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Estimation of cellular fabric in embryonic epithelia
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Recent computational and analytical studies have shown that cellular fabric—as embodied by average
cell size, aspect ratio and orientation—is a key indicator of the stresses acting in an embryonic
epithelium. Cellular fabric in real embryonic tissues could not previously be measured automatically
because the cell boundaries tend to be poorly defined, significant lighting and cell pigmentation
differences occur and tissues contain a variety of cell geometries. To overcome these difficulties, four
algorithms were developed: least squares ellipse fitting (LSEF), area moments (AM), correlation and
axes search (CAS) and Gabor filters (GF). The AM method was found to be the most reliable of these
methods, giving typical cell size, aspect ratio and orientation errors of 18%, 0.10 and 7.48, respectively,
when evaluated against manually segmented images. The power of the AM algorithm to provide new
insights into the mechanics of morphogenesis is demonstrated through a brief investigation of
gastrulation, where fabric data suggest that key gastrulation movements are driven by epidermal
tensions circumferential to the blastopore.

Keywords: Cellular fabric; Tissue mechanics; Image processing; Embryogenesis

1. Introduction

During early embryo development, sheets of cells called

epithelia must undergo precise, self-driven morphogenetic

movements if a normal embryo is to be formed (Jacobson

1962, Jacobson and Gordon 1976, Keller 1978, Trinkaus

1984, Gilbert 2003). Irregularities in these movements can

give rise to serious birth defects such as spina bifida,

cardiac septum defects and cleft lip and palate. In order to

understand the mechanics of normal development and the

causes of these often severely debilitating defects, it is

necessary to quantify the mechanical properties of the

embryonic tissues involved and the stresses and strains

present in them during morphogenetic movements.

Recent computational simulations (Chen and Brodland

2000, Brodland and Veldhuis 2002) and theoretical

analyses (Brodland et al. 2000, Brodland and Wiebe

2004, Brodland et al. 2006) have shed light on the inter-

relationships between tissue mechanics and cellular

fabric. These studies have shown that the mechanical

properties of tissues are directly related to their cellular

fabric, as characterized by average cell size, aspect ratio

and orientation. They have also shown that the cellular

fabric is dependent on the recent strain history of the

tissue, as well as other factors such as mitosis rate.

Consequently, if the cellular fabric of a tissue can be

accurately tracked over a period of time, important

inferences can be made regarding its stress state, strain

history and mechanical properties. Even subtle fabric

anisotropies that are not being detectable by visual

inspection may have important mechanical consequences

within the embryo.

These computational and analytical studies have also

shown that cellular fabric can be embodied in an elliptical

‘composite cell’ (figure 1) whose area, aspect ratio and

orientation are an average of those of the cells in the

region of interest. The major axis of the composite cell is

assumed to be oriented counterclockwise from the x-axis

by angle 2 908 , a , 908 and to have major and minor

axes of lengths Lmajor and Lminor, respectively. We define

the aspect ratio k $ 1 of the composite cell to be

k ¼
Lmajor

Lminor

; ð1Þ

and its area A is given by

A ¼
p

4

� �
LmajorLminor: ð2Þ

In practice, we define the cellular fabric in terms of a, k

and A, rather than the ellipse dimensions.
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Recent constitutive equation derivations for embryonic

tissues (Brodland et al., 2006) have shown that the meso-

characteristics of fundamental importance to cell mech-

anics are the statistical distributions of cell edge lengths and

orientations. Thus, it is not the overall dimensions of a cell

or its actual outline that are important, but rather the length-

weighted angular distribution of its edges. From the

standpoint of characterizing epithelia, this is an important

practical finding because it shows that complete closed cell

outlines are not required. Instead, it is sufficient that the

visible boundaries represent statistically the lengths and

angular distributions of all of the boundaries in the tissue.

This requirement is substantially less stringent than that of

other methods (Ranefall et al. 1997, Wählby et al. 2002),

which typically require that cell contours be closed.

These derivations have shown that cell edges are

distributed homologously with those of the composite cell

(Brodland and Wiebe 2004). Consequently, if one could

determine the length-weighted angular distribution of the

cell edges in a tissue, one could directly obtain a unique

composite cell that would be representative of that tissue.

Fortunately, an elliptically-distributed edge distribution

is amenable to detection by frequency-domain image

processing methods.

Automating the extraction of cell fabric data is important

because during a typical study of embryo development,

hundreds of images may be collected from a single embryo.

Since more than an hour is required to digitize manually the

edges in a typical image, this method is impractical for

detailed investigations of cell shapes. In addition, auto-

mation eliminates human bias and error, especially when

subtle anisotropies and regional variations may be of interest.

Although image processing methods have been used

to analyze cells for a number of years, existing methods

work only in cases where cells do not touch each other

(Mukherjee et al. 2004), have very high contrast (Ying-

Lun et al. 1996) or have well-defined, closed boundaries

(Ying-Lun et al. 1996, Lin et al. 1998, Mukherjee et al.

2004). In the study of embryonic tissues (figure 2), these

criteria are not satisfied because the cell boundaries tend

to be poorly defined and significant lighting and cell

pigmentation differences can occur.

One might consider using texture analysis methods

(Matsuyama et al. 1983, Kim and Park 1992, Starovoitov

et al. 1998), but they assume regular repetition of a fixed

“texture element” within the image, and that is not the case

in images of embryonic tissues. Watershed methods have

also been successfully applied to a number of cell analysis

problems (Ranefall et al. 1997, Wählby et al. 2002), but

they require that the cell boundaries be well defined, a

criterion seldom met in images of embryonic tissues.

The purpose of this paper is to develop an algorithm that

can estimate the composite cell properties a, k and A to

within one standard error of the corresponding best

estimates â, k̂ and Â obtained by statistical analysis of

manually traced cells. Four different algorithms that use

frequency domain concepts to estimate these properties

are proposed. These methods are least squares ellipse

fitting (LSEF), area moments (AM), correlation and axes

search (CAS), and Gabor filters (GF). Block diagrams for

the first three methods are shown in figure 3.

The methods were evaluated by applying them to a set

of 16 images (figure 2) that illustrate the range of images

typically obtained from embryos of the axolotl, an

amphibian commonly used to investigate morphogenetic

movements. The cells of axolotl embryos, unlike those of

most other vertebrates, have a noticeable degree of natural

colouration. In the absence of natural colouration, cell

boundaries can be elucidated by staining.

Images were collected from live embryos using a

robotic microscope system (Veldhuis et al. 2005) and from

excised pieces of epithelium that had been stretched in a

novel tensile test instrument (Wiebe and Brodland, in

press). Figure 2 demonstrates that even within a single

image, substantial variability can occur in illumination

(figure 2(a)), cell pigmentation (figure 2(c)), cell boundary

visibility (figure 2(f)) and cell orientation and shape

(figure 2(k)), posing significant challenges that the

algorithms must overcome.

Although the AM algorithm was found to be the most

reliable of the algorithms tested, the LSEF and CAS

algorithms also demonstrated acceptable performance in

many cases. The AM algorithm was used to measure the

fabric of epithelium adjacent to the blastopore of a stage

12.5 axolotl embryo during a crucial developmental

process called gastrulation. The stresses acting in the

epithelium were calculated based on the fabric data, and

they show that substantial circumferential tensions exist in

the epithelium that surrounds the blastopore.

2. Methods

2.1 Frequency domain analysis

Figure 4(a) shows an image of a synthetic cell patch in term

of x2y axes and its corresponding magnitude response

image (figure 4(b)) formed by taking the two-dimensional

fast Fourier transform (FFT) of the square source image.

The magnitude response image jFj is presented in terms of

x

y

a

Cell Patch

Composite Cell

LmajorLminor

Figure 1. The composite cell associated with a cell patch is defined by
its orientation a and the lengths of its major and minor axes, Lmajor and
Lminor, respectively.

P. J. W. Iles et al.76
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u2v axes in pixel units of cycles per image (c.p.i). To

generate the patch, a Voronoi tessellation was constructed

from forming points whose minimum spacing had been

limited so that cells of approximately uniform size resulted

(Chen and Brodland 2000). The patch was then elongated

in the x-direction by a factor of 1.8 so as to produce an

anisotropic fabric. The statistical distribution of the cell

boundaries in the patch will be the same as the infinitesimal

perimeter segments of the ellipse corresponding to the

composite cell (Brodland and Wiebe 2004).

The ellipse contained in the magnitude response

image jFj is normal to the composite cell and its major

and minor axes are the multiplicative inverses of the

composite cell axes. This duality arises because the

strong high-frequency response in the vertical direction

(along the v axis) in the jFj image arises from the high

density of cell edges encountered in the vertical

direction, while the weaker low-frequency response in

the horizontal direction (along the u-axis) is produced

by the less frequent cell edges in the horizontal

direction. Because of this duality, the composite cell

axis lengths and orientations could be obtained if one

could fit an ellipse to the elliptic shape in the

magnitude response image.

Figure 2. Representative images of embryonic epithelia. Numbers indicate the size of pixels in each image.

Estimation of cellular fabric in embryonic epithelia 77
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A benefit of frequency-domain methods is that local

variations over the spatial region of interest are averaged

out by the integrals associated with the temporal-

frequency transformation. The strongest responses in the

jFj image reveal the “average” cell orientation and axis

lengths, which is the goal of the analysis. This effect

makes these methods robust to spatial variations in cell

shape, orientation and edge visibility.

2.2 Image pre-processing

Four steps were used to pre-process images before one of

the four ellipse extraction techniques was applied. These

steps were:

(1) Calculate the gradient magnitude image (figure 5(a)).

Horizontal and vertical Sobel operators (Castleman

1996) were applied to the source image to highlight

any visible cell boundaries (which contain the

frequency content that is interpreted by the FFT)

and reduce the effect of cell-wise differences in

pigmentation. The filtered results were combined to

form a gradient magnitude image.

(2) Transform image to frequency domain. An FFT was

then taken of the resulting gradient image to create

the magnitude response image jFj. To avoid angular

bias, the square jFj image was then cropped along its

maximal contained circle.

(3) Intensity-threshold jFj. Next, the jFj image was

normalised to [0, 1] and thresholded by setting to

zero components below Fthresh ¼ 0.30, a threshold

that was found to work well with all of the ellipse

extraction methods. The purpose of this step is to

remove low-energy noise.

(4) Frequency-threshold jFj (figure 5(b)). Frequency

components at or below four cycles per image were set

to zero since these components often contain

substantial energy but are associated with spatial

patterns too large to be individual cells. This step also

removed substantial artifacts that could otherwise be

produced by low-frequency illumination variations.

2.3 Method 1: least squares ellipse fitting (LSEF)

Least squares methods provide a standard approach for

curve and surface fitting (Fitzgibbon et al. 1999). To this

end, the data jFj in the magnitude response image were

converted into a list of data points by creating at each pixel

location, one data point for each 0.1 of pixel intensity. Thus,

a pixel with an intensity of 0.4 would be converted into four

data points. Fitting of an ellipse to the points is then done

using the approach of Fitzgibbon et al. (1999) because it is

robust and computationally inexpensive. Once an ellipse is

fit to the data, a, Lmajor and Lminor can be calculated directly

and k and A can be calculated using equations (1) and (2),

respectively.

The values of k obtained using this algorithm were found

to be biased high compared to values obtained by manually

tracing the cells in the image (figure 6). This overestimation

occurs because the energy corresponding to Lminor in the jFj

image was larger than the energy corresponding to Lmajor.

As a result, the fitted ellipse was consistently “stretched”

somewhat in the Lminor direction. A linear function,

k ¼ k0 2 mðk0 2 1Þ; ð3Þ

was found to correct k0, the biased estimate, and produce an

unbiased result,k. Anmvalue of 0.29 was found to minimize

Ellipse 
fitting 

 Least Squares Ellipse Fitting 

F Eq.(1), (2) 
LMajor , LMinor

α

α

α

α

α

Eq.(3) 

A 

Eq. (4), (5) 

Area Moments (AM) 

F Eq.(6), (7) Eq.(3) 

A 

Area estimation 
(using Ftrac) Iu 

Iv 

Iu

Finding 
using 

correlation 

F Search u, v
axes for 

maximum

Eq.(1), (2) 
rPotential α

 Correlation and Axes 

κ'

κ

κ,A

κ

κ'

(a)

(b) 

(c)

LMajor , LMinor

Figure 3. Block diagrams for the LSEF, AM and CAS algorithms.

P. J. W. Iles et al.78
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the least-squared error between the LSEF estimates and the

values found by manual segmentation of the images shown

in figure 2. This bias was found to be inherent to the

algorithm rather than to the images, and hence a constant m

value could be chosen.

2.4 Method 2: area moments (AM)

The data in the jFj image can be thought of as a two-

dimensional object of varying density (as defined by the

pixel intensities) centred at the origin. The idea of using

AM of the jFj image to extract texture orientation was

suggested by Bigün et al. (1991). Their method solves a

matrix eigenvalue problem in the spatial domain. Instead,

we follow Brodland and Veldhuis (2003), and calculate

the AM Iv and Iu about the u- and v-axes, respectively, and

the product of inertia Iuv of the jFj image using the

Figure 5. Selected pre-processing steps for the test image shown in
figure 2(b): (a) the gradient magnitude image and (b) the intensity- and
frequency-thresholded F image. Concentric circles show 25 and 50 c.p.i.

Figure 4. An image of a cellular tissue and its corresponding magnitude
response image jFj. (a) A synthetic 350 £ 350 pixel cellular image with
a ¼ 08, k ¼ 1.8 and A ¼ 24 pixels. The composite cell is drawn in black.
(b) Corresponding magnitude response (F) image in pixel units of cycles
per image. A square root point operator has been applied to enhance
visibility. The transform of the composite cell is shown as a white ellipse.

Figure 6. Manually segmented image corresponding to figure 2(b).

Estimation of cellular fabric in embryonic epithelia 79
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Iu ¼
Xrows

v¼1

Xcols

u¼1

jFðu; vÞj�v2; ð4aÞ

Iv ¼
Xrows

v¼1

Xcols

u¼1

jFðu; vÞj�u2; ð4bÞ

Iuv ¼
Xrows

v¼1

Xcols

u¼1

jFðu; vÞj�uv ð4cÞ

Next, a is computed using

a ¼ arctan
2Iuv

Iu 2 Iv

� �
; ð5aÞ

provided that Iu – Iv. In the case that Iu ¼ Iv, we set

a ¼

p
4
; Iuv . 0

0; Iuv ¼ 0

2 p
4
; Iuv , 0:

8>><
>>: ð5bÞ

Mohr’s circle (Hibbeler 2005), can then be used to

extract the principal moments

I1 ¼
Iu þ Iv

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iu 2 Iv

2

� �2

þI2
uv

s
ð6aÞ

and

I2 ¼ Iu þ Iv 2 I1 ð6bÞ

and the aspect ratio, k, calculated using

k ¼
max

ffiffiffiffi
I1

p
;

ffiffiffiffi
I2

p� �
min

ffiffiffiffi
I1

p
;

ffiffiffiffi
I2

p� � ð7Þ

The AM method, like the LSEF approach produces k

values that are biased high, and that can be corrected

optimally using equation (3) when m is set to 0.38.

The composite cell area, A, was estimated by finding,

from the family of ellipses constrained to the estimated a

and k, the one that contained a fraction Ffrac of the energy

in the jFj image. The fraction that minimized the error for

the test images was found to be Ffrac ¼ 0.28.

The error in A was found to be sensitive to the number

of cells in the image. When an image of a particular region

was expanded to encompass more cells, there was more

low frequency noise present in jFj. This caused the ellipse

containing the specified fraction of the total energy in

the frequency domain to become too small and the

corresponding composite cell to become too large. A

correlation was observed between this effect and the

average c.p.i. (�c) of the jFj image, thus providing a means

to overcome this difficulty. It was found experimentally

that when the low frequency threshold in Step 3 of the

preprocessing was set to

F0
low ¼

�c

3
ð8Þ

an appropriate amount of the low frequency energy was

removed that the calculated A values were largely

insensitive to the number of cells in the image, provided

that images had an Lminor in the range of 10–22 c.p.i., a

range of values that is wide enough that it can be satisfied

by a user during manual selection of an analysis window.

2.5 Method 3: correlation and axes search (CAS)

The third frequency domain approach estimated a by

identifying the line of symmetry in the jFj image (Bigün

et al. 1991). To find the angle of this line, we use the

correlation coefficient, 21 , r , 1, defined for two data

vectors, a and b as

r ¼
E{ða2 maÞðb2 mbÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðaÞvarðbÞ
p ð9Þ

where E[.] is the expectation operator, var (.) is the sample

variance operator, and ma and mb are the sample means for

a and b, respectively.

In this approach, a series of new images is created by

incrementally rotating jFj through 18 , m , 908. After

each rotation, r is calculated between mirrored pixels on

the left and right sides of the image using equation (9).

This is done by placing mirrored pixels from the left and

right halves of the image into corresponding locations in

vectors a and b, respectively. When the jFj ellipse is

aligned (either horizontally or vertically) with the u and v

axes, r is maximized (figure 7). The axis lengths are then

found by searching for maxima along two rays in the jFj

image, one parallel to and one perpendicular to the line

of symmetry. From these, Lmajor and Lminor are calculated,

and k and A are found using equations (1) and (2),

respectively. The orientation, a, is then calculated as the

angle corresponding to Lmajor in the frequency domain.

Figure 7. Estimating a using correlation. In this example the correlation
r reaches a well-defined maximum when the jFj image ellipse is aligned
with either the horizontal or vertical axis.

P. J. W. Iles et al.80
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2.6 Method 4: Gabor filters (GF)

GF are a classic approach for extracting textural

information from images (Bovik et al. 1990, Clausi and

Jernigan 2000). Inasmuch as the cellular features of

interest are ‘texture-like’, one might expect them to be

able to extract the required cell parameters (Puddister

2003). Initial testing showed that they work well if the cell

arrangements are highly regular but not if they contain the

irregularities common to images of real tissues. As a

result, GF were deemed unsuitable for the applications of

interest here and are not discussed further.

3. Evaluation of the algorithms

To provide data against which the image analysis

algorithms could be evaluated, a set of 16 test images

(figure 3) was hand-segmented (figure 6) and the statistical

properties of the cells in each image calculated. Only cells

that were completely inside the image were segmented

and, on occasion, portions of the cell–cell boundaries had

to be estimated. The average moments and products of

inertia calculated for each cell were used in equations

(4)–(7) to extract best estimates â and k̂ of cell

orientation and aspect ratio, respectively, and Â was set

equal to the average area of the manually segmented

cells. It is understood that manual segmentation may

introduce a small amount of error, but it is the best

method available for estimating the true statistical

properties of the cells.

Tables 1–3 summarize how each of the three methods

performed on the test images. For each image, the best

estimate of the appropriate parameter â and k̂ or Â is shown

in the leftmost column, as is its standard error. These

means and standard errors were estimated by statistical

analysis of the manually-segmented cells. The discrepan-

cies between these best estimates and the values calculated

by the algorithms are reported as signed values and as a

factor normalized against the image-specific standard

Table 1. Distance from â for each method in degrees (1a ¼ a 2 â) and number of standard deviations (za ¼ 1a=sâ)ˆfor test images.

Image â, sa LSEF AM CAS
1a (za) 1a (za) 1a (za)

A 36.8, 49.2 þ29.2 (þ0.59) þ21.4 (þ0.43) þ15.2 (þ0.31)
B 26.9, 16.1 23.7 (20.23) þ1.7 (þ0.11) þ2.9 (þ0.18)
C 85.9, 17.6 21:1 (20.06) þ0.1 (þ0.01) þ0.1 (þ0.01)
D 239.0, 33.1 23:6 (20.11) 23.7 (20.11) 25.0 (20.15)
E 260.6, 27.6 þ2:6 (þ0.09) þ1.6 (þ0.06) 22.4 (20.09)
F 87.8, 21.6 27.0 (20.32) 27.5 (20.35) 20.8 (20.04)
G 52.4, 17.3 21:9 (20.11) 22.9 (20.17) 23.4 (20.20)
H 11.3, 34.3 þ0.8 (þ0.02) þ1.1 (þ0.03) þ2.7 (þ0.08)
I 75.5, 40.2 22.8 (20.07) 21.3 (20.03) þ5.5 (þ0.14)
J 22.7, 25.7 21.4 (20.05) 21.7 (20.07) 22.7 (20.11)
K 288.9, 38.8 223.1 (20.60) 214.9 (20.38) þ21.9 (þ0.56)
L 53.3, 35.2 þ3.1 (þ0.09) þ0.9 (þ0.03) þ2.7 (þ0.08)
M 224.8, 39.5 þ18.9 (þ0.48) þ17.4 (þ0.44) þ15.8 (þ0.40)
N 82.3, 51.2 222.6 (20.44) 227.0 (20.53) 249.3 (20.96)
O 75.2, 44.9 22.5 (þ0.06) 23.2 (20.07) þ9.8 (þ0.22)
P 22.3, 46.1 þ10.5 (þ0.23) þ12.5 (þ0.27) þ8.3 (þ0.19)

Average absolute 8.4 (0.22) 7.4 (0.19) 9.3 (0.23)

Best results for each image are shown in bold.

Table 2. Distance for each method in dimensionless units (1k ¼ k2 k̂) and number of standard deviations (za ¼ 1k=sk̂).

Image k̂, sk̂ LSEF AM CAS
1k (zk) 1k (zk) 1k (zk)

A 1.05, 0.44 þ0.07 (þ0.16) þ0.05 (þ0.11) þ0.38 (þ0.86)
B 1.76, 0.56 20.44 (20.79) 20.28 (20.50) þ0.95 (þ1.70)
C 2.28, 0.67 20.15 (20.22) 20.18 (20.27) 20.78 (21.16)
D 1.50, 0.60 þ0.10 (þ0.17) þ0.19 (þ0.32) 20.07 (20.12)
E 1.69, 0.54 þ0.00 (20.00) 20.01 (20.02) 20.26 (20.48)
F 1.51, 0.36 20.05 (20.14) 20.10 (20.28) 20.08 (20.04)
G 1.85, 0.56 20.08 (20.14) þ0.02 (þ0.04) 20.02 (20.26)
H 1.33, 0.54 þ0.12 (þ0.22) þ0.14 (þ0.26) 20.23 (20.43)
I 1.26, 0.44 þ0.18 (þ0.41) þ0.12 (þ0.27) 20.09 (20.20)
J 1.64, 0.47 þ0.06 (þ0.13) 20.04 (20.09) 20.53 (21.13)
K 1.27, 0.57 þ0.09 (þ0.16) 20.01 (20.02) þ0.16 (þ0.28)
L 1.48, 0.67 20.13 (20.19) 20.12 (20.18) þ0.35 (þ0.52)
M 1.33, 0.33 þ0.11 (þ0.33) þ0.17 (þ0.52) þ0.34 (þ1.03)
N 1.22, 0.58 20.08 (20.14) 20.09 (20.16) þ0.07 (þ0.12)
O 1.11, 0.36 20.01 (20.03) 20.02 (20.06) þ0.32 (þ0.89)
P 1.15, 0.41 þ0.05 (þ0.12) þ0.07 (þ0.17) þ0.68 (þ1.66)

Average absolute 0.11 (0.21) 0.10 (0.20) 0.33 (0.68)

Best results for each image are shown in bold.
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error. The benefit of the latter is that it takes into account

the variability of the cells in the image. Discrepancies in a

are reported in degrees as 1a ¼ a2 â and in normalized

form as za ¼ 1a=sâ in table 1. Discrepancies in k and A

are reported in a similar form in tables 2 and 3.

All methods estimated â with similar accuracy and

achieved the performance objective of jzaj , 1 for all 16

test images. The AM method was the most accurate, with

the lowest average jzaj (0.19) and the lowest maximum

jzaj (0.53 for the image in figure 3(n)). All methods had

some difficulty calculating a for image: (a) because the

fabric is nearly isotropic (k̂ ¼ 1:1). In contrast, cell

orientations in images (c) and (g) are easily detected

because in both cases k̂ ¼ 1:8. All methods also had some

difficulty with images (k) and (n) because of the lack of a

consistent cell orientation, as evidenced by the large value

of sâ.

In terms of estimating k̂, the AM and LSEF

methods were the most accurate. The AM method had

the lowest average jzkj (0.20) and the lowest

maximum jzkj (0.52 for image (m)), while the

performance of the closely-related LSEF method was

nearly as good. The CAS method produced some large

errors in estimating k̂ because the jFj images often did not

have well-defined peaks in the major and minor axes

directions.

For calculating Â, the AM method was the most

accurate. It achieved the performance objective and had an

average jzAj of 0.43 when equation (8) was used to reduce

the correlation between image size and calculated A

values. For images with 10–22 c.p.i., jzkj was almost

always ,0.5.

Calculations of Â using the LSEF and CAS methods

were not as accurate as those found using the AM

approach. The LSEF method consistently underestimates

Â due to its squared distance measure. This causes high-

frequency energy to be weighted more strongly causing

the fitted ellipse to be larger than it otherwise would be.

The CAS on average overestimates Â due to mistakenly

identifying peaks in the jFj image that are caused by low-

frequency noise.

For typical 350 by 350 pixel images, the average

computation times for each method (including all

preprocessing steps) are less than 1 second on a Pentium

4 running at 2.4 GHz.

4. Applications

Figure 8(a) shows the blastopore and surrounding

epidermis of a stage 12.5 axolotl embryo. The blastopore

is a circular gateway from the outside to the inside of the

embryo and its location is identifiable by the nodule of

cells known as the yolk plug that fills it. At this stage of

development a process called gastrulation is occurring and

the epidermis flows through the blastopore into the interior

of the embryo. The forces that drive this crucial

developmental event are of great interest (Belousov and

Luchinskaia 1995), and information about cellular fabric

would provide important clues about the forces at work.

A 250 by 250 pixel region just lateral to the blastopore

is shown in outline in figure 8(a). When the AM algorithm

was used to determine the fabric of this region in three

different embryos (n ¼ 3), it showed that k was

1.65 ^ 0.20, where the term following the ^ symbol

indicates the standard deviation of the embryo-to-embryo

variations. The average cell size was 172 ^ 30 pixels and

the angle of elongation 87 ^ 58. This means that the cells

are elongated in approximately the vertical direction of the

image and that they are 1.65 times as long as they are

wide.

Based on this fabric information, it is possible to show

(Brodland et al. 2006) that the cephalo-caudal (vertically-

oriented) in-plane tensions acting in this region of the

Table 3. Distance from â; as percentage of true composite cell area (1a ¼ (A 2 Â)/Â) and number of standard deviations (za ¼ (A 2 Â)/sÂ) for test
images.

Image Â, sÂ LSEF AM CAS
1A (zA) 1A (zA) 1A (zA)

a 2744, 1267 278 (21.69) 241 (20.88) 27 (20.14)
b 2027, 708 243 (21.23) þ1 (þ0.02) þ31 (þ0.88)
c 479, 200 243 (21.03) þ16 (þ0.38) þ266 (þ6.36)
d 619, 222 271 (21.98) 228 (20.79) þ166 (þ4.63)
e 504, 224 244 (20.98) þ32 (þ0.72) þ119 (þ2.69)
f 1010, 395 þ46 (21.17) þ26 (þ0.66) þ267 (þ6.84)
g 658, 264 253 (21.33) 217 (20.43) 219 (20.47)
h 297, 144 254 (21.11) þ5 (þ0.11) þ27 (þ0.56)
i 472, 259 261 (21.12) 211 (20.20) þ122 (þ2.23)
j 476, 189 262 (21.57) 217 (20.42) þ67 (þ1.69)
k 412, 204 254 (21.09) þ15 (þ0.31) þ58 (þ1.18)
l 373, 158 259 (21.39) 210 (20.23) þ70 (þ1.66)
m 203, 79 245 (21.16) þ26 (þ0.66) þ69 (þ1.78)
n 507, 276 260 (21.10) þ2 (þ0.04) þ107 (þ1.96)
o 208, 82 237 (20.93) þ37 (þ0.94) þ619 (þ15.70)
p 211, 74 248 (21.36) þ5 (þ0.15) þ478 (þ13.62)

Average absolute 54 (1.27) 18 (0.43) 156 (3.90)

Best results for each image are shown in bold.
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embryo are 2.1 times larger than those in the medio-lateral

(horizontal) direction. This suggests that the motion of the

epidermis toward the blastopore is not driven by radial

tension generated at the edge of the blastopore (Carlson

1981), but is instead driven by circumferential forces

(Belousov and Luchinskaia 1995). If the blastopore and

its surrounding tissue is excised from the embryo

(figure 8(b)), the stress in the tissue is relieved and the

fabric becomes sensibly isotropic, with k ¼ 1.05 ^ 0.05

(n ¼ 3), supporting this hypothesis.

To investigate the performance of the algorithms

further, they were used to monitor fabric changes in an

excised epithelium specimen (not shown) that was

stretched using a novel test instrument (Wiebe and

Brodland, 2005). Stretching the tissue provided a finely-

graduated sequence of incremental cell deformations

from which the sensitivity of the algorithms could be

ascertained. The AM method was again the most reliable

(Iles 2005), and it showed that the primary axis of the

representative composite cell rotated from approximately

208 off the stretch axis to within 58 of it as the cells

elongated to a k of 1.6. The cell area increased by a factor

of nearly two during that time (Iles 2005). These findings

are consistent with findings from computer simulations

(Chen and Brodland 2000, Brodland and Wiebe 2004,

Brodland and Veldhuis 2003) and they suggest that the

AM approach is able to detect fabric aspect ratio changes

of the order of 0.10 and angle changes of 108.

5. Discussion and conclusions

Three computational algorithms with the power to

calculate cellular fabric in epithelia were identified. All

three of the methods determined a and k to within one

standard error of their best estimates and the AM method

was also able to reach the cell size target. Although the

AM method provides the best results in virtually all cases

considered here, the LSEF and CAS approaches are

valuable because their relative performance may be better

in other situations and because they provide comparative

values for evaluation of the AM method. GF did not work

well when applied to real tissues.

The AM method is able to extract fabric information

even in cases (figure 8) where cell boundaries are so

poorly defined that one could not hope to make a visual

assessment of the cellular fabric. Strong correlations

between tests on corresponding tissues in three different

embryos show that measurement uncertainty and embryo-

to-embryo fabric variations are both relatively small.

In general, an indication of the expected measurement

error can be obtained by comparing findings from

windows with different sizes and locations in the region

of interest. This approach is also useful for revealing

regions where substantial fabric gradients are present.

If staining, shadowing or other techniques are used to

emphasize cell boundaries, care must be taken to ensure

that the visible boundaries are representative of all cell

boundaries in the tissue.

In practice, the AM method has been found to work

well when certain, potentially conflicting conditions are

met. The long axis of the cells in the analysis region

should be at least 10 pixels long. Cell boundaries,

however, should be no more than one pixel in width, an

objective which can be achieved using image binning. In

addition, the square analysis region should be 10–20 cells

in length and width. If only aspect ratio and orientation

parameters are of interest, the conditions can be relaxed

considerably.

Ideally, the lens axis should be kept within 108 of

normal to the tissue being imaged so that foreshortening

effects can be neglected. Alternatively, foreshortening

effects can be removed by suitably warping the captured

images before the fabric extraction algorithm is applied or

by mathematically correcting fabric parameters calculated

from a foreshortened image.

The algorithms presented here are general in nature, and

they could be applied to the geometric characterization of

other two-dimensional systems, including cultured cell

monolayers, engineered tissue constructs, granular

materials, foams and networks.

The present study strengthens our understanding of the

relationship between tissue fabric and mechanics. While

previous studies showed that fabric is an indicator of the

strain history of a tissue and of the stresses at work in it,

the present study shows how fabric can be used to reach

important new conclusions about how morphogenetic

movements are driven.

Figure 8. Images showing tissue from the blastopore regions of two
stage 12.5 axolotl embryos. In both cases, the midsagittal plane of the
embryo bisects the blastopore vertically and the cephalic end of the
embryo is oriented upwards. (a) tissue from an intact embryo; (b) tissue
from an explant.

Estimation of cellular fabric in embryonic epithelia 83
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