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Abstract

Local spatio-temporal salient features are used for a
sparse and compact representation of video contents in
many computer vision tasks such as human action recog-
nition. To localize these features (i.e., key point detection),
existing methods perform either symmetric or asymmetric
multi-resolution temporal filtering and use a structural or
a motion saliency criteria. In a common discriminative
framework for action classification, different saliency cri-
teria of the structured-based detectors and different tempo-
ral filters of the motion-based detectors are compared. We
have two main observations. (1) The motion-based detec-
tors localize features which are more effective than those
of structured-based detectors. (2) The salient motion fea-
tures detected using an asymmetric temporal filtering per-
form better than all other sparse salient detectors and dense
sampling. Based on these two observations, we recommend
the use of asymmetric motion features for effective sparse
video content representation and action recognition.

1 Introduction

Local spatio-temporal salient features have been widely
used for sparse and compact representations of video con-
tent in many computer vision applications such as human
action recognition [1, 2, 3, 4], video super-resolution [5],
unusual event detection [6], human-computer interac-
tion [7], and content-based video retrieval [8]. These fea-
tures are typically localized in spatio-temporal key points
where a sudden change in both space and time occurs. For
example, 3D Harris corners occur when a spatially salient
structure such as a corner changes its motion direction. This
detector thus localizes the start/stop of local motion events
in the video.

The salient features in a video represent the local video

events which occur at different spatial and/or temporal
scales. The spatial scale refers to the size of the body limbs
or the subject as a whole which might vary across individ-
uals and also by distance from the camera. The temporal
scale refers to the fact that different people perform a given
(sub-)action with different speed. In absence of any knowl-
edge about these scales, a multi-scale analysis of the video
signal is required to detect the features at different spatio-
temporal scales. Effective feature detection is important for
compact video content representation and consequently, ac-
tion recognition, for example.

Detection of multi-scale salient features consists of three
main steps: (1) spatio-temporal scale-space representation
of the video signal, (2) saliency map construction, and
(3) non-maxima suppression. Existing spatio-temporal fea-
ture detectors can be divided into two main categories:
structured-based or motion-based. The structured-based
feature detectors such as 3D Harris [9, 1] and 3D Hes-
sian [3] are more selective of salient structures for which
they incorporate different saliency criteria, but are limited
to using just a symmetric 3D Gaussian filtering for a scale-
space representation. The motion-based feature detectors
such as Cuboids [4] and asymmetric motion features [2] lo-
calize the salient motion events in a video by treating the
time domain different from space and hence, they are more
consistent with human motion perception [10, 11, 12].

This paper evaluates the performance of both structured-
based and motion-based feature detectors in a common
framework for action recognition. To perform a fair com-
parison, we employ the standard discriminative bag-of-
words action recognition framework [1] in which these fea-
tures are utilized to learn the set of action prototypes and
represent the action contents. Our objective is to find out
which feature detector is the most effective method for
video representation in an action classification application.

The rest of this paper is organized as follows. Section 2
reviews the existing salient spatio-temporal feature detec-



tors in video. Section 3 categorizes the existing detectors
into structural-based and motion-based detectors. In this
section, we briefly explain several examples from each cat-
egory. Section 4 presents the human action recognition
datasets, the evaluation framework, and the experimental re-
sults for performance evaluation of the different detectors.
Finally, Section 5 summarizes the results.

2 Related work

Drawing inspiration from the usefulness of local multi-
scale salient features for object recognition [13, 14], an im-
mediate extension has been developed for spatio-temporal
feature extraction for action recognition and for video anal-
ysis in general.

To extend 2D salient features to video, most of existing
methods consider the sequence of images (2D+t) as a 3D
object. As the 2D feature detectors select mainly salient
structures in a still image, their extensions to 3D is con-
sidered as structured-based feature detectors. For example,
Laptev et al. [9] extended the 2D Harris corner detector to
3D by performing 3D Gaussian filtering and computing the
cornerness saliency criteria for a 3D autocorrelation matrix.
In contrast, there are few methods that treat time domain
different from space and detect motion-based salient fea-
tures. For example, Dollar et al. [4] performed symmetric
temporal Gabor filtering to detect salient motions referred
to as Cuboids. Shabani et al. [12] used the difference of
Poisson as the time-causal filter to detect opponent-based
motion features. Recently, Shabani et al. [2] proposed a
novel asymmetric multi-resolution temporal filtering to de-
tect asymmetric motion features.

Our objective in this paper is to provide a fair and
complete comparison of both structured-based and motion-
based feature detectors for action classification. There are
two very close publications to our evaluations in this paper.
(1) Wang et al. [15] compared the performance of different
sparse spatio-temporal key point detectors and dense sam-
pling for human action classification. The dense samples
detected at regular 3D points performed better on more re-
alistic datasets such as UCF sports [16] and HOHA [17]
which are collected from Youtube and Hollywood movies,
respectively. However, it did not perform the best cat-
egorization of choreographed atomic actions in the KTH
dataset [18]. The authors then concluded that the dense
sampling method performs better on the real-world videos,
but not on simple videos. (2) Shabani et al. [12, 2] evalu-
ated the importance of temporal filtering in salient motion-
based feature detection. They showed that the asymmetric
temporal filters result in detection of motion features with
higher precision rate and higher robustness under geomet-
ric changes such as camera view change or affine transfor-
mation [2]. Moreover, the asymmetric motion features [2]

provide higher classification accuracy compared to features
detected using a symmetric temporal filter such as Gabor
(i.e, Cuboids [4]).

This paper can be considered as an extension to the
existing spatio-temporal feature detectors evaluation pa-
pers. More specifically, in addition to motion-based fea-
tures in [2], we also include the structured-based features
in the comparison. Moreover, we set the number of spatio-
temporal scales fixed for all the detectors. This is in con-
trast with the evaluation in [15] in which different feature
types are detected at different set of spatio-temporal scales
(e.g., Cuboids at one scale, 3D Harris at twelve scales) and
as a result, the comparison is not consistent. Performing
this complete evaluation determines the most effective fea-
ture detection method for action recognition. To this end,
we use the standard discriminative bag-of-words recogni-
tion approach for the action classification. In this frame-
work, the action primitives are learnt using the salient fea-
tures of all the samples in the training set. An action is then
represented globally as the frequency histogram of the ap-
pearance of the local features in the whole video.

3 Salient Feature Detectors

Existing spatio-temporal salient feature detectors can be
categorized into two sets depending on whether detection of
a salient structure is of interest or the detection of a salient
motion is relevant. The differences come into the type of
video filtering and the saliency criteria they use. The video
filtering at different spatio-temporal scales provide a multi-
resolution representation of the video contents from which
features at different scales are detected. The saliency crite-
ria determines which type of features will be chosen in their
local spatio-temporal neighborhood. The salient features
are localized at key points which are detected by performing
non-maxima suppression in search window of (3, 3, 3) [2].

In this section, we briefly explain different examples of
both structured-based and motion-based feature detectors.

3.1 Structured-based features

To detect spatio-temporal structured-based features, ex-
isting methods treat the time domain as the third dimension
of space and hence, they apply the same scale-space filter
in space and time directions. That is, similar to the spa-
tial Gaussian filtering, a temporal Gaussian is applied in the
time direction [1, 3].

In this section, we briefly explain the extension of Harris
corners and Hessian blobs to 3D which have been already
used in action recognition literature [1, 3]. We also intro-
duce the extension of 2D KLT (Kanade-Lucas-Tomasi) [19]
features to 3D for action recognition.
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Figure 1. Standard discriminative bag-of-words framework for action recognition. The focus of this
paper is to compare different salient feature detectors. These features encode the local video events
and are used to learn the set of action prototypes (i.e., visual words or action primitives) during
training. An action is represented by encoding its salient features over the prototypes. Finally, a
classifier such as SVM determines the label of an unknown action.

3.1.1 3D Harris

Laptev et al. [9, 1] extended the Harris corner criteria from
2D image to 3D to extract corresponding points in a video
sequence. To this end, the original video signal I(x, y, t) is
smoothed using a spatial GaussianGσ and a temporal Gaus-
sian kernel Gτ using the convolution L = Gσ ∗Gτ ∗ I . The
autocorrelation matrixA = LTd ×Ld is then computed from
the spatio-temporal derivative vector Ld = [Lx, Ly, Lt].
To compare each pixel to the neighborhood pixels a spatio-
temporal Gaussian weighting G2σ ∗G2τ is then applied.

M = G2σ∗G2τ∗A = G2σ∗G2τ∗

 L2
x LxLy LxLt

LyLx L2
y LyLt

LtLx LtLy L2
t


(1)

The autocorrelation matrix M defines the second mo-
ment approximation for the local distribution of the gra-
dients within a spatio-temporal neighborhood. Using the
eigen-values λ1, λ2, λ3 of the Harris matrix M , one can
compute the spatio-temporal corner map C in which the
corners are magnified and the rest are weakened (k =
0.0005).

C = det(M)−k(trace3(M)) = λ1λ2λ3−k(λ1+λ2+λ3)3
(2)

3.1.2 3D Hessian

Willems et al. [3] extended 2D Hessian features to 3D by
applying (an approximation) of 3D Gaussian filter and used
the determinant of the Hessian matrix (3) as the saliency
criteria. The points with high-value determinant (S =
‖det(H)‖) represent the center of the ellipsoids (3D blob-
like structures) in the video.

H =

 Lxx Lxy Lxt
Lyx Lyy Lyt
Ltx Lty Ltt

 (3)

3.1.3 3D KLT

2D KLT features [19] have been widely used in many com-
puter vision tasks such as tracking and structure from mo-
tion [20]. The 3D KLT [21] is the extension of its counter-
part from 2D and it can be detected at multiple spatial and
temporal scales. To this end, a family of scale-space rep-
resentation of the video is obtained by performing 2D spa-
tial Gaussian filtering Gσ and a temporal Gaussian filtering
Gτ . At each scale, the 3D KLT saliency criteria is applied
on the 3D autocorrelation matrix A to keep the points with
the minimum of the eigen values above a threshold (i.e.,
min(λ1, λ2, λ3) > α). The 3D KLT features are then local-
ized at points with maximum saliency value in their spatio-
temporal neighborhood..

3.2 Motion-based features

The motion-based feature detectors perform the
biologically-consistent Gaussian filtering for space, but
they might use different temporal filters. The temporal
filter might be symmetric or asymmetric. More specifically,
consistency with the human’s motion perception [10, 11]
requires that the response to a periodic motion be mapped
to a constant value. Moreover, the mapped representation
should have the same value for two stimuli with different
phases, but same motion patterns (i.e., it should be phase
insensitive [11]). The filtering response should also be
contrast-polarity insensitive [10, 11] to make sure that this
representation is not sensitive to the polarity of the moving
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stimuli versus background. For these phase and contrast-
polarity insensitivity requirements, an energy model which
induces quadrature-pair temporal filtering (i.e., two filters
with 90 degree phase difference) is required [11]. The
summation of the squared responses of the quadrature
filters induces the energy map from which the salient
motion features are detected.

In this section, we briefly explain different motion-based
feature detectors which use a symmetric or an asymmetric
temporal filter.

3.2.1 Cuboids (symmetric) motion features

Dollar et al. [4] used the energy field of temporal Gabor
filtering on the spatially Gaussian smoothed video R =
(Gσ ∗Feven ∗ I)2+(Gσ ∗Fodd ∗ I)2 to extract the Cuboids
centered at the spatio-temporal key points in the energy
map. To detect the Cuboids at multiple scale, we performed
the video filtering at different spatial (σ) and temporal (τ)
scales which will be introduced in Section 4.2. Note that the
even component (4) and odd component (5) of the complex
Gabor filter are 90o in phase difference and are essential to
gain phase-insensitive motion map [12].

F evenτ (t) = cos(ω0t)e
− t2

2τ2 (4)

F oddτ (t) = sin(ω0t)e
− t2

2τ2 (5)

3.2.2 Asymmetric motion features

Both Gaussian and Gabor are biologically consistent for
spatial image filtering, but they are symmetric and non-
causal which makes them not consistent with the tempo-
ral sensitivity of the human visual system [10, 11] and not
feasible with the V1 cells physiology [22]. With this mo-
tivation from biological vision, Shabani et al. [23, 12, 2]
advocate the use of time-causal video filtering for salient
feature detection. Extending the spatial scale-space filtering
to time, but with the time-causality constraint, the authors
developed a new time-causal multi-resolution temporal fil-
ter based on the RC circuit theory [2]. The resulting filter is
an asymmetric sinc filter K(t; τ) with a quadrature pair ob-
tained form its convolution with the Hilbert transform (i.e.,
Kh(t; τ) = K(t; τ) ? h(t) in which h(t) = 1

πt [10]).

K(t; τ) = sinc(t− τ) S(t) (6)

where S(t) denotes the Heaviside step function (i.e., S(t) =
1, ∀t ≥ 0 and it is zero otherwise). Note that the shape of
the asymmetric sinc kernel changes as a function of the tem-
poral scale τ . More specifically, at finer scales, the kernel is
more skewed towards the times before the peak of the ker-
nel. The shape change of the asymmetric sinc filter with the
scale increase results in detection of a wide range of motion

features from asymmetric to symmetric motions. The per-
formance comparison of the asymmetric sinc filtering with
two other asymmetric filters of truncated exponential and
Poisson [24] and with the symmetric Gabor [4] shows its
higher efficiency [2]. In fact, the features detected using
asymmetric sinc show higher precision rate, higher repro-
ducibility under different geometric variations, and higher
action classification rate [2]. From now on, we coin these
features as asymmetric motion features.

We consider the performance comparison of three
structured-based features (3D Harris, 3D Hessian, and 3D
KLT) and two motion-based features (Cuboids and asym-
metric motion features) for action recognition.

4 Experimental setup and results

This section presents our common action classification
framework for feature evaluation, the data sets, and the ac-
tion classification results using different salient features.

4.1 Action classification framework

For action classification, we incorporated the standard
discriminative bag-of-words (BOW) setting [4, 15, 12] as
shown in Fig. 1. In this framework, salient features are
detected at multiple spatial and temporal scales (σ, τ) to
localize the video events of different scales. Action pro-
totypes/primitives are then learnt using the standard vec-
tor quantization procedure by clustering the features of all
training samples into 1000 groups, experimentally [15, 2].
The clustering is performed by 10 times running the K-
means algorithm with random seed initialization and keep-
ing the result with the lowest error [15]. The clusters rep-
resent action primitives and are referred to as visual words
in the BOW framework. Most existing methods select the
number of cluster experimentally [15, 2], typically in order
of 1000. To obtain a better statistics, we vary the number
of clusters form 500 to 1500 with interval of 100 and report
the average classification results.

By assigning each salient feature to its closest cluster
(i.e., visual words), a global representation of an action is
the frequency histogram of the appearance of the features
in the whole video clip. The L1 normalized frequency his-
togram is finally considered as the compact signature of
the action. Finally, a nonlinear SVM (support vector ma-
chine) with the radial basis function (RBF ) is utilized for
the matching of action signatures (Si, Sj). The parameter
γ of the RBF (7) is learnt through cross validation using the
LibSVM toolbox [25].

KRBF (Si, Sj) = e−γ|Si−Sj |
2

(7)
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4.2 Spatio-temporal scales

To have a fair comparison, all the feature detectors use
the same spatial (σx = σy = σi per pixels) and tempo-
ral scales (τi per frames) in their scale-space video filter-
ing. We consider combination of three spatial scales and
three temporal scales, according to 2 (

√
2)i, i = {0, 1, 2}

formula [14, 2]. Note that the minimum spatial scale
σ0 = 2 pixels determines the maximum spatial frequency
of 0.5 cycles/pixel(i.e., the highest spatial resolution is one
cycle each two pixels). With 25 frames per second, the max-
imum temporal frequency of 12.5 cycles/sec is obtained
at τ = 2. After video filtering at each spatio-temporal
scale, the saliency map is computed using the correspond-
ing saliency criteria of each feature detector (e.g., the cor-
nerness (2) for the 3D Harris). To detect the key points
and hence, localize the salient features, we perform non-
maxima suppression in the spatio-temporal search window
of (3 × 3 × 3). To describe the motion and appearance of
each detected feature, we use the 3D SIFT descriptor [26]
which has shown promising performance in encoding the
spatio-temporal histogram of oriented gradients in the fea-
ture’s extension (6σ × 6σ × 6τ) [26].

4.3 Datasets

Three benchmark human action recognition datasets
have been used for the performance evaluation of different
detectors.

The KTH data set [18] consists of six actions (running,
boxing, walking, jogging, hand waving, and hand clapping)
with 600 choreographed video samples. Twenty-five differ-
ent subjects perform each action in four different scenarios:
indoors, outdoors, outdoors with scale change (fast zoom-
ing in/out) and outdoors with different clothes. According
to the initial citation [18], the video samples are divided into
a test set (9 subjects: 2,3,5,6,7,8,9,10, and 22) and a training
set (the remaining 16 subjects).

The UCF Sports dataset [16] includes actions such as
diving, golf swing, kicking, lifting, riding horse, run, skate
boarding, swing baseball, and walk with 150 video sam-
ples collected from the Youtube website. This dataset is
more challenging due to diverse ranges of views and scene
changes with moving camera, clutter, and partial occlusion.
A horizontally flipped version of each video is also used
during training to increase the data samples [15]. Two ver-
sion of this dataset has been used in the literature. The
original authors [16] categorized this dataset into 9 classes,
but recent publications [27, 28, 29, 15] split the samples
of “swing” category into two categories of “swing on the
pommel horse” and “swing at the high bar”. We use leave-
one-out (without considering the flipped samples for test-
ing) protocol and report our results for both protocols.

The Hollywood dataset [30] consists of eight human ac-
tions (answer phone, get out the car, hand shake, hug a per-
son, kiss, sit down, sit up, and stand up) from 32 Holly-
wood movies. The dataset is divided into a test set obtained
from 20 movies and the (clean) training set obtained from
12 movies different from the test set. There are 219 sample
videos in the training set and 211 samples in the test set.

4.4 Action recognition results

Figure 2 shows the 2D projection of different spatio-
temporal salient features on a sample frames from “diving”
action from the UCF sports dataset [16]. In this video, the
camera is following the athlete and that is a challenge for
any local salient feature detector. In fact, the salient fea-
ture detector do not perform any background subtraction
for video segmentation and hance, as a result, they find
some features from the background (i.e., false positives). In
this sample video, as it can be seen, among the structured-
based features, the 3D Hessian has less false positive de-
tection compared with the 3D Harris and the 3D KLT de-
tector. In contrast, the motion-based detectors detect most
of the features form the moving limbs. Among all the de-
tectors, the asymmetric motion features are more localized
on the moving limbs with much less false positives from
the background. Note that one could perform camera mo-
tion compensation to reduce the false detection, but stan-
dard velocity-adaptation approaches such as Galilean trans-
formation are computationally expensive and has not been
successful in feature detection literature [1].

Table 1 presents the average classification accuracy
of using different detectors on three different benchmark
datasets. As can be seen, in all three datasets, the motion-
based salient features perform better than the structured-
base salient features. Among the structured-based salient
features, the 3D Harris [9] and 3D KLT perform better than
3D Hessian [3]. Among the motion-based features, the
asymmetric motion features [2] provide higher classifica-
tion accuracy than the symmetric Cuboids [4]. These results
support the importance of using motion-based features for
video content representation and more specifically, the use
of asymmetric temporal filtering to extract a wider range of
motions from asymmetric to symmetric at different scales.

4.5 Comparison with other methods

Table 2 presents the classification rate of using asymmet-
ric motion features and other published methods on three
different datasets. As can be seen, the asymmetric fea-
tures provide the highest accuracy on both the UCF and
HOHA datasets. On the KTH dataset, our 93.7% accu-
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(a) 3D Harris features

(b) 3D Hessian features

(c) 3D KLT features

(d) Cuboids features

(e) Asymmetric motion features

Figure 2. 2D projection of different multi-scale local salient features on sample frames of a “diving”
action from the UCF sports dataset [16]. From top row to bottom row, the features are (a) 3D Harris,
(b) 3D Hessian, (c) 3D KLT, (d) Cuboids, and (e) asymmetric motion features. Among all the detectors,
the asymmetric motion features are more localized on the moving body limbs with much less false
positives from the background.

racy is comparable with 94.2% [29] accuracy obtained us-
ing joint dense trajectories and dense sampling which re-
quire much more computation time and memory compared
to our sparse features. In a comparable setting with [15],
the asymmetric motion features perform better than other
salient features and dense sampling.

5 Conclusion

In a common discriminative framework for action clas-
sification, we compared different salient structured-based
and motion-based feature detectors. For performance eval-

uation, we used three benchmark human action recogni-
tion datasets of the KTH, UCF sports, and Hollywood. In
all three datasets, the motion-based features provide higher
classification accuracy than the structured-based features.
More specifically, among all of these sparse feature detec-
tors, the asymmetric motion features perform the best as
they capture a wide range of motions from asymmetric to
symmetric. With much less computation time and memory
usage, these sparse features provide higher classification ac-
curacy than the dense sampling as well. Based on our exper-
imental results, we recommend the use of asymmetric mo-
tion filtering for effective salient feature detection, sparse
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Table 1. Average classification accuracy on different datasets using the features detected by different
methods. The accuracy variation is in order of 0.01 and is not reported here. Note that motion-
based detectors perform better than structured-based detectors on all three datasets. Moreover, the
asymmetric features provide higher classification accuracy than the symmetric Cuboids features.

Dataset Structured-based fetaures Motion-based features
3D Harris 3D Hessian 3D KLT Cuboids Asymmetric

KTH [18] 63.5 % 67.5 % 68.2 % 89.5 % 93.7 %

UCF sports [16] 9 classes 72.8 % 70.6 % 72.6 % 73.3 % 91.7 %
10 classes 73.9 % 70.2 % 72.5 % 76.7 % 92.3 %

HOHA [30] 58.1 % 57.3 % 58.9 % 60.5 % 62 %

Table 2. Comparison of different published methods for the human action classification on the
KTH [18], the UCF sports [16], and the HOHA [30] datasets. In this table, the bold italic items show
the original protocol of the dataset introduced by their corresponding authors.

Method KTH
UCF sports

HOHA9 classes 10 classes
Laptev et al. [30] - - - 38.4 %
Schuldt et al. [18] 71.7 % - - -

Rodriguez et al. [16] 86.7 % 69.2 % - -
Shabani et al. [2] 93.3 % 91.5 % - -
Wang et al. [29] 94.2 % - 88.2 % -
Wang et al. [15] 92.1 % - 85.60 % -

Willems et al. [3] 88.3 % - 85.60 % -
Asymmetric motions 93.7 % 91.7 % 92.3 % 62 %

video content representation, and consequently, action clas-
sification.
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