust to different image
sizes, contrast levels, cell shapes and appearances. An example
embryonic epithelium image is shown in Figure 1.

This technique is part of a larger research project headed by
G.W. Brodland at the University of Waterloo who is modelling
the biomechanical causes of embryonic development. This is
being done to determine the cause of birth defects such as
spina bifida, a condition which occurs when the spine forms
incorrectly early in the development process. It is believed that
physical stresses occurring in the epithelium form the basis of
the occurrence of this condition. It has been shown that these
stresses are related to the shape of the epithelium cells [1].

To describe the average cellular geometry of a given patch
of the epithelium, Brodland and Veldhuis developed the idea of
an elliptical ‘composite cell’ [2]. The composite cell represents
the average shape of cells in the patch. The shape of this
composite cell gives information on the overall direction and
magnitude of stresses in the patch. The composite cell is
completely quantified by three parameters: its orientation (θ,
the angle of its major axis from the horizontal) and the lengths
of its major and minor axes, Lmajor and Lminor, respectively
as shown in Figure 2. The goal of the algorithm described in
this paper is to calculate the composite cell parameters from
a digital image of a patch of an embryonic epithelium.

Puddister approached this problem by first transforming the
image into the frequency domain, then using the shape of the
spectrum to infer the average cell shape and size [3]. This,

Fig. 1. Example input embryonic epithelium image

Fig. 2. The composite cell is defined by its orientation θ and its major and
minor axes, Lmajor and Lminor

however, suffered because many cell pattern repetitions (and
hence high quality, large images) are required to produce a
usable frequency spectrum. As shown in the example input
image, this cannot be assumed. Most other multiple shape
recognition algorithms use a priori shape information to detect
a desired shape in an image [4], [5]. This does not work for
the given problem, however, since the cells need to be detected
whatever their shape. These two aspects (large, high-quality
images, and a priori shape information) are not required in
the proposed algorithm. The algorithm can detect any convex
cell shape, including the case where only a small number of
cells can be detected.

There are three main stages in this method, as shown in
Table I. First, local and global contrast problems are addressed
through the application of a new adaptive contrast enhance-
ment routine. Next, an iterative watershed segmentation tech-
nique is used to detect individual cells. Finally, a statisticsProceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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TABLE I

ALGORITHM SUMMARY. INPUT IS EMBRYONIC EPITHELIUM IMAGE,

OUTPUT IS θ, Lmajor AND Lminor THAT DEFINE COMPOSITE CELL

Step Description Parameters
1 Adaptive contrast enhancement
1.1 Calculate local averages r
1.2 Apply local sigmoidal transfer fcns m
2 Iterative watershed segmentation
2.1 Take image complement

loop
2.2 Apply extended-minima transform d
2.3 Apply imposed-minima transform
2.4 Perform watershed segmentation
2.5 Decrement d ddec

2.6 exit if min # segments found nmin

end loop
2.7 Remove boundary segments
3 Calculation of composite cell
3.1 Find centroid of each cell
3.2 Find median 16 ray directions
3.3 Fit ellipse to find θ, Lmajor and Lminor

calculation routine is applied to calculate the composite cell.
The organisation of this paper is as follows: in Sections II-IV,
the three major stages outlined above are presented. Results
are given in Section V, future work is outlined in Section VI
and conclusions are drawn in Section VII.

II. ADAPTIVE CONTRAST ENHANCEMENT

The purpose of this step is to increase the local contrast
of the input image, fin(x, y), to make the image appropriate
for watershed segmentation. Global contrast problems, such as
illumination variation (due to microscope lighting) as well as
local contrast problems, introduced during image acquisition
or due to the pigmentation of the cells, are corrected. For
example, the patch of cells in Figure 1 shows a severe illumina-
tion variation and contains cells of varying pigmentations. To
correct for these problems, an adaptive contrast enhancement
algorithm is used.

There are many adaptive contrast enhancement algorithms
in the literature from which to choose. An adaptive version
of unsharp masking is suggested by Polesel et. al [6] and a
multiscale contrast enhancement method suggested by Boc-
cignone [7] both use measures of local contrast to decide on
the amount of enhancement needed. However, the extended-
minima transform (see description in the next section) in the
watershed segmentation algorithm needs only a minimum level
of contrast to detect the locations of cells. For this reason the
local contrast does not need to be measured, and contrast can
simply be enhanced everywhere in the image. An adaptive
histogram equalisation algorithm [8] was also considered. This
algorithm is computationally expensive, however, because it
requires the calculation of the ordered set of local intensi-
ties. It was therefore decided to develop a computationally-
inexpensive algorithm that enhances local contrast everywhere
in the image.

The developed algorithm involves spreading local pixel
intensities away from a local average through use of a sliding
sigmoidal transfer function. This achieves the desired contrast
enhancement. The algorithm is described in the following
subsections.

Fig. 3. Sigmoid transfer functions for average local intensities of 0.3, 0.5
and 0.7. (m = 10)

A. Local Average Calculation

A calculation of local average intensities is done by masking
the input image fin(x, y) with a uniform circular local-
averaging mask, hr(m,n), where r is the mask radius in
pixels. This local average is used to position the sigmoidal
transfer function as described in the next subsection. The
resulting image is simply:

favg(x, y) = hr(m,n) ∗ fin(x, y).

B. Sigmoidal Transfer Function Point Operation

Using the the local average image, the local contrast of the
original image is enhanced with this point operation. For each
pixel, a sigmoidal transfer function is created which is centred
on the local average. When a maximum slope of m > 1 is
used, this expands the pixel intensity range around the local
average, increasing the local contrast. This entire operation
can be tidily performed with the equation

fout(x, y) =
1

1 + e4m[favg(x,y)−fin(x,y)]
.

where fout(x, y) is the resulting image. Note that all equations
given in this paper are calculated for real-valued images
(intensity values from 0 to 1).

The sigmoidal function was chosen because it is mono-
tonically increasing (to provide a sensible pixel intensity
mapping), and the translation and maximum slope can be set as
single parameters in the equation. Examples of the sigmoidal
transfer function for different local averages are shown in
Figure 3.

The computation time for the entire contrast enhancement
algorithm is < 1 second in MATLAB R© for a 256x256 image
(Pentium 4 @2.4GHz). The result of performing this algorithm
on the image shown in Figure 1 is shown in Figure 4. Note
the significant enhancement that has been done to the dark
upper-left region.Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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Fig. 4. Result of applying adaptive contrast enhancement method to image
in Figure 1. (m = 10; r = 15)

Fig. 5. Image complement taken of contrast enhancement result shown in
Figure 4

III. ITERATIVE WATERSHED SEGMENTATION

In order to calculate individual statistics of the cells, it
is necessary to first segment the image, giving each cell a
unique label. Once this is done, each cell can be analysed in
isolation. The proposed iterative watershed method segments
the output image of the adaptive contrast enhancement method,
fout(x, y), into the individual cells wherever possible.

The classic watershed segmentation method treats an image
as a three-dimensional landscape (where light areas are ‘hills’
and dark areas ‘valleys’) and segments it into its component
watershed areas [9]. Every point in a given watershed segment
can be thought of as draining into a common area, just as
every point in the Lake Superior watershed drains into Lake
Superior. It is up to the algorithm developer to choose the
most appropriate network of drainage areas for the image. The
watershed segmentation method is used for this application
because it is fast and does not require a priori information of
the number of segments.

In this context, the contrast-enhanced epithelium in Figure
4 contains many round hills (the cells) surrounded by a
network of narrow valleys (the cell boundaries). The proposed
iterative watershed segmentation method involves first taking
the complement of this image,

fcompl(x, y) = 1 − fout(x, y)

so that the cells become basins and the boundaries become
ridges, as shown in Figure 5. This is done because the
watershed segmentation method will now recognise the cell
basins as individual segments.

After the image complement is taken, there are three further
steps involved in the proposed segmentation method. These
are iterated over until the number of segments (cells) detected
exceeds a user-defined minimum, nmin. As described below,
the number of segments detected increases for each iteration.
It is up to the user to decide the minimum number of segments
necessary in order to make up a representative number of
all the cells in the image. The reason for choosing nmin

as a parameter is explained below, after some necessary
explanations.

The first of the three steps is to take the extended-minima
transform F1 (imextendedmin function in MATLAB R©) of the
contrast-enhanced image which locates areas that are of a
minimum depth d below (darker) than their neighbours [10].

fextended(x, y) = F1(fcompl(x, y), d)

An 8-connected neighbourhood (3x3 window) is used in this
transform. These areas will become the ‘drainage areas’ used
by the watershed algorithm; the number of areas detected
here is the same as the number of segments detected by the
watershed method. The minimum depth rule is employed to
make the extended-minima transform robust against minor
intensity variations. It is desired that these ‘drainage areas’
correspond to the interiors of all the cells on a one-to-one
basis. The second of the three steps is the imposed-minima
transform F2 (imimposemin function in MATLAB R©) that
imposes local minima on the contrast-enhanced image only
where the extended-minima transform detected the location of
cells.

fimposed(x, y) = F2(fcompl(x, y), fextended(x, y))

Each local minima now coincides with a detected cell location,
and is seen as a drainage area for the watershed method. Fi-
nally, the watershed segmentation method (watershed function
in MATLAB R©) is performed. The imposed-minima transform
and the watershed segmentation are performed using an 8-
connected neighbourhood as well.

The iteration is done over the minimum depth d. A large do

is initially chosen which will result in only a few cells being
detected for most types of input images. As d is lowered by
decrement ddec, more cells are detected since the intensity
threshold criteria is being relaxed. When the number of cells
detected, n, is greater than nmin, the iterations stop. The
necessity of setting d as a hard threshold is removed through
the use of the iterations, making this stage more robust to
different input image types. The hard threshold nmin can beProceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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Fig. 6. Watershed segmentation performed on image shown in Figure 5

Fig. 7. Boundary cells removed from segmentation shown in Figure 6

more confidently set by the user than d, since it represents
only the number of cells that must be detected to be confident
in the results.

An image with well-defined cells and edges requires few
iterations since the intensity depressions are already deep. An
image with poorly-defined cells and edges requires additional
iterations. An example segmentation is shown in Figure 6.

A single additional step is then performed on the segmen-
tation result. Any cell that touches an edge of the image is
removed. This is done because the overall shape of these cells
is unknown, and hence cannot be used in the calculation of the
composite cell. An example result of this procedure performed
on the Figure 6 segmentation is shown in Figure 7.

IV. CALCULATION OF COMPOSITE CELL

Given the segmented image, measurements of the individual
cells are made. These measurements are then combined in
order to calculate the composite cell. It is not, however, a
straightforward task to find the average shape the individual

Fig. 8. 16 ray measurements taken from centroid to edge of cell

cells. It was decided to quantify a cell by taking ray mea-
surements in multiple directions from its centroid to its edge.
The medians of these measurements are then found over all n
cells.

The location of the centroid of each cell is calculated
using the regionprops function and the centroid statistic in
MATLAB R©. Ray measurements are then taken from the cen-
troid to the cell boundary in 16 uniformly-spaced directions:

θ = 0,
π

8
, ...,

15π

8
[rads]

The ray measurement of the ith cell in the θ direction is:

rayi,θ = dist(centroidi, edgei,θ)

where dist(a, b) is the Euclidean distance between a and b,
centroidi is the location of the centroid of the ith cell and
edgei,θ is the location of the cell boundary in the θ direction
from the centroid of the ith cell. These ray measurements are
shown for a typical cell in Figure 8. The median measure (over
all n cells) is calculated for each of the 16 ray directions. This
results in 16 ray measurements:

rayθ = median(ray1,θ, ray2,θ, ..., rayn,θ).

The median measure was chosen over the mean due to
its robust nature. The median measure prevents spuriously
detected cells (both large and small) from having a major
impact on the final result.

The rayθ measurements define a sixteen-sided polygon that
represent the average cell in the image. It is difficult, however,
to quantify results that are in this form. For this reason, an
ellipse is fit to this polygon. A best-fit ellipse (in the least-
squares sense) is calculated using an algorithm developed by
Fitzgibbon et al. [11]. This ellipse is the final goal of the
algorithm: the elliptical composite cell defined by the three
parameters θ, Lmajor and Lminor. These three parameters of
the composite cell allow for direct comparisons of the stresses
detected in different cell patches.

This completes the discussion of the major steps in the
algorithm. A summary of the algorithm steps is shown in Table
I. The next section outlines the experimental results.Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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Fig. 9. Algorithm result for a 640x480 input image with varying contrast,
large cells and well-defined edges. Parameters: m = 10, r = 15, nmin =
25, do = 0.55 with ddec = 0.04. Results: θ = 27.8o, Lmajor =
26.7, Lminor = 24.4

Fig. 10. Algorithm result for a 976x672 input image with lower contrast,
small cells and less well-defined edges. Parameters: m = 10, r =
15, nmin = 25, do = 0.55 with ddec = 0.04. Results: θ =
3.6o, Lmajor = 27.5, Lminor = 16.2

Fig. 11. Algorithm result for a 738x603 input image with low contrast,
small cells and regions with undetectable edge information. Parameters: m =
10, r = 15, nmin = 25, do = 0.55 with ddec = 0.04. Results: θ =
38.2o, Lmajor = 18.7, Lminor = 13.5

V. EXPERIMENTAL RESULTS

The experimental results presented in this section are quali-
tatively evaluated. The composite cells generated by the algo-
rithm are visually compared to the input images. Quantitative
testing will be included in future work.

As shown in Figures 9-11, the results of the proposed
technique accurately detect the average shape of cells in the
image. The composite cell calculated by the algorithm is
shown on the right in each of the figures. Each result was
produced using identical parameters: sigmoidal slope m = 10,
disc radius r = 15, minimum number of segments nmin = 25
and initial minimum depth do = 0.55 (measured in pixel
intensity) with an decrement ddec = 0.04. Computation times
given are for MATLAB R© running on a Pentium 4 @2.4GHz.

Figure 9 shows the technique performed on an epithelium
image with high contrast in some areas, but also with sig-
nificant illumination variation. The cells are large and their
edges are distinct. The composite cell is defined by: θ =
27.8o, Lmajor = 26.7, Lminor = 24.4 (axes lengths given
in pixels). This result captures the size and lack of significant
orientation of the cells. Computation time for this 640x480
image is about 6 seconds.

The image shown in Figure 10 has lower contrast, less
distinct edges and also a significant illumination variation.
The cells are much smaller than in the previous image.
The composite cell is defined by: θ = 3.6o, Lmajor =
27.5, Lminor = 16.2. This result accurately captures the size
and horizontal orientation of the cells. Computation time for
this larger image (976x672) is about 15 seconds.

Figure 11 shows a result for a low-contrast image with little
cell detail in some areas (see upper left area). The composite
cell is defined by: θ = 38.2o, Lmajor = 18.7, Lminor = 13.5.
This result demonstrates that the algorithm is able to detect a
sufficient number of cells to capture their noticeable diagonal
orientation. Computation time for this 738x603 image is about
13 seconds.

As shown in the results presented, this algorithm detects
the composite cell accurately for many types of embryonic
epithelium images. These include images of varying size and
those with high, low or variable contrast. Images containing
regions of undetectable cell information are also shown to be
analysed accurately by the proposed algorithm. Finally, the
algorithm has been shown to be robust to cells of different
sizes and at various orientations. This is all done with identical
input parameters.

VI. FUTURE WORK

As mentioned above, rigorous quantitative testing is re-
quired to further validate this algorithm. Images with known
composite cells will form a benchmark for results. Sensitivity
testing to incremental rotation and stretching will also be
completed.

It is secondly desired to make the proposed algorithm more
robust to noisy images. The adaptive contrast enhancement
algorithm enhances noise as well as edge detail. The approach
to noise reduction must handle all expected sources of noise,
such as due to the optical characteristics of the microscope.Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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Finally, a further investigation into the chosen parameters is
necessary to make this algorithm more widely applicable. It
is desired to remove any dependance on any hard thresholds.
One of these is the local-averaging disc radius, r. The selection
of this can have a significant effect on the algorithm results.
If the cells are much larger than the chosen r an unrealistic
contrast enhancement would result. This would occur because
the algorithm would significantly increase contrast in the
interior of the cells. The radius would optimally have a direct
dependance on the average cell size, but finding the size is
one of the purposes of the algorithm. Hence, some kind of
iteration could be used here.

VII. CONCLUSIONS

This paper has presented a robust approach to finding an
elliptical ‘composite cell’ which represents the average cell
shape in a embryonic epithelium image. The composite cell,
which is described by its orientation and the lengths of its
major and minor axes, provides quantified information about
stresses present in the epithelium.

A novel contrast enhancement method has been suggested,
which is followed by an iterative watershed segmentation. The
shapes of the individual segments are averaged together, and
an ellipse is fit to this shape to determine the composite cell.

The proposed approach has been shown to be applicable
for many input image sizes and appearances, cell sizes and
orientations, and illumination scenarios. The approach is also
computationally inexpensive; needing only 6 seconds for even
large images (640x480) in MATLAB R© on a Pentium 4
computer @2.4GHz.
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